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Abstract

In practice, understanding the spatial relationships
between the surfaces of an object, can significantly im-
prove the performance of object recognition systems.
In this paper we propose a novel framework to rec-
ognize objects in pictures taken from arbitrary view-
points. The idea is to maintain the frontal views of the
major faces of objects in a global flat map. Then an un-
folding warping technique is used to change the pose
of the query object in the test view so that all visible
surfaces of the object can be observed from a frontal
viewpoint, improving the handling of serious occlu-
sions and large viewpoint changes. We demonstrate
the effectiveness of our approach through analysis of
recognition trials of complex objects with comparison
to popular methods.

1. Introduction

Object recognition from 2D images is a heavely-
researched problem in the study of both human and
machine vision. One of the challenges for automatic
object recognition systems is that the same object may
appear differently, depending on viewpoints, lighting
conditions, and other environmental factors. A possi-
ble solution is to match a test image against an explic-
itly represented 3D geometric model [4]. While ex-
plicit models provide powerful geometric constraints,
generating the explicit geometric model is typically a
difficult and time-consuming process.

An alternative way to solve the above problem is to
employ the appearance-based object recognition meth-
ods which are intuitive and robust. Rothgangeret
al. [7] imposed the multiple view geometry constraint
on potential matching patches and stitched matches
found in successive images into a global 3D affine
model of the object. Selingeret al. [6] proposed as-
sembling the local features within a loose global con-
text and combining the evidences from different view-
points based on the feature frequency distribution over
the entire database in a Bayesian framework. Ferrari
et al. [2] used a similar intermediate grouping scheme
between the primitives and views.

Despite impressive results, the multi-view ap-
proaches have some limitations which restrict their ap-
plication in realistic scenes. Firstly, those approaches
usually require storing a large number of views for
each object [8] or limiting the range of admissible
viewpoints [1]. Moreover, they need accurate view-
point and pose detection for the query object in the
test image. Unfortunately, detecting a large number
of correct correspondences is one of the most difficult
problems in object recognition. Although there have
been some efforts (e.g. [7]) to improve the detection
of initial correspondences, correct viewpoint detection
is still limited by the number of model views and the
object’s pose in the test image. In addition, since most
model features may appear multiple times in the train-
ing dataset, the inherent redundancy makes the multi-
view recognition extremely inefficient.

This paper presents a novel framework to recognize
objects in images taken from arbitrary viewpoints. The
basic idea is to represent the model within a global
compact view, called a flat map, so that the query ob-
ject can be compared with the model from the frontal
views. In this way, the projective distortions of its side
faces can be reduced, resulting in better detection of
promising features (see Fig. 3). Finally, we present
a recognition system which can handle objects com-
posed of planar surfaces such as boxes and cars.

2. Object Modeling Using Global Flat Map

One way to generate a global flat view for a 3D ob-
ject is to use the Map Projection (MP) approach, which
allows one to represent curved surface on a flat surface
(e.g.the earth map). However, MP is not adequate for
recognition due to the introduced spatial distortion in
the resulting map. If the object has a cylindrical or
conic shape, the unfolded map of the object’s surface
can be constructed through the context mosaicing ap-
proach [3].

In our case, we take several model views for each
model object. These model views can be divided into
two classes. The first class consists of the snapshots of
the major faces of the object. These frontal views ac-



curately capture the details of the object, providing a
strong confidence for object recognition from multiple
viewpoints. Another class consists of ‘bridge’ views
in which two or more faces can be simultaneously ob-
served. The model views can be captured individually
or extracted from a sequence around the object. If the
initial view taken for a certain face has considerable
projective distortion, it can be resolved by employing
the image rectification technique (e.g. [9]).

To combine those views into a compact map, one
can sequentially register the multiple-views, which
may result in large registration errors, because the reg-
istration error might be propagated when multiple pair-
wise estimates of registration transformation are con-
catenated. In order to suppress the registration error
for the whole object, we choose the star network topol-
ogy to construct the flat map. More specially, for each
bridge image all visible faces are detected by regis-
tering them with the front views. Then, the detected
frontal views are assembled and the region shared by
two connected views is stored in an index table ac-
cording to the spatial ordering provided by the bridge
views. To make the resulting map uniform in intensity,
a color rectification process is employed before the as-
sembling process.

