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ldentifying Behaviors in Crowd Scenes Using
Stability Analysis for Dynamical Systems

Berkan Solmaz, Brian E. Moore, and Mubarak Shah

Abstract—A method is proposed for identifying five crowd behaviors (bottlenecks, fountainheads, lanes, arches, and blocking) in
visual scenes. In the algorithm, a scene is overlaid by a grid of particles initializing a dynamical system defined by the optical flow.
Time integration of the dynamical system provides particle trajectories that represent the motion in the scene; these trajectories
are used to locate regions of interest in the scene. Linear approximation of the dynamical system provides behavior classification
through the Jacobian matrix; the eigenvalues determine the dynamic stability of points in the flow and each type of stability
corresponds to one of the five crowd behaviors. The eigenvalues are only considered in the regions of interest, consistent with
the linear approximation and the implicated behaviors. The algorithm is repeated over sequential clips of a video in order to record
changes in eigenvalues, which may imply changes in behavior. The method was tested on over 60 crowd and traffic videos.

Index Terms—Video Scene Analysis, Dynamical Systems, Crowd Behaviors.

1 INTRODUCTION

IDEOS of crowd scenes present challenging prob-

lems in computer vision. High object-densities in
real-world situations make individual object recogni-
tion and tracking impractical; understanding crowd
behaviors, without knowing the actions of individu-
als, is often advantageous. Automated detection of
crowd behaviors has numerous applications, such
as prediction of congestion, which may help avoid
unnecessary crowding or clogging, and discovery of
abnormal behaviors or flow, which may help avoid
tragic incidents. The aim of this particular work is to
devise an algorithm that identifies five common and
specific crowd behaviors, which we call bottlenecks,
fountainheads, lanes, arches, and blocking.

Recent methods for video surveillance (in stations,
streets, malls, etc.) lack capabilities to analyze crowd
scenes. Limited efforts have addressed problems in
high density crowd scene analysis, due to complexity.
Most studies are aimed at abnormal behavior detec-
tion [1], [2], [3], [4], detecting/tracking individuals
in crowds [5], [6], [7], [8], [9], counting people in
crowds [10], [11], [12], identifying different regions
of motion and segmentation [13], [14], [15], [16], or
crowd detection [17], rather than identifying collective
crowd behaviors. For a more comprehensive review of
behavior analysis in crowd scenes, see the survey [18].

Conventionally, activity analysis and scene under-
standing involve object detection, tracking and be-
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havior recognition. This approach, requiring low-level
motion [19], [20], appearance features [21], [20], or
object trajectories [22], [19], performs well in scenes
with low object density, but fails in real-world higher
density crowd scenes. Tracking is also a hurdle; meth-
ods are often not suitable for multiple target tracking,
due to computational expense or unreliability. Recent
work [23] uses motion trajectories of multiple objects
to learn models for segmentation of group motion
patterns, but all these approaches require training.

Thus, researchers proposed a holistic approach for
activity analysis and scene understanding, which
avoids tracking and uses features directly, rather than
computing trajectories for representing activities. This
approach requires features such as multi-resolution
histograms [2], spatio-temporal cuboids [1], appear-
ance or motion descriptors [24], [25] and spatio-
temporal volumes, etc. [26]. In another work [3], a
representation based on dynamic textures, in which
appearance and dynamics are modeled jointly, is used
for detecting anomalies in crowd scenes. Though this
approach is suitable for recognizing actions and de-
tecting/segmenting activities, it also requires training
and manual labeling of activities.

We present a method that combines low-level local
motion features, computed by optical flow, with high-
level information, obtained by analyzing regions of
interest in the scene. It performs well in various crowd
scenes as it does not involve object detection and
tracking, which may be unreliable in crowd scenes.
Our method does not require training, as needed in
most current approaches for human action recogni-
tion. Our approach is not restricted to isolated activ-
ities, but is able to identify multiple behaviors in a
single scene. Using a Lagrangian particle dynamics
model [27], [28] of crowd scenes, crowds are treated
as collections of mutually interacting particles, so our
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Fig. 1. Five flows corresponding to A and 7, along with the related crowd behaviors.

method is well-suited for small and large crowds [29].

