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Abstract. Registration of a mission video sequence with a ref-
erence image without any metadata (camera location, viewing
angles, and reference DEMs) is still a challenging problem.
This paper presents a layer-based approach to registering a
video sequence to a reference image of a 3D scene contain-
ing multiple layers. First, the robust layers from a mission
video sequence are extracted and a layer mosaic is generated
for each layer, where the relative transformation parameters
between consecutive frames are estimated. Then, we formu-
late the image-registration problem as a region-partitioning
problem, where the overlapping regions between two images
are partitioned into supporting and nonsupporting (or outlier)
regions, and the corresponding motion parameters are also de-
termined for the supporting regions. In this approach, we first
estimate a set of sparse, robust correspondences between the
first frame and reference image. Starting from corresponding
seed patches, the aligned areas are expanded to the complete
overlapping areas for each layer using a graph-cut algorithm
with level set, where the first frame is registered to the refer-
ence image. Then, using the transformation parameters esti-
mated from the mosaic, we initially align the remaining frames
in the video to the reference image. Finally, using the same
partitioning framework, the registration is further refined by
adjusting the aligned areas and removing outliers. Several ex-
amples are demonstrated in the experiments to show that our
approach is effective and robust.

Keywords: Video registration – Layer-based registration –
Level set – Graph cuts – Adaptive region expansion

1 Introduction

Image registration and alignment have been studied for a long
time in different areas, including photogrammetry, remote
sensing, image processing, computer graphics, medical imag-
ing, and computer vision [3, 16, 24]. Registration techniques
can be classified based on the following two factors: the mo-
tion model between mission and reference images, and the
method of alignment [16].

The motion model depends on the geometry of the imaged
scene and dynamics of the sensor and object motion. Given
two images of a planar scene, a single motion model (affine
or projective) can be fitted using the existing registration ap-
proaches (Fig. 1a). For a scene containing multiple planes (or
layers), it is difficult to obtain correct registration using only
two images (mission and reference) due to the inconsistent
motion model. Hence, the registration may overfit one layer
or the layer boundaries may not be accurate [19]. However,
given a video sequence, an accurate layer segmentation can be
obtained by exploiting spatiotemporal information [1,6,8,22]
(Fig. 1b), which makes it possible to perform the layer-based
registration.

Alignment methods can be broadly categorized into three
classes: intensity-based (or appearance) methods, feature-
based methods, and hybrid methods. The intensity-based
methods are based on the well-known optical flow constraint
equation [5], which can be solved by minimizing the sum
of squares of pixelwise differences (SSD). Generally, these
methods are more useful for frame-to-frame registration of
video frames with a simple camera motion, where the pixel
motion is small and the image intensities are similar [11,17].
In the feature-based methods, the main steps include: find-
ing robust features, establishing correspondences, fitting some
transformation, and applying the transformation to warp the
images [3,23]. These methods are relatively fast and more suit-
able for the registration of two dissimilar images with a large
and complicated motion or transformation. Recently, several
hybrid methods have been proposed to integrate the merits
of intensity-based and feature-based methods [7,15]. In these
methods, a set of features is extracted, then an iterative opti-
mization procedure is applied to the supporting regions around
these features to minimize some dissimilar measurements.

Currently, some registration problems, such as video mo-
saicing and registration of video acquired by an airborne sen-
sor to a reference image in the presence of camera informa-
tion [7,13,14,20], have been solved quite well. However, some
problems in this area remain unresolved:

1. How do we obtain a reliable initial estimation of motion pa-
rameters if the camera information (e.g., location, viewing
angles, and sensor model) is not available? In particular, if
camera location and orientation are quite different, such as
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(a) (b)

Fig. 1. Depending on the scene, a video se-
quence can be represented by one layer (a) or
multiple layers (b). a This scene can be ap-
proximated by one plane due to the nonpar-
allax camera motion and the generated mo-
saic. b “Flower garden” sequence, which can
be represented by three layers: tree, garden,
and background

with wide-baseline images, the initial estimation usually
is quite difficult.

