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Abstract

We present a robust method to determine 3D mo-
tion and structure of multiple objects. Rather than
segmenting the scene containing multiple motions us-
ing 2D parametric model, we use the general 3D mo-
tion model and exploit Hough transform and robust
estimation techniques to determine motion and seg-
mentation simultaneously for an arbitrary scene. We
divide the input image into paiches, and for each
sample of the translation space and each patch, we
compute the rotation parameters using weighted least-
squares fit. Fach patch votes for a sample in the
five-dimensional parameter space (iranslation and ro-
tation). The multiple local mazima in the parameter
space naturally correspond to the multiple moving o0b-
jects. Our experimental results show that the proposed
method is robust and relatively insensitive to noise.

1 Introduction

Determining three-dimensional motion and struc-
ture of multiple objects from two frames has been
a challenging problem. The most common approach
for motion analysis is based on two phases: compu-
tation of optical flow field and interpretation of this
flow field. There are numerous methods for comput-
ing optical flow; Barron, Fleet and Beauchemin [3]
present a comprehensive evaluation and comparison
of existing optical flow methods. For interpretation of
optical flow, a straightforward method is to segment
the optical flow field first, and then apply ego-motion
structure-from-motion (SFM) algorithm to each mov-
ing object. However, segmentation using optical flow
field can not distinguish between real motion bound-
aries and depth discontinuities. Another approach for
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segmentation is based on the set of coherent motion
parameters, independent of depth values. This ap-
proach (e.g. [l, 6, 7]) exploits 2D parametric mo-
tion approximations, ignoring the higher-order infor-
mation of the displacement vector, and thus yields
incorrect motion segmentation. Moreover, using a 2D
motion model to segment a 3D scene can lead to ambi-
guities. Methods in [2] and [1] belong to Hough trans-
form approach for SFM. The advantages of Hough
transform are that it is relatively insensitive to noise
and more robust as a global approach, and the mul-
tiple local maxima in the parameter space naturally
correspond to the multiple moving objects. In [2], the
candidate solutions over the entire five-dimensional
parameter space have to be evaluated, and known
depth is required, which makes the problem much
easier. In [1], segmentation and motion computation
is determined separately. Segmentation is performed
based on 2D parametric model through a split-merge
process.

In this paper, we attempt to solve the SFM prob-
lem for an arbitrary scene which may contain sev-
eral moving objects with possible camera motion. We
make no assumption about the scene (e.g. piecewise
planar surface, known depth, etc) and use the exact
general motion model, and exploit Hough transform
and robust estimation technique to determine motion
and segmentation simultaneously.

2 Motion Estimation Using Hough
Transform

Let T = (T, Ty, T,)" and Q@ = (Qx,Qy,Q,)" re-
spectively denote translation and rotation of a rigid
object, v = [u,v]" denotes optical flow, and f de-
notes focal length. At each image point, (x, y), of the
camera-centered coordinate system, the relationship
between optical flow, [u, v]!, motion parameters, and



corresponding depth is given by the following equa-
tions:

v(x,y) = p(x,y)A(x,y)T + B(x,y)2, (1)
where p(x,y) is the inverse depth, and
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Since inverse depth, p(z,y), and translation, T, can
be determined only up to a scale factor, we only
solve the translation direction and relative depth.
Now T denotes a unit vector for translation direc-
tion and p(z,y) denotes the relative inverse depth,
[|T||/Z. Unit vector T can be represented by spher-
ical coordinates in terms of slant, 6, and tilt, ¢:
(sin @ cos ¢, sinf sin ¢, cos0)*. Only half of the sphere
has to be considered, since solutions on the front and
back halves are the same, therefore, § varies from (°
to 90°, and ¢ varies from 0° to 360°.
We can cancel depth p(z,y) from (1) and obtain:
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o(T) = o(T), (2)

where
¢(T) = [ {Tox + Tyxy — Tx(£2 4+ y?),
T,y +Txxy =Ty (2 4x%), fTxx+Tyy—(x*+y*)T; |,

q(T) = —{Txv + fTyu + Ty(xv — yu).

We collect N equations of (2) into the matrix form:

C(T)2 = q(T), (3)
where
C(T)=[ ei(T), e(T), ---, ex(T) ],
QT)=] @(T), ¢A(T), ---, qn(T)].

At least three image points have to be used to solve
for €2, rotation parameters. We compute least-squares
estimate of rotation for a fixed choice of T:

Q= (C(T)"C(T))"" C(T)'q.

So, rotation is represented in terms of translation.

