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ABSTRACT 
 

To track people successfully in multiple cameras, one needs 
to establish correspondence between objects captured in 
each camera. We present a system for tracking people in 
multiple uncalibrated cameras. The system is able to 
discover spatial relationships between the camera fields of 
view and use this information to correspond between 
different perspective views of the same person. We employ 
the novel approach of finding the limits of field of view 
(FOV) of a camera as visible in the other cameras. Using 
this information, when a person is seen in one camera, we 
are able to predict all the other cameras in which this 
person will be visible. Moreover, we apply the FOV 
constraint to disambiguate between possible candidates for 
correspondence. Tracking in each individual camera needs 
to be resolved before such an analysis can be applied. We 
perform tracking in a single camera using background 
subtraction, followed by region correspondence. This takes 
into account the velocities, sizes and distance of bounding 
boxes obtained through connected component labeling.  We 
present results on sequences taken from the PETS 2001 
dataset, which contain several persons and vehicles 
simultaneously. The proposed approach is very fast 
compared to camera calibration based approaches. 
 
Keywords:  Tracking, tracking in multiple cameras, 
multi-perspective video, correspondence, surveillance, 
camera handoff, sensor fusion 
 

1. INTRODUCTION 
 

Tracking humans and vehicles is of interest for a variety of 
applications such as surveillance, activity monitoring and 
gait analysis. With the limited field of view (FOV) of video 
cameras, it is necessary to use multiple, distributed cameras 
to completely monitor a site. Typically, surveillance 
applications have multiple video feeds presented to a human 
observer for analysis. However, the ability of humans to 
concentrate on multiple videos simultaneously is limited. 
Therefore, there has been an interest in developing 
computer vision systems that can analyze information from 
multiple cameras simultaneously and possibly present it in a 
compact symbolic fashion to the user. 

To cover an area of interest, it is reasonable to use 
cameras with overlapping FOVs. Overlapping FOVs are 
typically used in computer vision for the purpose of 
extracting 3D information. The use of overlapping FOVs, 
however, creates an ambiguity in monitoring people. A 
single person present in the region of overlap will be seen in 
multiple camera views. There is need to identify the 
multiple projections of this person as the same 3D object, 
and to label them consistently across cameras for security or 
monitoring applications.  

In related work, [1] presents an approach of dealing 
with the handoff problem based on 3D-environment model 
and calibrated cameras. The 3D coordinates of the person 
are established using the calibration information to find the 
location of the person in the environment model. At the time 
of handoff, only the 3D voxel-occupancy information is 
compared to achieve handoff, because multiple views of the 
same person will map to the same voxel in 3D. In [2], only 
relative calibration between cameras is used, and the 
correspondence is established using a set of feature points in 
a Bayesian probability framework. The intensity features 
used are taken from the centerline of the upper body in each 
projection to reduce the difference between perspectives. 
Geometric features such as the height of the person are also 
used. The system is able to predict when a person is about 
the exit the current view and picks the best next view for 
tracking. A different approach is described in [3] that does 
not require calibrated cameras. The camera calibration 
information is recovered by observing motion trajectories in 
the scene. The motion trajectories in different views are 
randomly matched against one another and plane 
homographies computed for each match. The correct 
homography is the one that is statistically most frequent, 
because even though there are more incorrect homographies 
than the correct one, they lie in scattered orientations. Once 
the correct homography is established, finer alignment is 
achieved through global frame alignment. Finally [4, 5] 
describe approaches which try to establish time 
correspondences between non-overlapping FOVs. The idea 
there is not to completely cover the area of interest, but to 
have motion constrained along a few paths, and to 
correspond objects based on time from one camera to 
another. Typical applications are cameras installed at 
intervals along a corridor [4] or on a freeway [5]. Recently, 



the work by [6] uses multiple modalities in a Bayesian 
network to solve the multiple camera tracking problem. The 
modalities used are grouped into geometry based modalities 
and recognition based modalities; the former including 
epipolar geometry, homography and landmark modalities, 
and the latter comprising of apparent height and color 
modalities. 