2. How do we deal with outlier regions when the images are
taken at different times? These regions may look different
due to appearing and disappearing objects, such as moving
objects, shadows, and vegetation. Therefore, only a part of
the image may be useful for the registration.

3. How do we handle complex motion models in a single 3D
scene, e.g., multiple homographies as shown in Fig. 1b?
Most existing approaches ignore these problems and at-
tempt to align the whole image using a single motion
model regardless of the number of layers.

With the aim of addressing the above limitations of the
current methods, we propose a novel framework to perform
video registration of a 3D scene, which can be approximated
by multiple planes, without any knowledge of the metadata.
In particular, given an image sequence of a mission or inspec-
tion video, we want to register it to a reference image, which
may be taken at a different time, location, and orientation. The
proposed approach first uses a motion layer extraction algo-
rithm [22] to obtain an accurate layer segmentation of the mis-
sion video by exploiting spatiotemporal information. For each
layer, a mosaic is generated and the relative transformation pa-
rameters between consecutive frames are estimated. Then, we
formulate the image-registration problem into a partitioning
framework, where the overlapping regions between two im-
ages are partitioned into supporting and nonsupporting regions
for the registration. In this framework, a region expansion pro-
cess is designed to adaptively propagate the alignment process
from the high-confidence seed regions to the low-confidence
areas and simultaneously remove outlier regions. In order to
obtain such starting seed regions, we apply a wide baseline
algorithm [21] to compute a set of reliable seed correspon-
dences between the first mission frame and reference image.
Then, starting from the seed regions, the initially aligned areas
are expanded to the whole overlapping areas using a graph-
cut algorithm integrated with the level set representation of
the previous regions. Consequently, we achieve a robust layer

alignment for each layer using the relative-motion parameters
estimated by the layer mosaic, and the final multilayer video
registration is obtained after back projection of layers.

In the remainder of this paper, we describe how to generate
mosaics after extracting layers from the video in Sect. 2. Sec-
tion 3 presents the region expansion algorithm for layer reg-
istration. In Sect. 4, we demonstrate the experimental results
for single- and multiple-layer video registration to illustrate
the robustness of our approach.

2 Layer mosaics

In a planar scene, only one layer is available, as shown in
Fig. 2a. It is easy to generate a mosaic for this layer using
an affine or projective motion model. However, if the scene
contains multiple layers, the motion models can vary from a
simple global motion model to multiple motion models, where
pixel motions are mapped to several parameter clusters. Fig-
ure 2b shows one example of this case from a “door-wall”
sequence, which contains two layers. It is impossible to ob-
tain one mosaic using this mission video without severe mis-
alignment or distortion. Fortunately, in the context of video
registration, temporal information is available in the mission
video sequence, from which the motion layers of the scene
can effectively be extracted. In this paper, we use a multi-
frame graph-cut framework [22] to achieve an accurate layer
segmentation of the mission video sequence. Figure 3 shows
the video segmentation results obtained for the “door-wall”
sequence. After the motion segmentation, we obtain precise
supporting regions for each layer and the corresponding mo-
tion parameters between each consecutive frame, which can
be used as the initial parameters for layer mosaicing.

2.1 Mosaic generation

Since the gap between consecutive frames of a video sequence
is small, it is better to use an intensity-based registration
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(a) (b)

Fig. 2. a Three frames from a mission
video are shown on the left that are to
be registered to a single layer in the
reference image shown on the right. b
Three frames from a mission video are
shown on the left that are to be reg-
istered to two layers in the reference
image shown on the right

Fig. 3. Segmentation of “door-wall”
sequence. Top: Several frames of the
mission video sequence. Bottom: Seg-
mentation results (occluded pixels in
red)

method to minimize the image residue (or SSD), which can
be written as

ε =
∑
Ω

[(I2(Hx) − I1(x)]2 , (1)

where I1 and I2 are two original images, Ω is the overlapping
area between two consecutive frames, x represents homoge-
nous pixel coordinates, andH ∈ R

