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ABSTRACT

We propose a solution to the problem of object recogni-
tion given a continuous video sequence containing multi-
ple views of an object. Initially, object models are acquired
from images of the objects taken from different views. Recog-
nition is achieved from the video sequences by employing
a multiple hypothesis approach. Appearance similarity, and
pose transition smoothness constraints are used to estimate
the probability of the measurement being generated from a
certain model hypothesis at each time instant. A smooth
gradient direction feature that is quasi-invariant to illumina-
tion changes and noise is used to represent the appearance
of object. The pose of the object at each time instant is
modelled as a von Mises-Fisher distribution. Recognition
is achieved by choosing the hypothesis set that has accu-
mulated the maximum evidence at the end of the sequence.
We have performed detailed experiments demonstrating the
viability of the proposed approach.

1. INTRODUCTION

Object recognition is an important task with applications in
the areas of automated surveillance, human-computer inter-
faces and video retrieval. Although a large number of ob-
ject recognition methods have been proposed, a majority of
these approaches are based on matching a single image with
object models. The advantage of using video instead of a
single image for recognition is that not only more than one
pose of the object can be visible but there is also a smooth-
ness in pose transitions which can be exploited for recogni-
tion.

In our proposed method, the measurement (representing
appearance of object) from each frame of the test sequence
is matched to the stored models. We use the gradient di-
rection field to represent the appearance of the object. A
spline based technique is used to estimate the gradient di-
rections. The probability that the measurement is generated
from a certain object hypothesis depends on both the sim-
ilarity of the measurement to the model and the change of
the estimated pose over time. The appearance similarity is

computed by the probabilistic matching of the observed ob-
ject’s gradient features to the models. The pose transition
probability is obtained by assuming that the pose angles at
timet are distributed as a von Mises-Fisher distribution with
the mean parameter equal to the pose angles at timet − 1.
A maximum a posteriori (MAP) estimation frame work is
used to obtain the hypothesis set that has accumulated the
maximum evidence for recognition.

The details of the related work are given in Section 2.
Modelling and feature extraction of the objects are discussed
in Section 3. The probabilistic formulation of our video
based recognition problem is discussed in Section 4. An
efficient method to obtain the MAP estimate is given in Sec-
tion 5. Results are given in Section 6.

2. RELATED WORK

In order to develop models of objects for recognition, Seib-
ert and Waxman [7] automatically cluster frames from train-
ing sequences into view categories called aspects. These
aspects, as well as aspect transitions, are learned from the
training sequences and are stored in the form of an aspect
graph. Recognition is carried out by matching corner like
features of an object to the stored aspects. The matching
score depends on both the current aspect as well as on the
history of aspect transitions. Rao [6] uses a robust form
of Kalman filter to generalize the PCA based recognition
methods over sequences. The filter learns the dynamic model
of the view transitions of objects from the training sequences.
The method assumes that the change in pose of the object
(or camera view) in the test videos will be similar to the
training videos. Our work imposes the less restrictive con-
dition that the pose of the object should change smoothly.

Zhou et. al [9] propose a method for face tracking and
recognition simultaneously using particle filters. A first or-
der motion model is used for tracking. In addition, an adap-
tive appearance model is used to handle inter-frame appear-
ance changes of the object. One assumption of the method
is that the stored models consists of only frontal face im-
ages. Li et. al [3] build a model of each object consisting of
discretely sampled views of the object from the view sphere.
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Fig. 1. The object’s pose with respect to the camera in terms
of two camera viewing angles (η,φ).

Edge maps of each view of the objects are used as features
for matching. A generalized Hausdorff metric is used as a
distance measure to identify both the object and its pose.
At the end of the sequence, an object hypothesis with the
least Hausdorff score is accepted, if its pose transitions are
within a threshold. One difference in our approach is that
we have a unified pose smoothness and model match mea-
sure rather than having two separate tests for object identifi-
cation. Moreover, our single view matching depends on the
regularized gradient direction obtained from image. Thus
there is no loss of information as opposed to the threshold-
ing in edge maps. Another salient feature of our method is
the use of appropriate spherical distributions to model the
angular pose data.