In order to deal with multiple moving objects, we
divide the entire image into patches, and within each
patch compute least-squares estimate of rotation for
a given T, and count the corresponding votes. The
algorithm is given in Figure 1. Under the framework
of standard Hough transform, instead of evaluating
the entire five-dimensional parameter space, we only

Algorithm:
1. Quantize the parameter space of §, ¢, 2z, Q,, and ..
2. Form an accumulator array A(6, ¢, Qa, Qy, ©22) and
initialize it to zero.
3. For each sample pair (8, ¢) do the following:
For each patch in the image do

Compute 2 = (C(T)'C(T))"'C(T)'q.

Increment accumulator array A(6, ¢, Q., ,, Q).
4. Find the local maxima in the accumulator array

corresponding to multiple moving objects.

Figure 1: Hough algorithm for SFM

examine the two-dimensional translational parameter
space, from which the corresponding optimal solution
for three rotation parameters is computed.

In the scene containing multiple moving objects,
each image patch may contain multiple motions. The
least-squares estimate is computationally efficient, but
not robust, particularly to deal with multiple motions.

3 Robust Motion Estimation of Mul-
tiple Objects

In this section, we present a robust method for mul-
tiple motion estimation. Multiple motions within a
patch can be treated as outliers with respect to the
major motion. M-estimators can be expected to han-
dle outliers and Gaussian noise in optical flow mea-
surements simultaneously, so, we include redescend-
ing M-estimator in our scheme to obtain more robust
rotation estimate of a major motion for a fixed T in
a small patch, rejecting the other minor motions as
outliers.

The M-estimators minimize the sum of a symmet-
ric, positive-definite function p(r;) of the residuals r;,
with a unique minimum at r; = 0. There are sev-
eral possible choices for p function listed in [4]. Since
it is relatively smooth, Beaton and Tukey’s biweight
function is used in our implementation:
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where r is residual, and Cp is a turning constant.
It is recommended in [5] Cp = 4.685 to achieve su-
perior performance for Gaussian noise. Since we are
dealing with the patch which may contain the multi-
ple motions, smaller turning constant should be used.



M-estimation problems are usually solved using an it-
erative weighted least-squares method [5], in which a
weight is computed for each data point based on the
residual error of the previous estimate. Initially, the
weights are all set to 1, and the vector € (denoted
by Qo) with the contribution of all data points in the
patch is computed, then weights are updated accord-
ing to the following:

T T A

(4)

The vector €2 is refined through iterations:

01 = Qo + (Ct < W(q_aﬂ) > C)_1 C'

Yely ]
(1070) > (q — Cy), (3)
where < > denotes an N x N diagonal matrix, and ¢
is a scale parameter which can be estimated by

o = 1.4826 med |r; — med 74, (6)
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where med denotes the median taken over the entire
patch. We use the following measure to stop the iter-
atlons:

where [ denotes the iteration number, and n denotes
the number of nonzero weights corresponding to the
number of inliers, which contribute to the robust es-
timate. If the difference of E at the current and the
previous iteration is less than some predefined thresh-
old or the maximum number of iterations is reached,
the iteration is stopped.

4 Segmentation and Depth

A set of hypotheses on motion parameters can be
obtained from local maxima in the parameter space.
The image is then segmented based on this set of
hypotheses. Once the motion and segmentation are
known, the relative depth at each pixel, (z, y), can
be determined (see Equation (1)) by:

Z(z,y) (A y)T)(AKXy)T)
T (Alxy)T)(v(x,y) - B(x,y)Q)

The motion parameters are relatively insensitive to
noise in the optical flow measurements since the in-
puts are combined over the segment. The depth esti-
mates are computed locally, and they thus are sensi-
tive to the input noise. One possible way to improve
depth estimates is to integrate information temporally
through multiple frames.

5 Conclusion

In this paper, we present a robust method to de-
termine 3D motion and structure of multiple objects.
Rather than segmenting the scene containing multi-
ple motions using 2D parametric model, we use the
general 3D motion model and exploit Hough trans-
form and robust estimation techniques to determine
motion and segmentation simultaneously for an ar-
bitrary scene. In our method, we do not have to
evaluate the candidate solutions over the entire five-
dimensional parameter space. We only examine the
two-dimensional translation space. We divide the in-
put image into patches, and for each sample of the
translation space and each patch, we compute the ro-
tation parameters using weighted least-squares fit, in-
corporating redescending M-estimator to reject out-
liers (either noise or minor motions in the patch).
Each patch votes for a sample in the five-dimensional
parameter space. Qur experimental results show that
the proposed method is robust and relatively insensi-
tive to noise.
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