3×3 is a homography matrix
between two frames. Starting with H = I (identity matrix),
a nonlinear approach, such as Levenberg–Marquardt method,
can be used to iteratively minimize the residue [17]. In this
method, after computing image gradient �I from the two im-
ages, a gradient-descent direction is estimated that leads to a
local minimum. However, due to changes in illumination and
camera gain, the images may appear too bright or dark and
the contrast of the images may be too weak to provide good
gradient information for the minimization. Also, if the images
do not have enough texture information, such as the door layer
shown in Fig. 4a, the intensity map may be too flat. As a re-
sult, there is not much variation in the gradient map, and the
registration process will be more sensitive to noise. Therefore,
before generating the mosaic, we adjust the brightness of the
images and enhance image contrast to obtain good gradient
information for the minimization.

A simple way of enhancing image contrast is to normalize
or equalize the image. Here we use a nonlinear equalization
technique to distribute the histogram into the full-intensity
range and enhance the gradient variation. Then, a bilateral fil-
ter [18] is applied to denoise the image, and the histogram is
further smoothed and more uniformly distributed in the full
range of intensity. Consequently, not only is the image con-
trast enhanced, but the gradient field also becomes continuous
while the salient features are still retained (Fig. 4b).

Figure 5 compares the results of mosaic generation with
and without image enhancement. For both “door” and “wall”
layers, without applying the image enhancement, the image

contrast and gradient information is not sufficient to get correct
mosaics, as shown in Fig. 5a and c.

The transformation Hi between mission frame i with the
mosaic becomes known after a mosaic is generated for each
layer. Therefore, we have two choices when it comes to align-
ing the mission video to the reference image as shown in Fig. 6.
In the first scheme, after aligning the layer mosaic to the ref-
erence image with transformation F , an initial transformation
for a mission frame i to the reference image can be computed
by Ti = FHi. However, in this scheme, the error between
frame fi with frame f1 will be accumulated with i increasing,
which may not provide a good estimation between the layer
mosaic and the reference image.

In this paper, we use an alternative solution, whereby each
frame fi is directly registered to the reference image based
on the previous transformation of frame fi−1. First, we align
the first frame to the reference image and estimate its cor-
responding transformation T1 by determining corresponding
seed regions and using the region expansion approach, which
will be described in the next section. Then the initial trans-
formation for the second frame can be simply computed by
T2 = T1H

−1
1 H2, which can be further refined only using

the region expansion process without computing seed corre-
spondences. After estimating the precise transformation Ti−1
of fi−1, we iteratively compute the initial transformation for
frame i by Ti = Ti−1H

−1
i−1Hi using the previous frame fi−1.

As a result, we can avoid the accumulated error of the mosaic
since the initial transformation is always computed employing
the previous frame fi−1 instead of the first frame f1. Hence,
before registering the whole mission video sequence, we have
to align frame 1 to the reference image and compute T1. In the
next section, we will present a novel solution for this critical
frame registration.
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(a)

(b)

Fig. 4a,b. Image enhancement. a Orig-
inal image of a door layer from se-
quence shown in Fig. 3 with gradi-
ent magnitude map and histogram.
b Same as a after equalization and
bilateral filtering. The histogram be-
comes more uniformly distributed,
while the image contrast and gradient
map are significantly enhanced

(a) (b) (c) (d)

Fig. 5a–d. Image mosaics. a,c Mo-
saics of “door” and “wall” layers with-
out image enhancement. b,d Mosaics
after applying image enhancement.
Compared to b and d, a and c contain
some apparent distortions

...