The luxury of calibrated cameras or environment 
models is not available in most situations. We therefore tend 
to prefer approaches that can discover a sufficient amount of 
information about the environment to solve the handoff 
problem. We contend that camera calibration is unnecessary 
and an overkill for this problem, since the only place where 
handoff is required is when a person enters or leaves the 
FOV of any camera. By building a model of the relationship 
between FOV lines of various cameras can provide us 
sufficient information to solve the handoff problem. We 
extend our previous work [12] in two respects here. Firstly, 
we allow for the possibility of persons entering or exiting in 
the middle of the image, like a new person emerging from a 
car, and establish correspondence of such cases too, along 
with persons that enter from the limits of FOV of the camera. 
Secondly, we improve our initialization process, so that the 
lines can be determined using ordinary video, without the 
constraint of a single person visible in the environment. 

To solve the multiple-camera tracking problem, we first 
need to perform tracking in each camera individually. 
Background subtraction is a popular approach in such 
applications, to separate the foreground from the 
background, in video sequences acquired by a fixed camera. 
Several successful background subtraction methods have 
been proposed in recent years, for example [7]. If only a 
single person is visible in the camera field of view (FOV), 
then background subtraction suffices as a tracker. However, 
if more than one object needs to be tracked, then the 

additional problem of corresponding between objects in 
successive frames needs to be addressed. There has been 
considerable literature on point correspondence problem, 
motivated by the moving light displays [8], for example 
[9,10]. However, due to noisy background subtraction, 
change in the size of regions, occlusion and entry/exit of 
objects, traditional point correspondence methods cannot be 
directly applied to the human tracking problem. We 
formulate this as a region correspondence problem, given 
background subtraction results from [7]. We describe the 
problems encountered in establishing correct 
correspondence, and present a solution based on linear 
velocity prediction and size and distance constraints.  

In the next section we formalize the handoff problem 
and describe how the relationship between the FOV of 
different cameras can be used to solve the handoff problem. 
In Section 3, we describe how this relationship can be 
automatically discovered by observing motion of people in 
the environment. In Section 4, we discuss our approach of 
tracking in a single camera, which forms the input to the 
multiple camera system. Finally we present results of our 
experiments on the PETS 2001 dataset in Section 5. 

 
Figure 1: (Left) Three cameras setup in a room, with 
their FOVs shown by different lines. A person is 
entering the FOV of Camera 1. (Right) By looking at the 
FOV lines of Cameras 2 and 3 in Camera 1, we can 
determine that this person is visible in Camera 2 but not 
in Camera 3. 

 
Figure 2: Generation of FOV lines. Two correct 
correspondences can be used to find a line. In the top pair 
of images, a person is entering or leaving the right camera. 
The position of this person in the left camera can be used to 
find the Left FOV line of left camera as seen in the right 
camera. 



 

2. EDGE OF FIELD OF VIEW LINES 
 

The handoff problem occurs when a person enters the FOV 
of a camera. At that instant we want to determine if this 
person is visible in the FOV of any other camera, and if so, 
assign the same label to the new view. If the person is not 
visible in any other camera, then we want to assign a new 
label to this person.. 

Each camera’s field of view can be described by four 
lines on the floor-plane, which are the left, right, top and 
bottom limits of FOV. Let Li

l , L
i
r, L

i
t  and Li

b  be the four 
limits of FOV of the ith camera (Ci) on the ground plane 
(Figure 1). Let the projection of Li

x (x ∈ { l, r, t, b} ) in 
Camera j be denoted by Lij

x. Note that Lii
x denotes the sides 

of the image in Ci. As far as the camera pair i, j is concerned, 
the only locations of interest in the two images for handoff 
are Lij