3. MODEL ACQUISITION AND FEATURE
EXTRACTION

In this paper, models are constructed for recognition pur-
poses by taking images of each object at various camera tilt
angles, with the object rotating horizontally. Note that the
pose of the object on a level ground can be characterized by
two camera viewing angles (η,φ), using a object centered
coordinate system (see Fig. 1).

Once images of the objects are obtained, the next issue
is: what features should be used to represent the object. A
large variety of features and their combinations have been
used by previous recognition approaches including color,
edges, gradients, oriented Gabor responses, wavelets, cor-
ners, lines etc. We want to use a feature that is invari-
ant to illumination changes and is robust to noisy measure-
ments. One feature that is not affected greatly by illumina-
tion changes is the gradient direction of the pixels in an im-
age. However, local gradient direction is sensitive to noise.
To overcome this problem, we represent the gradient direc-
tion field by splines. Splines impose a smoothness con-
straint over the gradient direction field. In addition, splines
offer a compact representation of the field thus reducing
the storage requirements for the object models. Note that

splines have been successfully used by, Szeliski et. al [8]
to estimate optical flow and by Le Pennec and Mallat [5] to
compute horizontally or vertically parallel geometric flow.

Our aim is to find the direction at each pixel position
along which the image gray levels have regular variation.
The solution to this problem consists of minimizing the squared
error

∑
x,y

(
fx(x, y) cos(θ(x, y)) + fy(x, y) sin(θ(x, y))

)2

(1)

wherefx andfy denote image derivatives. We represent the
gradient direction fieldθ(x, y) as two dimensional splines
controlled byq parameters,̂θ1, .., θ̂q that lie on a coarser
spline control grid. The value of gradient direction at a pixel
(x, y) can be written as

θ(x, y) = linearSumi

(
θ̂iSi(x, y)

)

wherei = 1..q, andSi(x, y) are the basis functions that
have a finite support. EachSi is centered on a control grid
point and is a spatially shifted version of a functionS. We
have implementedS as a bilinear interpolation function, i.e.
S(x, y) = (1−|x|)(1−|y|)on[−1, 1]2. Note that a weighted
sum of angles can not obtained directly because of the wrap-
around at2π. ThelinearSum function does a pairwise in-
terpolation between the unit vectors representing the angles
to get the correct value. In order to obtain the gradient flow
we need to minimize Equation 1 with respect toθ̂i. We use
a trust region method [1] for the nonlinear minimization.
The method uses the finite difference derivatives of the er-
ror function to obtain the approximate Jacobian matrix. The
spline parameter values are constrained between0 and2π.

4. PROBABILISTIC FORMULATION FOR OBJECT
RECOGNITION

Suppose we have models ofn objectsO1, O2, . . . , On, each
with q poses. LetMt = m1,m2, . . . , mt be the set of mea-
surements till timet. Let ki,p

t be the hypothesis that mea-
surement at timet belongs to theith object with posep.

Now, a feasible solutionKt′ at time instantt′ , where
Kt′ is a set of hypothesis, is the one that satisfies the fol-
lowing constraints

• For all t, wheret = 1, 2, . . . t′, ∃ki,p
t such thatki,p

t ∈
Kt′ , i.e., each measurement is used in the solution
Kt′ .

• if ki,p
t ∈ Kt′ ∧ kl,j

u ∈ Kt′ then t 6= u, i.e., only
one hypothesis at each time instant belongs to solu-
tion Kt′ .

• if ki,p
t ∈ Kt′ ∧ kl,j

u ∈ Kt′ theni = l, i.e. all hypoth-
esis in the solutionKt′ are for the same object.