H
1

H2

H3
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Reference image Mission video frames Mosaic

Fig. 6. The transformation among
mission frames, reference image, and
layer mosaic for one georegistration
sequence. Hi is the transformation be-
tween mission frame i with mosaic.
F is the transformation between mo-
saic and reference image. Ti is the
final transformation between mission
frame i and reference image

3 Layer registration by region expansion

The first issue that has to be tackled for layer registration algo-
rithm development is the decision to use either sparse or dense
image features for registration. Given two wide-baseline im-
ages without any metadata, it is difficult to perform alignment
due to illumination variations and large motion between two
images. Therefore, the use of sparse image features is ideal
for the fast estimation of initial motion parameters. However,
due to outliers and inaccuracy of these correspondences, the
initial registration is usually not good enough. In this section,
we propose a two-stage approach to integrating the merits of
the sparse and dense image features. In the first stage, we de-
termine a set of sparse correspondences between the mission

and reference images. Then, starting from the initial seed cor-
respondences, the aligned regions are gradually expanded to
cover the whole overlapping areas between both images.At the
same time, the outlier regions, such as appearing/disappearing
objects that may harm the registration process, are detected
and removed.

3.1 Determining correspondences

There are several methods for computing robust correspon-
dences for wide-baseline images [4, 21]. Here we use Xiao
and Shah’s work [21] to determine a set of reliable corre-
sponding corners. In this approach, a set of edge-corners is
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identified in both images that provide robust and consistent
matching primitives. Our feature detector first identifies Har-
ris corners and then removes those corners that are not at the
intersection of two edge lines. As a result, all the edge-corners
are located at the junctions of multiple edges. Then the sup-
porting regions of the corresponding corners should satisfy
the following equation:
µI2(Ax + d) + δ = I1(x), (2)
where I1 and I2 are two original images, x ∈ R

2 represents
pixel coordinates, A ∈ R

2×2 is an affine matrix, d ∈ R
2 is

a translation vector, µ depends on the reflection angle of the
light source, and δ depends on the camera gain. The illumi-
nation coefficients, µ and δ, are used to compensate for the
illumination change between wide-baseline images, while the
affine model (A and d) is used to compensate the geometric
distortion between two image patches. We can compute the
best match by minimizing the following residue:

ε =
∑
Ω

[(µI2(Ax + d) + δ) − I1(x)]2, (3)

where Ω is the image patch and the patch size is 40 × 40.
Instead of initializing the minimization with A = I (identity
matrix), d = [0 0]T, µ = 1, and δ = 0, we first search the best
rotation and scaling component implied in this affine trans-
formation; we then apply Newton–Raphson iteration from
A = R × S (best rotation and scaling) to obtain stable re-
sults [21]. Simultaneously, an optimal affine transformation
A and d, and illumination coefficients µ and δ are obtained,
which not only compensates for the geometric deformation
but also efficiently adjusts the brightness and contrast of I2.

Figure 7 shows the detailed matching process for a small
patch. After computing the best affine transformation and illu-
mination coefficients between the two patches in mission and
reference images, the patch in I2 (Fig. 7d) is warped as shown
in Fig. 7e, which has a similar appearance to the patch in I1
(Fig. 7c), and the residue is minimized.

3.2 Adaptive region expansion process

Once the seed correspondences are estimated between the mis-
sion and reference images, our purpose is to perform registra-
tion for each plane (layer) in the scene. For each pair of corre-
spondences, we consider a small patch centered around each
seed region, which can be approximated as a planar patch (or
an initial layer) in the scene. Therefore, we get a number of ini-
tial layers, and each layer is supported by a small square region
with its corresponding affine transformation. This implies that
the corresponding small square regions in the mission and ref-
erence images are aligned by this initial affine transformation.
For a general minimization case, we use a vector, Θ, to denote
all the parameters used to minimize the errors between two
images. The image dissimilarity function can be rewritten as:

ε =
∑
Ω

[I2(x, Θ) − I1(x)]2 , (4)

where Θ includes two parts: the first part deals with illumi-
nation coefficients µ and δ, and the second part deals with
motion parameters (i.e., affine or projective transformation
parameters). Using linear [21] or nonlinear [17] optimization
algorithms, ε can be iteratively minimized for this small patch
(e.g., 41 × 41) and the corresponding Θ can be estimated.
Nevertheless, this minimization process may create two prob-
lems. First, the estimated parameters obtained by using the
small patch may overfit the pixels inside the region and may
not correctly represent the global transformation of a larger re-
gion. Second, this process ignores the appearing/disappearing
objects between two images, such as the moving objects, oc-
clusion areas, and shadows.

To overcome the problems described above, we expand
the region boundary to obtain more supporting pixels that are
consistent with the motion parameters and also to identify the
outlier pixels. Then we iteratively refine the motion parame-
ters using these supporting pixels. Therefore, this registration

(a)

(b)(c) (d) (e)

Fig. 7a–e. Determining correspondences between the mission frame and reference image. a Mission image. b Small part of reference image.
Several correspondences are computed by the wide-baseline matching algorithm, each pair of correspondences is marked by squares with the
same color. c–e Matching process of green (top row) and blue (bottom row) corners. c A patch from a. d Corresponding patch from b. e Warped
patch d obtained after applying the best affine transformation, where patch e is similar to patch c. NB: Compared to the original patches c and
d, the illumination effect is partially compensated between c and e by estimating µ and δ
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

Fig. 8a–h. Region expansion process. a,b Initial corresponding patch contours in the reference and mission images, respectively. c Final
registration result, where the intensities of the embedded mission image are adjusted by illumination coefficients µ and δ. d Simple expansion
and partitioning started from the initial contour shown in a. e Level set representation of initial contour a. f–h Intermediate results using
graph-cut method with the level set representation, which can guarantee that the expansion gradually evolves from the center to a boundary.
NB: The green boxes in a and b are the initial seed regions. f–h Difference images between the warped b and a and the green contours in f–h
are supporting region boundaries obtained after using a bipartitioning algorithm. The nonsupporting pixels are masked by red

problem is essentially converted into a partitioning problem
that can be stated as follows: Determine the optimal supporting
regions and their corresponding motion parameters for image
registration.

One straightforward solution is to apply a threshold on ε
between the original and warped windows to detect additional
supporting pixels in a neighboring area of the previous re-
gion. However, the expanded region is sensitive to noise and
may not be compact and smooth. Figure 8d shows one re-
sult obtained by using this simple scheme. Thus, we propose
a novel alternative approach to gradually expanding the seed
region by identifying the supporting pixels using a biparti-
tioning graph-cut method integrated with a level set represen-
tation. First, a smoothness energy term between neighboring
pixels is introduced that maintains piecewise smoothness of
the partitions [2,9]. Then, using the level set representation of
the previous region, the contour of the seed region is gradu-
ally evolved by propagating the region’s front along its normal
direction.

Our registration problem can be recast into the graph-cut
framework. In this framework [2], we seek the labeling func-
tion f that partitions the pixels in region Ω into two groups: the
first group represents the supporting regions, labeled f = 0;
the other represents the outlier regions, labeled f = 1. This
partitioning can be achieved by minimizing the following en-
ergy function:

E =
∑

(p,q)∈N
V (p, q) +

∑
p∈Ω

Dp(fp) , (5)

where the first term is a piecewise smoothness term, the second
term is a data penalty term, N is a 4-neighbor system, and fp

is the label of a pixel p. Dp(fp) can be approximated by a
Heaviside function:

Dp(fp) =
{

tan−1(dp − τ) + π/2 if fp = 0,
π/2 − tan−1(dp − τ) if fp = 1,

(6)

where dp = [I2(xp, Θ)−I1(xp)]2, xp is the pixel coordinates
of p and τ is an empirical threshold. V (p, q) is designed to
more likely maintain the same label for p and q if they have
similar intensities, such as:

V (p, q) =
{

3λ if max(|I1(p) − I1(q)|, |I2(p) − I2(q)|) < 8,
λ otherwise.