x and Lji
x. These are up to eight lines, possibly four in 

each camera. Let us currently assume that a person already 
visible in one of the cameras is entering the FOV of another 
camera. In this case, all that needs to be done is to look at the 

associated line in the other camera and see which person is 
crossing that line.  Consider the following scenario. A 
person is entering the FOV of C2. There are two persons 
visible in C1 at this instant. Both these persons are being 
tracked and we have a bounding box around them. By 
looking at the bottom part of the bounding boxes in C1, we 
can determine quite easily which person has entered the 
FOV of C2. The line that will help us determine this is L21

l i.e. 
the left FOV of C2 as seen in C1. The new person in C2 is 
therefore assigned the same label as that of the person who 
is closest to this line in C1. 

Detection of New Persons 
In the example given above, it is assumed that when a 

person enters the FOV of a camera, he must be visible in the 
FOV of another camera. This is not always the case. A 
person might be entering from the door (in which case he 
might just “appear” in the middle of the image) or he might 
be entering the FOV from a point that is not visible in any 
other camera. 

To establish correspondence between views, we look at 
the FOV lines of the current camera as seen in other cameras. 

 

 

 
Figure 3: FOV lines determined from tracking data: The top row shows the lines determined by the system, and the 
bottom row shows the areas that are marked at not visible in the other camera. 



To find whether a person is visible in other cameras or not, 
we look at the FOV lines of other cameras as seen in the 
current camera. Consider the scenario when a person is 
entering the FOV of Ci. Whether this person is visible in any 
other camera (Cj, j ≠ i) or not can be determined by looking 
at all the FOV lines that are of the form Lji

x , i.e. edge of 
FOV lines of other cameras as visible in this camera (Ci).  
These lines partition the image Ci into (possibly over 
lapping) regions, marking the areas of image Ci that 
correspond to FOV of other cameras. Figure 2 ill ustrates 
this situation symbolically. Thus all the cameras in which 
current person is visible can be determined by acquiring the 
region of the person’s feet. 

Thus with each line Lji
x, an additional variable δji

x is 
stored. The value of δji

x can either be +1 or –1, depending 
upon which side of the line falls inside the FOV of Cj. Then, 
given an arbitrary point (x′, y′) in Ci, the point’s visibilit y in 
Cj can be determined by just determining if this point is on 
the correct side of both Lji

l and Lji
r. If L

ji
l is represented by  

A x′ + B y′ + C. The point (x′, y′) is visible in Cj if and only 
if  

sgn( )','( yxL ji
x )= ji

xδ  ∀ x ∈ { l, r, t, b}  (1) 

In the case when all four lines of Cj are not visible in Ci, the 
condition in Eq. 1 is simpli fied to not include those lines. 

Establishing Correspondence Between Views 
When a person enters the FOV of a new camera, it can 

be determined whether this person is visible in the FOV of 
some other camera or not. Whenever a person is in the 
image all the other cameras in which this person wil l also be 
visible can be found out by using Eq 1. If there is no such 
camera, then a new label is assigned to this person. 
Otherwise the previous track of this person is found so that a 
link can be established between the two views.  This is done 
by finding the person closest to the appropriate edge of FOV 
line. Say that the person entered from the left side of C1. 
Then, the persons visible in all cameras other than C1 will be 
searched and the person that is closest to the left edge of 
FOV line of C1 in that camera will be found. These two 
views will t hen be linked together by entering them in an 
equivalence table. In general, if a person enters Ci from side 
x, then the label assigned to the new view will be: 

 

  in   visiblepersons ofset   where

   )),((minarglabel
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x

k
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where Pk is the label assigned to a person and D(P, L) 
returns the absolute distance between the center of the 
bottom line of the rectangular bounding box of person P and 
the line L.  