The probability of a feasible solutionP (Kt′ |Mt′) at
time t′, can be written as,

P (Kt′ |Mt′) =
( ∏

t=2...t′
P (ki,p

t , ki,j
t−1|mt)

)
P (ki,a

1 |m1),

by making the assumption that the current hypothesis only
depends on the previous hypothesis and the current mea-
surement.

Now, using the Bayes rule on the product term,

P (ki,p
t , ki,j

t−1|mt) =
1
c
P (mt|ki,p

t , ki,j
t−1)P (ki,p

t |ki,j
t−1)P (ki,j

t−1)

Here,c is the normalization constant. The last term in the
above given equation, i.e., the probability of a hypothesis,
is assumed to be uniformly distributed. Now the solution
of the recognition problem is a solutionK ′, in the solution
spaceω, that maximizes the posterior,

K ′ = arg max
K∈ω

(( ∑

t=2...t′
log

(
P (mt|ki,p

t , ki,j
t−1)

P (ki,p
t |ki,j

t−1)
))

+ log(P (m1|ki,a
1 ))

)
(2)

The first term in the above equation is the probability
of obtaining a certain measurement given object identity
and pose, i.e., the measurement to model match probabil-
ity. The second term is the probability of the current pose
of an object given the previous pose. In order to maximize
the posterior we need to estimate the pose transition and ap-
pearance matching probabilities. This issue is discussed in
the following.

4.1. Estimation of Pose Transition Probabilities

The pose of an object should change smoothly if the mo-
tion of the object (or the camera) is continuous. Thus there
should not be large changes in the pose angles over subse-
quent measurements. Since we are working with spherical
data, our probability model needs to handle wrap around
of angles at2π. We use the von Mises-Fisher (VMF) dis-
tribution [4] for a3 dimensional sphere to model the transi-
tion probabilityP (ki,p

t |ki,j
t−1) . The VMF distribution is uni-

modal with the mode at the mean direction. Moreover the
VMF distribution is rotationally symmetric about the mean
direction and has a finite support.

Suppose the posej of a hypothesis att−1 is represented
by angles(α, β). Assuming the pose att−1 to be the mean
of the VMF distribution, the probability of the current pose
p, represented by angles(η, φ) is given as

f(η, φ|α, β) =
κ

2 sinh κ
eκ(cos η cos α+sin η sin α cos(φ−β)) sin η

whereκ ≥ 0 is the concentration parameter and gives the
spread of the distribution around the mean direction.

4.2. Estimation of Measurement to Model Matching Prob-
abilities

For each incoming frame the measurement,mt consists of
the spline parameter vectorθ̂ = [θ̂1, .., θ̂q] that describes the
gradient direction field of the observed object. Each com-
ponent of this vector represents the gradient direction angle
and has a range between0 and2π. We need to match the
measurement to the stored object models. Note that object
models are also represented by spline parameters. We as-
sume that each component of the model parameter vector
has a von Mises distribution. The von Mises distribution
is the circular analog of the Gaussian distribution on a line
[4]. The probability that the measurement is similar to the
modeli with posep is given by

f(θ̂|µ̂i,p) =
∏

z=1..q

( 1
2πIo(κ)

eκ cos(θ̂z−µ̂i,p
z )

)

whereκ ≥ 0 is the concentration parameter andIo is the
Bessel function of the first kind.̂µ = [µ̂1, .., µ̂q] is the spline
feature vector of the model. Note that we have made the
simplifying assumption that each component of the vector is
independent of the other. We also require that the measure-
ments and model vectors have the same dimension. Now
that we have the probabilities for the pose transitions and
appearance similarity, we can find the MAP object recogni-
tion estimate.