Closely related work [7], [30] uses Lagrangian par-
ticle dynamics, based on optical flow, for analyzing
flow in crowd scenes. The method of [30] uses the
learned normal behavior in the scene to detect ab-
normal behavior, but our method is concerned with
detecting and identifying particular crowd behaviors.
The method of [7] uses the flow of the crowd to aid
in tracking individuals, but the method is specific to
dense crowds with uniform motion, and our method
is less restrictive on scene type, requiring only a
characteristic flow. Finally, [31], [32] present methods
for learning motion patterns in crowd scenes, but our
method locates specific instances of crowd behavior
and does not require learning the typical flow.

In other related work, description of orientation
fields by phase portraits [33] and detection of criti-
cal points [34] are proposed, and [35] introduced a
fluid-dynamic model for simulating the movement
of pedestrians and showed the phenomenon of lane
formation which may occur in dense real crowds. [36]
analyzed the spread of particles near the singulari-
ties regarding the problem of oceanic diffusion. Yet,
none of these studies connect flow fields with crowd
behaviors; to the best of our knowledge, this is the
first attempt in computer vision to identify specific
crowd behaviors. Our main contributions are: (1) Use
of linear dynamical systems and the Jacobian matrix,
defined by the optical flow, to analyze crowd flow
in videos. (2) A local analysis that detects/identifies
specific global behaviors i.e. bottlenecks, fountain-
heads, lanes, arches, and blocking. (3) A simple, yet
effective, method to detect these behaviors, that does
not require object detection, tracking, nor training.
(4) A modular framework that can identify multiple
crowd behaviors in one scene.

2 BEHAVIORS FROM DYNAMICAL SYSTEMS
2.1 Stability Analysis

Consider a continuous dynamical system
w = F(w), 1)

with w(t) = [o(t),y(t)]” and F(w) = [u(w),v(w)]”.
Here, z and y are particle positions, and v and v
represent particle velocities in the = and y directions,

respectively. (In our application to video sequences,
u and v are obtained from optical flow.) A first step
in understanding solution behavior for (1) is finding
critical points w* such that F(w*) = 0. Behavior of
trajectories near a point w* is determined by lin-
earizing the system about w*. To find a linearization
(see, for example, [37]) let z = w — w*, which means
Z == F(w) = F(w* + z). By Taylor’s theorem

F(w* +2) = F(w") + Jp(w")z + O(2%),  (2)

where Jr denotes the Jacobian matrix for F,

du  Ou
Jr=\ % % | ®)
oz 9y
F(w*) = 0 implies a linearization of (1) about w*,

The solutions of (4) are completely defined by the
initial conditions and the eigenvalues of the matrix
Jr, which are solutions of a characteristic equation
A2 —7A + A = 0, where 7 is the trace and A is the
determinant of the matrix. It is easy to show that

1
_ = 2 _
)\172 = 9 (T + T 4A) (5)
with
A=MXX and 7=\ + Ao, 6)

where \; and )\, are the eigenvalues, yielding impor-
tant information about the flow, as depicted in Fig. 1.

A < 0 implies w* is a saddle, and particle trajecto-
ries are pulled toward the point in two direc-
tions, but pushed away in other directions.

A =0 implies at least one eigenvalue is zero, and
critical points are non-isolated.

A > 0 implies the eigenvalues are real with same
sign or complex conjugates. If 7 < 0, then w*
is stable, acting as a sink for nearby trajecto-
ries. If 7 > 0, then w* is unstable, acting as a
source for nearby trajectories. Purely imagi-
nary complex conjugate eigenvalues (7 = 0)
implies w* is a center and near-by trajectories
orbit the point indefinitely.

It is important to notice that the overall flow in a crowd

scene can not be expected to conform to the dynamical
system (4), with global flow patterns depicted in Fig. 1.
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This may be understood by noting that there is not one
global function F that defines the entire flow, but instead
each particle has a function F defining its motion. As a
result, we can only expect the flow patterns of Fig. 1 to
represent the crowd flow locally, but there are global aspects
of crowd flow that may be recognized by such a comparison.