We have extended this formulation to also include the 
scenario when a person appears in the scene from a location 
that is not one of the edges of an image. In this case, this 
person will not be visible on one of the FOV lines. An 
example of such a scenario is when a person emerges from a 
car parked in the middle of the scene. In such a case, we look 
at all the tracks in the other camera, and see if any one of 
them is currently unassigned to one of the tracks in the 
current camera. If this track is also in the visible region, then 
it is an indication that it should have been visible in the 
current camera, and therefore a correspondence can be 
established. In case of multiple such tracks existing 
simultaneously, the decision is taken based on the 
consistency of motion relative to the edge of FOV lines. If a 
person is moving towards the left edge of one camera, and in 
the other camera, he is moving away from the left edge of 
FOV line, then this correspondence is obviously incorrect 
and will be ignored. 

 
3. AUTOMATIC DETERMINATION OF 
FOV LINES 

 
When tracking is initiated, there is no information 

provided about the FOV lines of the cameras. The system 
can, however, find this information by observing motion in 
the environment. Whenever there is a person entering or 
exiting one camera, he actually lies on the projection of the 
FOV line of this camera in all other ones in which he is 
visible. Suppose that there is only one person in the room. 
Then, when this person enters the FOV of a new camera, we 
find one constraint on the associated line. Two such 
constraints will define the line, and all constraints after that 
can be used in a least squares formulation. This concept is 
visually described in Figure 3.  

In our previous paper [12], we demonstrated 
initialization of FOV lines by one person walking in the 
environment for about 40 seconds, and this was enough to 
initialize the lines. These lines were then used to resolve the 
correspondence problem between cameras. However it is 
not always possible to have only one person walking in the 
scene. Therefore, for cluttered situations where it is hard to 
find the correspondences to be used for initial setup, we 
propose another method. When multiple people are in the 
scene and if someone crosses the edge of FOV, all persons 
in other cameras are picked as being candidates for the 
projection of FOV line. Since the false candidates are 
randomly spread on both sides of the line whereas the 
correct candidates are clustered on a single line, correct 
correspondences will yield a line in a single orientation, but 
the wrong correspondences will yield lines in scattered 
orientations. We can then use Hough transform to find the 
best line in this case. 



This idea works when the FOV line is visible in the 
other cameras. However, it is easy to visualize a situation 
where one of the edges of the current camera is not visible in 
some other camera. If this is the case, then all the 
correspondences marked will be wrong ones, because the 
correct ones will not even be visible. This will result is a 
wrong estimate of the line via the Hough Transform. 

We solve this problem by looking at long segments of 
the video and searching for unambiguous cases. If only one 
person is visible in a camera pair, then we can safely mark 
the bounding box of this person as an area that is invisible in 
the other camera. If we have information about 
classification of objects available (for example, person, car), 
then the idea can be further extended by looking for only 
that particular type of object in the other camera, and 
marking the area as invisible if no object of such a type 
exists. After a while, we obtain a visibility map for each 
camera pair. Any object entering or exiting from the 
invisible areas should not be added to the possible 
correspondences, thus reducing the number of false matches 
significantly. Any other type of categorization information 
may also be used, like for example, matching moving 
objects to only objects that are moving in the other camera. 
After doing this type of analysis, we consider only lines that 
have a significant amount of support from the data, i.e. they 
are determined by analyzing more than a certain number of 
correspondences. 

Thus, theoretically, there are two options for initial 
setup of FOV lines. Quick self-calibration can be achieved 
by having only one person walk around the environment a 
few times. This should be suff icient for determining the 
relationship between the cameras. All li nes of interest 
should be crossed at least twice during such a walk, which is 
often easily established during a 30-40 second random walk 
in a small room. The prior knowledge of having only one 

person in the room tells us that every correspondence 
between the cameras is a correct correspondence. However, 
if the environment is busy and cannot be cleared of people, 
we can use the second method, which finds the statistical 
best line, treating every valid correspondence as a 
potentially correct one. This method needs more points for a 
reliable estimate of the lines and will t herefore take longer 
to be setup correctly. Additional constraints derived from 
categorization of objects and their motion may be used to 
reduce the number of false correspondences, thus reducing 
the time it requires to establish the lines. However, this 
method is completely automatic and does not need even the 
simple setup step required in the first method. Since we did 
not have control over the environment for the PETS 2001 
dataset, we used this second method to find the FOV lines 
using the ‘ training’ dataset, and then used these lines to 
perform multiple camera tracking on the ‘ testing’ dataset. 

