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ABSTRACT

Many image processing and computer vision applications
have difficulty dealing with a nonstatic background such as
water waves, but this particular dynamic scene actually con-
tains enough information to reveal much more than a static
scene. In this paper, we propose a method to determine real
world scale as well as other factors, including wave height,
sea state, and wind speed, from uncalibrated water video.
We do this by using low level image processing tools to ex-
tract a spatial frequency spectrum from individual frames of
the video and temporal frequencies from the time dimension
of the video, and applying known physics of water waves to
find the high level properties of the scene. An example is
presented to demonstrate and validate the process.

1. INTRODUCTION

At first glance, a topic that applies only to ocean water may
seem quite narrow, but water covers the majority of our
planet, and oceans comprise 92% of this water [8]. Ocean
waves have been studied for hundreds of years. For early
mariners, understanding of the ocean’s patterns was a mat-
ter of life and death. While modern science has enabled us
travel the seas in comfort and forecast the conditions with
accuracy, ocean waves continue to be a source of irritation
to the image processing and computer vision communities,
due to their constantly changing appearance.

Many video analysis processes, like background sub-
traction and camera motion compensation, rely on the un-
interesting parts of the scene being static. Dynamic compo-
nents that are part of the background, including trees blow-
ing in the wind and moving water, form video textures [7].
The graphics community models these phenomena for the
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purpose of simulating them, and work has been done in the
vision community to classify temporal textures by their sta-
tistics [6]. Fitzgibbon [2] seeks to recover camera motion
by treating the image sequence as a random process, and
searching the space of possible motions at each frame to
find the motion that results in the most efficient model of
the random process. Doretto et al. [1] find static boundaries
between regions with different spatio-temporal statistics.

In this paper, we deal specifically with water, not gen-
eral temporal textures. We exploit the properties of water,
such as the relationship between wavelength and wave peri-
od, and low level features of the video, such as spatial and
temporal frequency spectra, to learn higher level properties
of the environment, like real world scale, wave height, and
even wind speed. Figure 1 shows a block diagram of our
method. Fourier transforms of individual frames are used
to find the energy at various spatial frequencies. Princi-
pal component analysis (PCA) of the whole video sequence
followed by another Fourier transformation is used to find
the energy at various temporal frequencies. Application of
wave physics allows us to convert the temporal frequencies
to real world wavelengths. Correlation of the spatial and
temporal information leads to knowledge of the image di-
mensions in real world units, without the “up to a scale fac-
tor” disclaimer usually applied to imagery. Once the real
world scale is known, the actual size of objects in the scene
as well as their velocities can be found, with no prior knowl-
edge about camera calibration.

Section 2 outlines the physical properties of water and
waves that are needed for this application. Section 3 de-
tails the features that are extracted from individual frames
of the video, and Section 4 describes the temporal proper-
ties. These pieces are integrated in Section 5 and applied to
actual video in Section 6. Conclusions and future directions
are listed in Sections 7 and 8.

2. WATER PHYSICS

Waves in the open ocean appear at first glance to be chaotic
and unpredictable. However, there are some constants in
the seemingly random ocean surface. We will focus on the



Fig. 1. Overview of water video analysis

behavior of open water. Shore effects, like waves breaking
on the beach, have their own body of literature, and will not
be dealt with here.

Once created, waves that depend on gravity can travel
a long distance without significant loss of energy. Anyone
who has thrown a pebble into a still pond has seen that the
ripples continue long after the pebble that caused them has
sunk to the bottom. Likewise, if a storm causes rough seas,
when the wind ceases, the waves will remain. The only
aspect to change quickly is the tiny capillary waves, which
vanish with the wind, since they are controlled by surface
tension. Therefore, except for the highest frequencies, the
overall characteristics of the water vary slowly over time.
Observations of the same area of open water within a few
hours are likely to capture fairly constant conditions [4].

The period of a wave is the time for one complete cy-
cle of a wave, that is, the time between two crests passing
a stationary point. The wavelength is the spatial distance
between two crests. The wave speed is then the ratio of the
wavelength and the wave period. But the relationship be-
tween these quantities is not random. A wave with a longer
period has a longer wavelength, as well as faster speed.

More precisely,

L =
g

2π
T 2 (1)

c =

√
gL

2π
(2)

where L is the wavelength, T is the wave period, c is the
wave speed, and g is the acceleration due to gravity (9.8
m/s2) [4].