2.2 Crowd Behaviors

Now consider the flows arising from Jp, as depicted
in Fig. 1, in connection with specific crowd behaviors.

Bottlenecks. If A > 0 and 7 < 0, then particle
trajectories from many points converge to one loca-
tion, i.e. many pedestrians or vehicles from various
locations enter through one narrow passage. Hence,
we define a bottleneck to be the mouth of any narrow
passage through which pedestrians regularly pass.
This liberal definition allows consideration of many
flows. Yet, it makes no distinction between bottlenecks
that occur in normal situations and those that result
in clogging, typical of panic situations when many
people simultaneously try to exit through one narrow
passage. Though the present framework does not
enable detection of panic, it may identify clogged
bottlenecks as a special case of the blocking behavior.

Fountainheads. When A > 0 and 7 > 0, particle
trajectories diverge from one location. This behavior
is noticed when pedestrians leave a narrow passage,
persisting in many separate directions, and we call the
mouth of such a passage a fountainhead. This behavior
is the opposite of a bottleneck, so fountainheads are
detected as bottlenecks in backward time.

Lane Formation. In crowd situations, lanes of flow
in opposite directions naturally form, as pedestrians
moving against the flow step aside to avoid collision
and end up moving with other pedestrians with the
same general direction and speed. In such instances,
the motion near an individual is negligible, relative to
other nearby individuals, because they are all moving
together. This is precisely the behavior we see in what
we call a lane, and the behavior is well-described by
non-isolated critical points, rendering A = 0 along
the path of the lane. Clearly, A = 0 if the objects
in the scene are stationary, then the optical flow is
zero. But, we are not interested in this trivial case,
and it is distinguished from the case in which many
pedestrians or vehicles are moving at the same speeds
in the same direction (a straight line). In addition,
it should be noted that a single object moving in a
unique direction is not considered a lane.

Ring/Arch Formation. Motion described by A > 0
and 7 = 0 is characteristic of crowd flow that is curved
or circular. This behavior may be typical of a crowd
scene in which pedestrians must maneuver around
obstacles, forming an arch. It may also be observed in
less typical scenes such as people dancing or traffic
in a round-about, forming a ring. In either case, the
eigenvalues of the Jacobian matrix are complex conju-

gates, and we look for this eigenvalue response along
oblique paths over which many trajectories may pass.

Blocking. Local flows in which particles are bounc-
ing off of each other in somewhat random directions,
unable to proceed in the direction desired, is repre-
sented by A < 0. This is characteristic behavior of
people in densely populated scenes where the sur-
rounding crowd prevents the desired motion of many
individuals. We define this behavior as blocking, be-
cause pedestrians moving in opposite directions block
each other as crowd density increases, preventing
advancement from either group. In some situations
the density of the crowd may lead to gridlock and no
particle motion, in which case the optical flow is zero.
These instances can still be recognized as blocking
because they are always preceded by some type of
regular flow. In other words, regions with regular
movement in a high density crowd that become void
of motion are best explained by blocking.

3 IMPLEMENTATION

A key factor of the analysis described in Section 2.1 is
location of a critical point. In video scene analysis,
we locate, instead, a region of interest (ROI), which
locally corresponds to a critical point, and check the
eigenvalues of Jr at points in these regions. For
multiple behaviors in a scene we have multiple ROL
It is possible that not all ROI have significance for un-
derstanding the behaviors in the scene, but this can be
determined through Jr. This framework constitutes
two main tasks, which may be executed in parallel
and are summarized by the following computations.

-Regions of interest (ROI) are defined according to
the behaviors we observe, and thereby consist of one
of the three following locations.