 

4. TRACKING IN A SINGLE CAMERA 
 
Tracking of objects in a single camera is not a trivial 

task. The test sequences for the workshop have a number of 
scenarios, which are very challenging for tracking 
algorithms. They include motion of groups of people, 
occlusion between people, occlusion between cars and 
people, occlusion  due to scene structure and exits and 
entries during occlusion. 

We present a tracking method which is able to 
accurately deal with occlusions between different objects 
and exit/entries during occlusion. The tracking method 
consists of extracting foreground regions in each frame and 
establishing correspondence of these regions between 
frames. 

 

 
Figure 4: Complicated Occlusion Example: Results of single camera tracking algorithm, during occlusion. 



Background Subtraction: Moving objects are extracted 
from the sequence using the adaptive background 
subtraction method proposed by Stauffer and Grimson [7]. 
In the method, each pixel intensity is adaptively modeled by 
a mixture of K Gaussian distributions. The distributions are 
evaluated  to determine which are more likely to result from 
a background process. The method reliably deals with long 
term changes in lighting conditions and scene changes. 
However, fast lighting changes and intensity variation due 
to compression do produce noise in the background  
subtracted image. Morphological filtering was performed to 
get rid of small noise. 

The background subtraction method gives foreground 
pixels in each new frame. The foreground pixels are then 
segmented into regions using the connected components 
algorithm. We have used the term region to denote a 
foreground connected component in the rest of the paper. 
 
Motion Correspondence: 

The goal of tracking is to establish motion 
correspondence between regions that are moving in a 2D 
space that is essentially the projection of a 3D world.  The 
regions can enter and exit the space. The regions can also 
get occluded by other regions. 

For motion correspondence we have used a method 
which is an extension of the point correspondence paradigm 
[8, 9, 10], which tries to achieve correspondences that 
minimize the deviation in speed and direction of  motion.  
Regions, as compared to points, have extra information like 
shape and size. This information can be used to further 
constrain the correspondences. 

Each region is defined by the 2D coordinates of the 
centroid X, the bounding box B and the size S. The regions, 
for which correspondence has been established, have an 
associated velocity V and predicted change in size S∇ .  In 
frame ‘ t’ of a sequence, there are N regions with centroids 

t
iX   (where Ni ≤≤1 ) whose correspondences to previous 

frame are unknown.  There are M regions with centroids 
1−t

LX   (where L is the label) in frame t-1 whose 

correspondences have been established with the previous 
frames.  The number of regions at ‘ t’ might be lesser than the 
number of regions in frame t-1 due to exits or occlusion. 
Also it can be larger due to entries. The task is to establish 
correspondence between regions in frame t and frame t-1 
and to determine exits and entries in these frames. 

  
 The minimum cost criteria is used to establish 

correspondence. The cost function between two regions  is 
defined as  

|)(|)1()( 1111 t
i

t
L

t
L

t
i

t
L

t
LLi SSSXVXC −+∇−+−+= −−−− ρρ  

where   ∈L { Labels of regions in frame t-1}   

i is index of non-corresponded region in frame 
t and  Ni ≤≤1               . 
        ρ  is the weight parameter determining the 

percentage of cost due to change in size, and change in 
velocity. 