5. OBTAINING THE MAP ESTIMATE

The problem of finding a hypothesis set that maximizes the
a posteriori probability can be modelled as follows: We con-
struct a directed graph such that each hypothesisk is repre-
sented by a vertex. Each vertex representing a hypothesis
at timet − 1 is connected by a directed arc to all vertices
representing hypotheses for the same object at timet. The
weight of the arc joining vertices representingki,j

t−1 andki,p
t

is calculated as−log(P (mt|ki,p
t , ki,j

t−1)P (ki,p
t |ki,j

t−1)),(see
Eq 2). The negative sign is used to convert the problem
of finding the best hypothesis set into a minimization prob-
lem. The vertices representing the hypotheses at the first
time instant are connected to a source vertex. The weight
of the arc joining the source to the vertex hypothesiski,a

1 is
calculated as−log(P (m1|ki,a

1 ). The vertices representing
the hypothesis at timet′ are designated as terminal vertices.
The MAP solution is the set of vertices (hypotheses) lying
on the minimum weight path between source and terminal
vertices of the directed graph. We have used the Dijkstra’s
single source shortest path algorithm [2] to find the least



weight path and therefore the object model that has accu-
mulated the maximum evidence.

Fig. 2. The top row shows sample images of models 1 to 4 (from
left to right) in the model database. The bottom row shows an
object (same as model 1) extracted from a test sequence. The se-
quence was acquired using a hand held camera.

6. RESULTS

In order to evaluate the proposed approach we first obtained
models of four different objects, by taking images of each
object at different poses and computing the gradient direc-
tion field. A range of poses were obtained by varyingφ by
3◦ in [0◦, 360◦] andρ taking two values60◦ and45◦.

Four sequences were taken to test the recognition algo-
rithm. In the test sequences background subtraction was
used to delineate the objects. The delineated objects were
scaled to a fixed size. The Fig. 2 bottom row shows some
images from the first test sequence. Note that the illumina-
tion in the test sequence is quite different from the model
images. The results for the first sequence are shown in Fig.
3(a). The graph shows the posterior probability of the win-
ning hypothesis set at each time instant and also the com-
peting hypothesis sets representing the other three objects.
The correct hypothesis set is clearly distinguishable from its
competitors for the first sequence. Fig. 3 (b) and (c) show
the results for the second and third sequence respectively.
Correct results are obtained in both cases. In the fourth se-
quence, the wrong hypothesis set, representing model 3, has
a larger probability than the correct hypothesis set repre-
senting model 4,for the first couple of frames as shown in
Fig. 3(d). This is because models 3 and 4 (Fig. 2) are simi-
lar in appearance from the rear pose. However, as more ev-
idence accumulates, i.e. other poses of the observed object
become visible in the test sequence, the correct hypothesis
set gets more probable. This clearly demonstrates the ad-
vantage of using video instead of a single image for recog-
nition, since decisions are based on evidence accumulated
over multiple frames.

7. CONCLUSION

In this paper, our goal was to incorporate the temporal in-
formation present in video for object recognition in a prin-

cipled manner. We have presented a multiple hypothesis ap-
proach that uses appearance similarity and pose continuity
constraints to come up with the best model hypothesis for
recognition. In addition, we used directional distributions
to model the appearance and pose data. For future work, we
plan to explicitly incorporate the scale transition informa-
tion along with pose changes for recognition.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8
x 10

−16

Frames

P
os

te
rio

r 
P

ro
ba

bi
lit

ie
s

Model 1
Model 2
Model 3
Model 4

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

−16

Frames		

P
os

te
rio

r 
P

ro
ba

bi
lit

ie
s

Model 1
Model 2
Model 3
Model 4

(a) (b)

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5
x 10

−16

Frames		

P
os

te
rio

r 
P

ro
ba

bi
lit

ie
s

Model 1
Model 2
Model 3
Model 4

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−15

Frames

P
os

te
rio

r 
P

ro
ba

bi
lit

ie
s

Model 1
Model 2
Model 3
Model 4

(c) (d)

Fig. 3. (a,b,c,d) Results for Sequences 1 to 4. The graph
shows posterior probabilities of the hypothesis sets with the
highest evidence for each object in the database.
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