» Candidate Points for Bottlenecks/Fountainheads
o Candidate Paths for Lanes and Rings/Arches
o Candidate Precincts for Blocking

-Eigenvalue maps are defined by the signs of A and 7
for each point in a ROL

Our method is based on advection of particles by
(1), defined by the optical flow, and implementation
begins with computation of Lucas-Kanade optical
flow [38]. Since optical flow corresponding to some
individuals may be different than the general crowd
flow, we apply median filter. (For an image of 360x480
typical size of median filter is 40x40.) A flow chart
describing implementation of our method is depicted
in Fig. 2, showing computation of ROI and eigenvalue
maps from the optical flow. It is essential to complete
both tasks, because identifying the given behaviors
is not possible using the particle trajectories alone,
and the eigenvalues loose their significance without
the ROI, which correspond to critical points of the
dynamical system. Once these tasks are completed for
a given video clip, the type of flow observed in the
scene is determined by checking the eigenvalue map
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Fig. 2. Overview of the Framework.

in ROL Details on implementation are provided in
Section 3.1 and 3.2, respectively, and the implemen-
tation process is fully depicted in Figs. 3, 4, and 5.
Notice, our definition of a ROI is not equivalent to
the definition of a critical point as given by dynamical
systems theory and given by w* in Section 2.1. This
is because we do not want to consider all points
where the optical flow is zero. Instead we consider
points that are affected by the flow in ways that are
consistent with the behaviors considered, and this is
consistent with our set-up, as the system (4) can only
be used to give local information about the flow. To
be more specific, F'(w*) = 0 is nearly satisfied in 1) re-
gions with blocking, as the motion of the individuals
is prohibited, 2) bottleneck and fountainhead regions,
as those points act as sinks or sources for the flow, and
3) the paths of lanes, as the motion of an individual
is nearly zero relative to other near-by individuals.
To locate changes in behavior, the total sequence is
divided into clips of fixed length, and the algorithm
is repeated. Comparing sequential clips and record-
ing appropriate changes in the eigenvalues reveals
changes in behavior. This is demonstrated in Fig. 5.

3.1 Regions of Interest

ROI are necessary for finding possible locations of
scene behaviors, for removing false positives, and for
reducing the amount of computations. We describe
computation of the three types of ROI, but common to
computation of each ROl is particle advection and the
resulting accumulation of particles, which is explained
first.

Particle Advection. A grid of particles is overlaid
on the initial frame and advected with the flow.
Numerically solving the system of equations (1), using

w(t+1) =w(t) + F(w(t)), (7)

yields the particle positions over the time interval
[to,tf]. The evolution of particles through the flow is
tracked using particle flow maps

(1530 (w) = U}(t, th wO)a (8)

which simply indicate the relation between the initial
particle positions and their positions at time ¢t €
[to,ts]. We use P(¢] (w)) to denote the particle cor-
responding to a particular flow map. The flow maps
are initialized in the first frame of the video. As the
particles evolve through the flow field in time, they
are accumulated in particular regions of the scene.

Accumulation Points. Particles accumulate at bot-
tlenecks or at the ends of lanes resulting in higher
particle densities, which are calculated using flow
maps. If D(wy) denotes the density map for particles
at position wy, then it is equal to the cardinality of the
set containing all particles at that point, i.e.

Pu; = {P(¢y) (w)) |w =ws} = D(wy) = [Pu,]. 9)

A Gaussian filter is applied to the density map to
obtain blobs of high particle densities; the variance
of the typical gaussian filter is 1 and the size is 11x11
pixels. The centroids of the blobs, which are the local
peaks of the density map, are clustered using mean-
shift algorithm [39]. (This approach results in a signif-
icant increase in speed over using mean-shift directly
on the density map.) The number of particles in each
cluster is a significance measure for that cluster, and
significant cluster centers are defined as accumulation
points.

Finding accumulation points and using them to
locate behaviors, may be considered similar to a
sink seeking process. For instance, [7] uses particle
trajectories to find preferred directions of motion in
crowd scenes by finding sinks, which are typically
preferred exits or frequently visited regions of the
scene. Our approach differs significantly, because we
do not use information from neighboring particles
to make conclusions about particle paths, meaning
our approach is applicable to crowd flows of varying
densities, provided there is a characteristic flow. In
addition, sink seeking alone implies nothing about
types of flow, which is our main concern.