The cost is calculated for all (L,i) pairs. Correspondence is 
established between the pair ),( iL ′′  that gives the lowest 

cost.  The velocity and predicted size of region L′  are 
updated as 

)()1( 11 −
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−
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where α  is the learning rate. 
Next all region pairs containing L′  or i ′  are removed from 
consideration and the correspondence is established 
between the pair that gives the lowest cost among the rest of 
the pairs. The velocities and predicted sizes of corresponded 
regions are updated according to the above equations. 
 Once possible correspondences have been established 
using the minimum cost criteria, the following two cases 
might happen 
2. Correspondences have been found between all regions 

in frames ‘ t-1’  and ‘ t’ . 
3. Correspondences have not been found between all 

regions in frames ‘ t-1’  and ‘ t’ . There might be regions 
in frame ‘ t-1’ which have not been corresponded to in 
frame  ‘ t’  due to occlusion or due to exits from FOV of 
a camera. Region can be occluded due to another region 
or due to scene structure. There might be regions in 
frame ‘ t’ which have not been corresponded to in frame  
‘ t-1’ because they just entered the frame and no 
corresponding region in the previous frame exists. First 

we deal with the of frame ‘ t-1’ . Suppose a region 1−t
LX  

could not be corresponded to any region in frame ‘ t’ . A 

check for exit of 1−t
LX from the FOV of camera is done.  

If the position plus predicted velocity of a  that regions 
is outside the frame boundary then it is determined to 
exit the frame. If this is not the case, then a check for 

occlusion is made. If 1−t
LX translated with its predicted 

velocity overlapped with another region in frame ‘ t-1’ 
then these two regions are declared as occluding each 
other. Note that this would have resulted in a single 
region in frame ‘ t’ . To compensate for the missing 
region we will add another region in frame ‘ t’ with 

centroid 11 −− += t
L

t
L

t
L VXX  and 1−= t

L
t
L VV . If the 

occlusion check is not satisfied then the object is 
thought be occluded by a scene structure and to have 
exit.  The non- corresponded regions in frame t are set 
to be entries. There initial velocity and change in size 
are zero. 



 

5. EXPERIMENTS AND RESULTS 
We used Dataset 1 from the PETS 2001 datasets for 
evaluating this system. Previously, we have demonstrated 
the working of these ideas for an indoor environment, with 3 
cameras and up to 3 persons at a time in the room [11]. Here 
we present the results for an outdoor environment, with two 
cameras, and multiple persons and cars going through the 
environment (Dataset 1 Test Sequence, PETS 2001).  
5.1 Single Camera Tracking 

 The tracking algorithm was run on dataset 1, Test 
sequences. The images were JPEG compressed and 
contained significant noise.  We reduced the size of image 
by half and convolved it with a low pass filter to reduce 
noise. The algorithm was run on both sequences with same 
parameters. 
The trajectories obtained by establishing correspondences 
were pruned to remove trajectories, which didn’ t move 
significantly throughout their existence. These trajectories 
were obtained due to uncovered background or due to 
motion of tree etc. 
The algorithm performed well on the Camera 2 sequence. 
The occlusion between car and people were handled 
correctly.  The exits under occlusion were also correctly 
detected. Entry of group of people was detected as single 
entry. However as soon as one person separated from the 
group he was tracked separately and its entry was detected at 
the point of separation. 
Camera 1 sequence was more diff icult for tracking. This 
was because the angle of elevation of the camera was lower 
resulting in long occlusions of multiple objects. A tree in the 
image was moving constantly. There was a pole in the 
middle of the view, which sometimes occluded objects, 
partially causing the foreground component to divide into 
multiple pieces. 