To minimize the energy function, a weighted graph
G = 〈V, E〉 is constructed as shown in Fig. 9, where V is a node
set (image pixels) and E is a link set that connects the nodes.
After assigning weights for the links using the table shown
in Fig. 9, we can compute a minimum cut C using a standard
graph-cut algorithm and partition the original region into the
supporting and outlier regions. However, using this process
we cannot expand the region from the initial seed patch to the
exterior to obtain more supporting pixels. Hence, we must use
the contour of the previous seed region prior to computing the
level set representation for this region [10,12], which allows
the region contour to evolve along the normal direction. After
enforcing the level set regulation on the sink-side weight of
graph G, we can effectively control the graph-cut algorithm to
gradually expand the seed region.

Figure 8 shows a detailed expansion process starting from
one initial seed region. Figures 8a and b show the initial con-
tours of the corresponding seed regions. Based on the initial
contour of the original seed region Ω0 (Fig. 8b), we construct
a mask β of this region, which has a value in [0, 1], where the
interior pixels of the region are marked by 1 and the others are
marked by 0. Then, a level set φ (Fig. 8e) can be simply com-
puted by convolving the region mask with a Gaussian kernel
as: φ = G ∗ β, where the value of φ falls down along the con-
tour normal direction until φp = 0. Then, we warp the second
image using the corresponding homography and construct a
graph G for the pixel with φp > 0.After that, we apply the level
set φ to change the weight of the sink-side t-link for each pixel,
such that the weights of the pixels inside the region are almost
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Dp(0)

V(p,q)

Dp(1)

u v w

(s,w)
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Fig. 9. Example of a weighted graph G for an
image. Nodes p, q, r, · · ·, w are the pixels in
the image. s is the source node and t is the
sink node. The edges connected to the source
or sink are called t-links, such as (s, p) and
(p, t). The edges connected to two neighbor-
ing pixel nodes are called n-links, which have
two directions, such as (p, q) and (q, p). Af-
ter computing minimum cut C, the nodes are
partitioned into supporting pixels (source) and
nonsupporting pixels (sink). The dotted links
are crossed by C. Table 1 shows the weights

unchanged while the weight (p, t) will decrease when the pixel
p is away from the boundary. As a result, the minimum cut C
is most likely to exclude the outside pixels and label them as
the nonsupporting pixels for this region. This way, the new
expanded supporting region Ω1 can be computed as shown
in Fig. 8f. After several iterations as shown in (Figs. 8f–h),
the region’s boundary gradually propagates from the center to
the exterior until it reaches the overlapping boundary of two
images, and the alignment is stable. Figure 8h shows the final
region Ω5 after five iterations, and Fig. 8c shows the final reg-
istration results using the projective transformation computed
by this approach.

If several initial seed regions share the same motion trans-
formation for some layer, we expand the multiple regions si-
multaneously to speed up the registration process. We show
one such example in Sect. 4. Figure 8 shows that our approach
can obtain the piecewise smooth region expansion, which is
insensitive to noise. The outlier regions due to shadows are
also detected and removed. At the same time, the transforma-
tion T1 for the key frame is estimated.After applying the initial
transformation Ti = Ti−1H

−1
i−1Hi to frame i, we initialize the

alignment of frame i to the reference image. Then, employing
the region expansion approach to the ith frame, we remove
outliers and refine the alignment to compute the transforma-
tion Ti for this frame. The final video registration results are
shown in Fig. 10.