Candidate Points, Paths, and Precincts. After par-
ticle advection, trajectories should satisfy two criteria:
(a) final position of a particle must be close to an
accumulation point, (b) distance between initial and
final particle positions should be long enough. This is
essential for selecting particles that describe the mo-
tion and discarding others. For instance, a trajectory
not reaching an accumulation point does not satisfy
(a), and a non-motion particle does not satisfy (b).

Trajectories of particles satisfying both criteria are
analyzed, accounting for two possibilities as follows.

Cl  Particles accumulate unidirectionally.

C2  Particles accumulate multidirectionally.

C1 implies the trajectory region is a candidate path;
C2 implies accumulation points are candidate points.

Let dy and dy be unit vectors for particle directions
at times ¢y and ty, respectively. For every trajectory,
the angles between vectors § = arccos(dy-dy), are clus-
tered by Mean-shift algorithm [39] and clusters are
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Fig. 3. Process for detecting a Bottleneck and a Fountainhead: (a) Given a video scene, (b) compute optical
flow, (c) overlay scene with a grid of particles, (d) advect particles according to the flow, (e) particles accumulate
producing a density map, (f) local peaks (green) of the density map are clustered, centroids (red) of clusters
are accumulation points, (g) particle trajectories around accumulation points are clustered according to angles,
(h) candidate points are determined; these points are checked for bottlenecks using the eigenvalue map, and a
bottleneck is correctly detected. (i,j,k) Same approach in backward time enables the correct identification of a
fountainhead, (I) behaviors are labeled a bottleneck and a fountainhead with a red and yellow star, respectively.

categorized as major or minor. Typically, a major (resp.
minor) cluster contains at least one third (resp. one
tenth) of the total number of trajectories at an accu-
mulation point. C1 implies the trajectories correspond
to at most two major clusters. C2 implies there are
several minor clusters. Since one (possibly two) lane
may end at an accumulation point, a candidate path
is defined by particle trajectories for major clusters,
but several different lanes ending at an accumulation
point are better defined by a bottleneck. Thus, an ROI
for a bottleneck or fountainhead is the area around a
candidate point, which is an accumulation point with
three or more minor clusters. Finally, high density re-
gions are labeled candidate precincts, because further
increases in density may lead to blocking.

It is conceivable that problems may be encountered
at this step due to perspective effects. To clarify, notice
that a scene with traffic flow on a long highway,
extending into the distance, will appear to have par-
ticle trajectories converging at a point in the distance.
According to our set-up, the accumulation point may
be falsely labeled as a candidate point for a bottleneck,
but the behavior is clearly a lane. However, we did

not encounter such problems during implementation.

3.2 Eigenvalue Map

To reduce noise and neglect regions without motion,
we start by discarding small magnitude optical flow.
Then the optical flow is averaged in time and we
apply a median filter in space, giving a representation
of optical flow for the entire sequence or clip, denoted
(@, 7). Considering only pixels in a given ROI, we
analyze the eigenvalues of Jr at each pixel through A
and 7. Using ¢, and d, to denote difference operators
in each spatial direction, we compute A and 7 using

A:

T =

(10)
(11)

Syl - 8D — Byl - O
8l + 6,0

Inside a ROI, pixels are colored according to the
eigenvalues (up to a tolerance €) as shown in Table 1,
and we choose ¢ = 0.005 in practice. The number of
pixels satisfying each condition is counted, as shown
in Table 1, and we call the total number of pixels in
the ROI T. We determine if a ROI is dominated by a
behavior using the ratio conditions in Table 2.
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Fig. 4. Process for detecting a Lane and an Arch: Steps are the same as Fig. 3. Angles of trajectories (f) around
accumulation points (e) reveal two candidate paths. According to the eigenvalue map (g) along each path, an

arch and a lane are correctly detected and labeled (h).
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Fig. 5. Process to detect Blocking: A sequence is divided into sequential clips and the process in Figs. 3 and 4
is applied to each clip. In Clip 1 two opposing lanes are detected, as the angle between them is near 180° (e),
so a candidate precinct (f) is saved for Clip 2. The process is repeated in Clip 2; the eigenvalue map around the
candidate precinct (j) shows a majority of points with A < 0, and blocking is correctly detected.