Of course, individual waves or wave trains are difficult
to perceive in the open ocean. The ocean is not made up of
waves of a single frequency, but of many frequencies and

directions. While the surface of a particular patch of wa-
ter is always changing, the frequency spectrum remains the
same, allowing a constant statistical description of the wa-
ter. Wave analysis for forcasting is based on the assumption
of a stationary ergodic random process [5].

3. SINGLE IMAGE PERIODIC FEATURES

The spatial frequency spectrum of a patch of water can be
computed from a single overhead image using a discrete
Fourier transform [9]. One way to decompose the 2D fre-
quency spectrum is to compute the energy as a function of
radius or direction [3]. Direction is not relevant to our task,
so we compute the spectrum S(r) by averaging the spec-
trum power (magnitude squared) for each value of the ra-
dius.

Since spatial frequency is the inverse of wavelength, it
is easy to convert between the energy at a given frequency
and the energy at a given wavelength. Since the radius in
Fourier space is the number of cycles in the image, L =
w/r, where L is the wavelength in pixels, w is the image
width in pixels, and r is the radius in pixels in Fourier space.
The spatial wavelengths can only be determined in units of
pixels without knowing the depth and zoom.

Two samples captured at different times should produce
the same frequency spectrum, according to our model. We
can increase the accuracy of our model by averaging the
spectra from multiple images. In fact, samples (images)
that have the same depth and zoom should have the same
spectra, regardless of pan, tilt, roll, or time differences.

If the depth or zoom changes, it changes the scale of
the sample, but not the underlying frequencies, so the new
spectrum will be a scaled version of the old one, within the
window of measurable frequencies. The discrete Fourier
transform cannot capture wavelengths greater than the im-
age size or smaller than two pixels.

4. VIDEO PERIODIC FEATURES

With video as an input, we can average the frequency spec-
tra across multiple frames, as described in the previous sec-
tion, but we also have the added dimension of time. While
we can’t extract real world length units like feet or meters
directly from still images or video, we can determine time
in seconds. By analyzing the time dimension of the video,
we can find wave periods in seconds.

Assuming the camera is static, one way to do this is to
first reduce the dimensionality of the data via principal com-
ponent analysis (PCA) [2]. This reduces the 3D (x, y, t)
data into a 2D array with a row for each frame, and col-
umns containing the coefficients of each principal compo-
nent. Summing the power in each row of the DFT of this
matrix will give the energy at each temporal frequency.



Since we know the frame rate of the video, we now have
the energy spectrum for different wave periods in real world
units of seconds. The cycles can be converted to periods
using T = n/(30f), where T is the wave period in seconds,
n is the number of frames in the video, and 30 is the number
of frames per second.

5. PUTTING IT ALL TOGETHER

From individual images, we can get spatial frequencies (i.e.,
wavelengths) in pixels. From video, we can obtain wave pe-
riods in seconds. Since we’re talking about water waves in
the ocean, the relationships in Equations 1 and 2 apply, so
we can convert the wave periods in seconds to wavelengths
in meters. This gives us an energy spectrum for wavelengths
in meters from the video, and an energy spectrum for wave-
lengths in pixels from the individual frames. Subject to the
sampling limitions (short videos or zoomed in still frames
will not be able to capture long wavelengths), the two spec-
tra can be correlated, resulting in a pixels per meter con-
version. With this conversion factor, many things are now
possible, like determining the real world size and velocity
of objects in the scene.

Wave heights can also be estimated. Wave steepness
is defined as the ratio of the wave height (trough to crest)
to the wave length. Observations of wave steepness range
from 0.1 to 0.008 [4]. So the wave heights are likely to be
in the range of 0.008L to 0.1L, where L is the wavelength.

Knowledge about the wave heights leads to an estimate
of wind speed. The Beaufort scale was introduced in 1805
by Sir Francis Beaufort to relate wave conditions and wind
speeds [8]. It was originally used to gauge the wind speed
by looking at the ocean, in order to decide whether to add or
take in sail. In later years, it was used in the opposite fash-
ion, to predict the wave heights based on the measured wind
speed. It is no longer used in official forcasts, but still pro-
vides an intuitive description of the state of the ocean. Ta-
ble 1 lists the wind speeds corresponding to different wave
heights.

6. EXPERIMENTAL RESULTS

We analyzed three video sequences. Two video sequences
were acquired by a static camera viewing the same large
lake from the downwind shore on a windy day. The third
was viewing the ocean from a pier. Each video is about 30
seconds (900 frames) in length. Figure 2 shows the first
frame of each sequence. The first two were taken under the
same conditions, but with different zoom, to capture differ-
ent scales of the same water, while the third was a different
place on a different day.