4 Experiments

We performed several experiments on different real data sets,
where the metadata information was not available. In all of
the experiments, we applied the wide-baseline matching algo-
rithm to estimate sparse correspondences, which can provide
an approximated initial alignment between mission and refer-
ence images. For a single layer registration, after determining
the sparse correspondences, we expanded these seed regions
simultaneously to speed up the alignment process. The initial
homography between two images could be computed in two
ways: select the most robust affine transformation of the seed

regions using the RANSAC technique or estimate a homog-
raphy voted on by all of these correspondences.

In Fig. 11, we show an example of the multiseed expansion
process. Since a number of correspondences are determined,
it is easy to estimate a robust initial homography using all the
correspondences. Then, starting with the initial homography,
we expand all the initial seed regions simultaneously until the
overlapping areas between the mission and reference images
are covered. Our graph-cut algorithm also detects and removes
the outlier regions, most of which are due to vegetation or
shadows. Figures 11h,i compare the zoomed results before
and after applying the region expansion process.

Figure 12 shows another set of results for georegistration
using single seed region expansion where only three corre-
spondences are determined due to the small size of the mission
frame. Since we cannot obtain a good initial projective trans-
formations from these few correspondences, we use RANSAC
to determine the robust affine transformation of the seed re-
gions, which is shown in blue in Figs. 12a,b. Then, starting
from one seed region (blue), we perform the adaptive re-
gion expansion alignment and obtain the registration results
as shown in Figs. 12c,d.

Figure 13 shows the final registration results for the “door-
wall” sequence. After obtaining the layers for each frame, we
align the different layers to the reference image separately
using the adaptive region expansion approach. The final reg-
istration results of the first frame are shown in Figs. 13d,e.
Compared to the direct registration, our approach has two ad-
vantages. First, to align the corresponding layers, we employ
different sets of motion parameters to correctly represent the
mapping of the pixels in these layers. Second, the layer seg-
mentation also provides accurate supporting regions for each
layer, which prevent the region expansion process across the
layer boundaries. Therefore, for each layer registration, our
approach can effectively avoid the pixels from the other lay-
ers and achieve more accurate aligned regions for each layer.

In all of our experiments, after determining correspon-
dences, the computational time for a single layer registration
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(a)

(b)

(c)

Fig. 10a–c. Video registration results. a Mission video frames. b Registration results for several frames, where the mission images are
superimposed on the reference image. c Full registration of all mission video frames

(a) (b) (c) (d)

(e) (g)( f )

(h)

( i )

Fig. 11a–i. Registration using multiseed region expansion. a Mission image. b Small part of a reference image. The correspondences are
marked in a and b by the same colors. c Initial seed regions and d corresponding level set representation. e Final region contour after expansion,
where the nonsupporting regions are indicated by red. f Registration results. g Checkered display after alignment. h,i Zoomed alignment results
before and after applying the region expansion alignment

(a) (b) (c) (d)

Fig. 12a–d. Registration using one seed region expansion. a Small part of a reference image. b Mission image. c Registration results. d
Checkered display after alignment

is less than 10 s per frame. NB: All of the results are available
at our Web site.1

1 http://www.cs.ucf.edu/∼vision/projects/
layer registration/

5 Conclusions

In this paper, we presented a layer-based framework for video
registration without any metadata.After extracting layers from
the video sequence, layer mosaics are built. Then, an adaptive
region expansion algorithm is used to efficiently propagate
the alignment process from the high-confidence areas to the
low-confidence areas. In addition, the outlier regions are also
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(a) (b) (c) (d) (e)

Fig. 13a–e. Multiple-layer registration. a Reference image. b,c Layers of door and wall in frame 1. d Registration results of frame 1. e
Checkered display after alignment. Middle: Some mission video frames. Bottom: Corresponding video registration for these frames, where the
mission images are split into two parts during the registration

identified and removed. Based on an initial transformation
from the mosaic, each video frame is aligned to the reference
image and finally combined together to achieve multilayer
video registration.

In the future, we would like to investigate different dissim-
ilarity measures to handle other kinds of registration problems,
such as multisensor image registration and 2D image to 3D
model registration.
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