3. Registration Using Unfolding Warping

When performing recognition, the input is a single
image of an unknown object. It may be a frontal view
of one of the object’s faces or may contain multiple
faces with occlusion and deformation. Given the test
image, we extract the Scale Invariant Feature Trans-
form (SIFT) features [5] in both the test image and the
model map. Feature correspondences are then identi-
fied using a fast nearest-neighbor algorithm. In prac-
tice, the initial matching may contain significant er-
rors, which may severely disturb the estimation of ho-
mography and is especially serious for side faces due
to the large distortions. In addition, if there is a large
difference between the test image and the model views,
the matches may typically be found on only a small
portion of the object. Densely covering the visible part
of the object is desirable because it increases the evi-
dence for its presence, providing a higher discrimina-
tive power.

Here we propose a scheme for simultaneously in-
creasing both the accuracy of homography estimation
and the number of confident correspondences. In par-
ticular, for a test imageIt and the model mapIm, we
apply the RANSAC scheme to find the meaningful ho-
mographies from the initial correspondences. Notice
that different homographies may have a different num-
ber of inliers. Let{Hy}|

Y
y=1 be the automatically de-

tected homographies andsy be the inliers ofHy. We
call the homography with the maximal inliers the dom-
inant homographyHd.

In order to refine the estimation, we change the

Figure 1. Unfolding warping for object recognition.

viewpoint for each detected face by applying the ini-
tial homographies to the test image so more features on
those side faces can be observed and matched. Instead
of applying all the homographies to the test image, we
choose only the dominant one, such thatÎt = HdIt,
because this dominant homography is induced by the
most significant face visible in the test view. Since the
exact segmentation of the face region is difficult, we
warp the whole test image instead of the region cov-
ered by the corresponding face.

After the homography transformation the warped
image is expected to be more similar, in the dominant
face area, to the model map than the original one. We
then re-compute the features of the warped image,Ît,
and explore the correspondences with the model map
again. These two steps, homography estimation and
image warping, iterate until the inliers don’t change
anymore.

Figure 2 shows an example of this homography re-
finement process. Initially, the dominant homography
has 166 inliers. After the first refinement, the number
increases to 844, which is a significant improvement.
Figure 2(c) shows the warped image after applying the
final dominant homography to the original test image.
The resulting homography induces the dominant plane
visible in the image pair. Before refining other homo-
graphies, we remove the features on the detected face
area by re-projecting the inlierŝst

d ∈ Ît to the original
test image:st

d = H
−1
d ŝ

t
d. The features on the origi-

nal test image, except for the re-projected featuress
t
d,

are used to find subsequent homographies. This pro-
cess is repeated until the number of remaining corre-
spondences is too small, lower than a predetermined
threshold. In this way, the mismatches from side faces
to the dominant face can be avoided efficiently. The
last row in Fig. 2 shows a side face and its inliers de-
tected automatically using this scheme.

4. Object Recognition

In order to obtain correct recognition based on the
features which are generally detected locally, we pro-
pose incorporating the spatial context information into
the recognition scheme. Consider a set of correspon-
dencesP = {pi}|

n
i=1 andQ = {qi}|

n
i=1 on the warped

test imagêIt and the model mapIm, respectively. For
feature pointpi ∈ Ît, its context feature is defined as a



Figure 2. Dominant homography refitment: (a) the
model flat map, (b) the test image, and (c) the initial
matching using SIFT features (289 pts). Second row
shows (d) the initial inliers (166 pts) for the fist dom-
inant face, (e) the inliers (844 pts) of the final domi-
nant homography, and (f) the warped test image with
the final homography. Last row: the number of inliers
increases from 10 (g) to 134 (h) after two iterations
and the warped image (i).

log-polar histogramψt
i , with respect to other features

in Ît:

ψt
i(b) = #{pj 6= pi : (pj − pi) ∈ bin(b)}, pj ∈ P

(1)
whereb = {1 . . .B} denotes the index of bins used
to describe the feature points. The resulting histogram
records the relative locations of other feature points to
the central pointpi. Concretely, we use five bins for
distance measurelogr and12 bins for angleθ. Thus,
there are a total of60 bins in the log-polar space,B =
60.

With this descriptor, the spatial context distance of
the matchespi and qi can be estimated by comput-
ing the difference of their context histograms, (i.e. the
number of features in each sector areas around the fo-
cused features). However, since the features are found
in different faces, they have different reliability in de-
scribing the occurrence ofpi andqi. On the other hand,
we notice that the intensity profile along the line (path)
going between two feature points may change greatly
if the features lie on different faces and those faces are
configured in different ways. The votes from different
features should therefore be treated differently accord-
ing to the profiles of their paths to the focus feature
point.