The first frames were analyzed as in Section 3, after cor-
recting for perspective distortion. The Fourier spectra are

Beaufort Wind Wave height
number (knots) (feet) Description

0 < 1 0 Like mirror
1 1 - 3 0 Ripples
2 4 - 6 0 - 1 Small wavelets
3 7 - 10 1 - 2 Scattered whitecaps
4 11 - 16 2 - 4 Numerous whitecaps
5 17 - 21 4 - 8 Some spray
6 22 - 27 8 - 13 More spray
7 28 - 33 13 - 20 White foam
8 34 - 40 13 - 20 Foam is blown
9 41 - 47 20 Dense streaks of foam
10 48 - 55 20 - 30 Overhanging crests
11 56 - 63 30 - 45 Covered with foam
12 64+ 45+ Air filled with foam

Table 1. Beaufort Scale

Fig. 2. The first frame of three videos. The first two are of the
same lake, while the third is the ocean.

shown in Figure 3a. The spatial frequencies S(r) are shown
in Figure 3b. The peak at one cycle per image is due to the
fact that the right (top) edge does not match the left (bottom)
edge. The wavelength spectra in units of pixels are shown in
Figure 3c. The left pair in Figure 3b have roughly the same
shape, but the horizontal scale differs. The resemblance is
also present in Figure 3c, since the difference between b and
c is just a transformation of the horizontal axis.

The sequences were then analyzed according to Sec-
tion 4. The result of summing the rows of the FFT of the
principal component coefficient matrix is shown in Fig. 4a,
which shows the frequency data in terms of cycles per se-
quence (cycles per 30 seconds). The result of converting the
frequency data to wave period is shown in Figure 4b. Ap-
plying Equation 1 gives us wavelengths in meters, shown in
Figure 4c. The peaks appear at about the same wavelengths
in the first two graphs. This time, there is no horizontal scale
difference, since the scale is in real world units of meters.
The third is different, reflecting the different conditions.

For the first pair of images, assuming the peak at two
meters corresponds to the static image peaks at 220 pixels
on the first image and 160 pixels on the second image, we
have a conversion of 110 pixels/meter on the first, and 80
pixels/meter on the second. Going one step further, with
a dominant wavelength of two meters, the wave heights are
likely to range from 0.008×2 = 0.016m to 0.1×2 = 0.2m,
or about 0.65 ft.

The single images are limited in their ability to capture



(a) Log of FFT
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(b) Frequency spectra
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(c) Wavelength spectra in pixels

Fig. 3. Frequency information extracted from the first frame
of each sequence.

longer wavelengths, whereas the 30 second video can cap-
ture wave periods up to 15 seconds, which corresponds to a
wavelength of 350 meters. The spectrum that was obtained
from the first two videos has another peak at 10 meters. The
waves at this wavelength are likely to be 0.08 to 1 meter
high. This is consistent with Beaufort number 3, with winds
from 7 to 10 knots, with scattered whitecaps. This, in fact,
matched the conditions of the day fairly well.

The third video has the most energy in the waves with
wavelength around 7 meters. Since a single frame was not
wide enough to capture multiple cycles of this wavelength,
the corresponding peak is not visible in Figure 3c. Thus,
the method is better suited to wider camera views or smaller
waves.

7. CONCLUSION

We have proposed and demonstrated a method to obtain real
world scale from uncalibrated video of a water scene. Not
only were we able to find the scale factor between pixels
and meters, but we were able to judge wave heights and
wind speed as well, with no prior calibration.

8. FUTURE WORK

Once the model is known for the patch of water, changes in
camera zoom can be detected by monitoring the scale fac-
tor of the spatial frequency spectra in successive frames. It
should also be possible to determine camera pan, tilt and
translation by finding the nonperiodic components of the
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(a) Video frequency spectra
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(b) Wavelength periods in seconds
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(c) Wavelength spectra in meters

Fig. 4. Frequency information calculated from the temporal
component of 30 seconds of video in each sequence.

temporal spectrum. The spectrum directional energy S(θ)
can be used for determining camera roll (rotation around the
optical axis). In addition, the regions that do not fit the mod-
el can be found, to do a variant of background subtraction
for water scenes. We intend to elaborate on and validate
these ideas as our work continues.
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