Decent results were obtained in Camera 2. One major 
problem arise  when two cars  occluded each other  and pole 
divided the single component into two in frame number 847 
and 849. Our tracker cannot deal with division of single 
connected component in two large components during 
occlusion. It  assumes that occlusion is over and updates the 
predicted position with wrong predicted velocities and sizes. 
This region division rarely happens in cases when object are 
directly viewable. However in  Camera 1, the pole caused 
the division in some frames (though in most frames the  
morphological operations joined the regions since the pole 
was thin). We manually connected the regions in 6 frames 
847, 849, 2526, 2529. Our region correspondence was then 
able to correctly correspond the regions. 
5.2 Multiple Camera Tracking 

Multiple camera tracking works in two stages, the first 
one being establishing of FOV lines, and the second one 
being establishing correspondence and globally correct 
labels for all objects, using the FOV lines. To run multiple 
camera tracking on the Test Sequence, we used the Training 
Sequence to generate the FOV lines. We currently did not 
implement a classification scheme, to categorize objects 
into humans and vehicles, so we did this categorization 
manually for the Training Sequence. Some standard method, 
for example [12], may be utili zed here. There are 31 
‘key-frames’ in the Training sequence that consist of an 
entry or an exit event. We used the bounding boxes in these 
frames for the generation of the lines.  

The way cameras are setup, only one FOV line of 
Camera 1(left) should be visible in Camera 2, and three 
FOV lines of Camera 2 (left, right and bottom) should be 

Frame Camera Object Camera Object Comment 

98 1 1 2 1 Correct 
470 2 2 1 2 Correct 
668 1 3 2 3 Correct 
774 2 4 1 4 Correct 
963 2 5 1 5 Correct 
1074     Incorrect 
1185 1 6 2 7 Correct 
1423 2 8 1 8 Correct 
1578 2 9 1 7 Incorrect 
2106 2 10 1 9 Correct 
2177 2 12 1 10 Correct 

 
Table 1: Results of multiple camera correspondence. 
For example, the first row states that object 1 in camera 1  
is the same as object 1 in camera 2 

 
Figure 5: Example of Low level tracking failure. A 
person emerges from the car, while the group of people 
is being occluded by the car. The identity of the group is 
taken by the person, as if they might have turned back. 
This also generates an error in high level interpretation. 



visible in Camera 1. However, out of the latter three lines, 
no interaction actually happens on the right line of Camera 2 
in the Training Sequence, and only one exit event of a group 
of people in Testing Sequence. Since at least two correct 
correspondences are required to establish a line, our system 
does not find this line, but this does not result in any 
degradation of results. The lines generated are shown in 
Figure (). 

Next we use the Test Sequence to establish 
correspondence between tracks of the same objects in the 
two cameras. The results for this are shown in Table 1. Our 
single camera tracking suffered from some errors, a few of 
which are reflected in the multiple camera results. We 
verified that if those errors were corrected manually, then 
the results of multiple camera correspondence are 100%. 
However, in the realistic tracking scenario, when the 
information from the lower level tracking is not correct, then 
a couple of mistakes are seen in Table 1. Each row of  Table 
1 corresponds two objects in different cameras. Nine correct 
correspondences were established. The first wrong 
correspondence occurs at frame 1074. Here, the single 
camera tracker failed during simultaneous occlusion of  
three objects. The occlusion starts between a group of 
persons and a car, but during occlusion, a new person also 
emerges from the car. This person assumes the label of the 
previous group, and we fail to register an entry event. The 
second failure occurs in frame 1578, where errors occur 
simultaneously in both the cameras. Both cameras are 
tracking groups of persons, and the group breaks in each 
camera. Thus a correspondence is established between these 
two new components, which is not correct. However, given 
the underlying tracking data, the error is to be expected. 

 
 

CONCLUSION 
 

We have described a framework to solve the camera handoff 
problem. We contend that camera calibration and 3D 
reconstruction is unnecessary for solving this problem. 
Instead, we present a system based on edge of FOV lines of 
cameras that can handle handoffs. We outline a process to 
automatically find the lines representing these limits, and 
then using them to resolve the ambiguity between multiple 
tracks. This approach does not require feature matching, 
which is diff icult in widely separated cameras. We have also 
presented a correspondence based solution of tracking in a 
single camera. We show results on a two camera sequence 
from PETS dataset. 
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