4 EXPERIMENTAL RESULTS

The method was tested on real video sequences down-
loaded from the web (Getty-Images, BBC Motion
Gallery, Youtube, Thought Equity) and on sequences
from the Performance Evaluation of Tracking and
Surveillance (PETS) 2009 Dataset, representing crowd
and traffic scenes. The number of overlaid particles
is equal to the number of pixels. The videos have
different fields of view, resolutions, frame rates, and
duration, yet our method performed well in most
cases. Performance was measured on more than 60
video sequences, which contain single or multiple
behaviors, as shown in Table 3.

To evaluate method performance, we compared

detection against manually generated groundtruth,
consisting of points for bottlenecks, fountainheads
and blockings, and regions for lanes and arches on
all videos, and the results are shown in Table 3. (The
ground truth was manually generated for each video
by an independent computer vision researcher, based
on the behavior definitions provided in Section 2.2.)
Following the PASCAL VOC challenge [40], detection
accuracy is based on overlap of the detected region
and groundtruth. For lanes and arches we require an
overlap of more than 40%, a relaxation of the Pascal
measure appropriate for our problem. Similarly, the
region around points that identify bottlenecks, foun-
tainheads, or blocking is required to overlap with the
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TABLE 1
Eigenvalue responses and designated labels. Count
is the number of pixels in a ROI satisfying a condition.
A > €2 for each condition unless stated otherwise.

[ Eigenvalues [ Condition [ TLabel | Count |
real, \1 > 0,2 <0 | A< —¢2 Green G
real, both positive T < —2¢, Red

72 > 4A
real, both negative T > Z2¢ Yellow Y
72 > 4A
complex conjugate, | 7 < —2¢, | Magenta A
positive real part 72 <4A
complex conjugate, | T > 2¢, Cyan C
negative real part T2 <4A
purely imaginary 7| < 2 White w
at least one zero Al < €2 Blue B
all zero (no motion) | Jp =0 Black K
TABLE 2

Ratio conditions determine dominance of a ROI by an
eigenvalue response, corresponding to a behavior.
(Tolerance L is chosen through experimentation.)

Identified Behavior Ratio Condition

Lane B/T > L

Blocking G/T > L

Bottleneck (R+A)/T>L
Fountainhead Y+C)/T>L
Arch/Ring W4+ A+C)/T > L

analogous region from groundtruth; we require that
the Euclidean distance between the detected point and
groundtruth be sufficiently small, typically within 40
pixels. Fig. 6 shows ROC curves with True Positive
Rate vs False Positive Per Video for four behaviors
obtained by varying the tolerance L from Table 2.

" B Bottleneck = Fountainhead HLane B Arch/Ring
90 (——-'_ 90
80 80
&70 od &0
< 60) < 60
g 50 ,) 8 50
4 Q40
@30 @30
Ox / O
10t 7 1
00 0.05 0.1 0.15 0.2 0.1 0.2 0.3 0.4 0.5

False Positive Per Video False Positive Per Video

Fig. 6. ROC curves for four behaviors.

5 CONCLUSION AND FUTURE WORK

We have proposed a framework to identify multiple
crowd behaviors (bottlenecks, fountainheads lanes,
arches, and blocking) through stability analysis for
dynamical systems, without the need of object de-
tection, tracking or training. Results are illustrated in
Fig. 7, demonstrating the capability and flexibility of
the method for a wide variety of scenes. In light of its
strengths, the method does have shortcomings, which
are listed here and open for future work. Our model is

TABLE 3
Crowd Behavior Detection Results

Behavior Total # of # of # of # of
Behaviors  Detections Missed  False

Lane 66 56 10 11

Blocking 3 3 0 0

Bottleneck 20 16 4 3

Fountainhead 29 23 7 5

Arch/Ring 28 23 5 6

deterministic and can not capture the randomness in-
herent in the problem without a stochastic component.
Our model can only identify five behaviors, which is
an oversimplification of the complexities encountered
in crowds. Our method is not useful when significant
overlap of motion patterns is present in the scene, or
when there is lack of consistent characteristic flow.
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