In our method, the voting weight of a feature pair
(pk, qk) to the center features(pi, qi) is determined by
the profile difference between the two pathspipk and

Figure 3. Test images in the box dataset.

Table 1. Recognition rates (%) of two methods for
different test datasets:T1 (only bridge images) andT2

(with unseen images).

Dataset # images SIFT Matches Our Method

T1 124 62.1 78.9
T2 56 38.63 59.9

T1+T2 180 54.8 73.1

qiqk:

ωk
i =

√
[Ît(pipk) − Im(qiqk)]2

Dik

, k = 1, 2, . . . , n ,

(2)
where I(a1a2) refers to the image intensity profile
along the path from pointa1 to pointa2 in imageI,
andDik is the distance between(pi, qi) and(pk, qk).
Then the confidence for each bin in the context grid is
defined as:

Wi(b) =

∑
ps∈bin(b) ω

s
i

ψt
i(b)

+

∑
qs∈bin(b) ω

s
i

ψm
i (b)

. (3)

Now, consider the context around the feature pair.
The overall matching cost of feature pair(pi, qi) is
computed by comparing their context descriptors as:

Ctm
i = C(pi, qi) =

1

2

B∑

b=1

Wi(b) · [ψ
t
i(b) − ψm

i (b)]2

ψt
i(b) + ψm

i (b)
.

(4)
Once the costCi is obtained from each correspon-
dence, the final step is to perform the classification by
selecting the model which is the shortest distance from
the test image:Dtm = 1/n

∑n

i=1 C
tm
i .

5. Experimental Results

We are reporting results of two classes: boxes and
cars. For the boxes, the training dataset consists of 21
different boxes, each box having 9 model views. The
test dataset contained 180 images, including the bridge
images from the training dataset and new ones with
occlusions and viewpoint changes as shown in Fig. 3.
The SIFT features were extracted from both the model
views and the test images, and an initial matching was
established. Based on the quantity and quality of those
SIFT matches, a classification process was applied for
a basic recognition. The results are shown in Table 1.

For our algorithm, we first generated the model flat
maps of boxes. Then during testing, we warped the test



Figure 4. Recognition results for boxes. Blue cir-
cle, red star and green cross indicate correct, error and
non-class result respectively.

image using each model map and determined matches
between the model and test image. The model flat map
which gave the shortest distance was selected as the
match. The recognition results are shown in Fig. 4,
where the blue circles represent the correct classifica-
tions and the red stars indicate errors. Since the fi-
nal correspondences in our approach are strictly qual-
ified by geometrical constraint (homography), there
may be some test images with no sufficient and accu-
rate matches for meaningful homography estimation.
Those cases are put into the non-class category and are
indicated with the green cross in Fig. 4. The statistics
in Table 1 show that our scheme performs very well in
this box database and gives a significant improvement
over the SIFT-based matches.

Another dataset tested in our experiments consisted
of 17 car objects. Figure 5 shows some of the model
flat maps generated for the those cars. The test dataset
contained 205 images taken under different situations.
Note that most of the cars have two side faces that
were similar, or exactly the same in appearance. This
is a serious problem for appearance-based matching
techniques because a given feature may have multiple
matches. Thanks to the homography refinement tech-
nique, our algorithm can select the accurate matches
on the correct faces and provide a substantial improve-
ment in the matching performance.

For this car experiment, the direct recognition rate
with SIFT matches is only18.4%, due to the large de-
formation and complex appearances of the objects in
the dataset. The proposed method provided a more
accurate rate of65.3% with the help of the unfold-
ing warping technique, which compensates for the oc-
clusions with the global model map, and reduces the
effects of repeatability using the context information.
Currently, our algorithm is implemented in interpreted
Matlab on a Pentium IV, 1.5GHz PC. A single pairwise
matching, including the feature matching, homogra-
phy estimation, and computation of matching cost, on
average approximately takes40 seconds.

Figure 5. Samples of car model maps.

6. Conclusions

We have proposed a novel framework for automatic
object recognition. The major advantage of the pro-
posed system is that the frontal views of the major
aspects of training objects are stored and combined
into a flat map, so multi-view object recognition can
be posed as a simple patch mapping problem. Spa-
tial context and topological features can thus be ap-
plied for more robust recognition. The training data in
our approach consists of only 2D maps, leading to an
efficient system compared to existing multi-view ap-
proaches. As the experiments show, the proposed ap-
proach can significantly improve the handling of large
changes of viewpoints and performs well in solving
challenging cases.
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