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Abstract between a pointX;, Y;, Z;) in 3D trajectory and its 2D pro-
In this paper, we propose a hovel method to establish tempo%ﬁdion (s, vi) 15 defined as follows:
) Xi
correspondence between the frames of two videos. 3D epipo- Us Yy,
lar geometry is used to eliminate the distortion generated by [ 71& =P, |i=h2et )

the projection from 3D to 2D. Although the fundamental ma-
trix contains the extrinsic property of the projective geom- whereP is the projection matrix (camera model).

etry between views, it is sensitive to noise. Therefore, we Assume that the same motion is occurred with a
propose the use of a rank constraint of corresponding poingifferent speed, then we obtain another 3D trajec-
in two views to measure the similarity between trajectoriestory: {(Xc).Ycq). Zcq)), (Xe@), Yoe): Zow@), -
This rank constraint shows more robustness and avoids cofXc(t): Yo, Zo)}, whereC'(i) is a time-warping func-
putation of the fundamental matrix. A dynamic programmingtion such thatX ¥

approach using the similarity measurement is proposed to find Y_i ch)

the non-linear time-warping function for videos containing 7 CO N i=1,2,.,t
1

i - Z 7
human activities. In this way, videos of different individu- 1 o

als taken at different times and from distinct VieWpOintS can Now assume that the Viewpoint of the camera has also been
be synchronized. A temporal pyramid of trajectories is apchanged. The projection of this 3D trajectory to a 2D trajec-

N

plied to improve the accuracy of the view-invariant dynamictory, {(u},v}), (u5,v4), - .., (u},v})}, is defined as:

time-warping approach. We show various applications of this wl Xc

approach such as video synthesis, human action recognition, U,C(_” _p Yo =19 ¢

and computer aider training. Compared to state-of-the-art v Zow | T

techniques, our method shows a great improvement. L | ) )
Therefore, the problem of aligning video sequences is to

1. Introduction discoverC (i), fori = 1,2,...,t, using the information in

Video mosaicing, video retrieval, image based modelling an&NO/ 2D tr/aJeCtor'?S'{(“}’ i), (uz, ”/2)' e (ug,v)} and

rendering, video synthesis, multi-sensor surveillance, and ht{“c (1) Yo (1))r (Uo(2)s Vo)) - -+ (g Vo)) -

man action recognition require spatiotemporal alignment of | N€re are two crucial considerations when exploring cor-
video sequences. Methods that tackle this problem discov&fSPondences of video sequences. First, the 2D trajectory is
a correspondence between video sequences. Some methQily dependent on the viewpoint. That is, the same 3D tra-
assume the input video sequences are already synchronizé%‘f_tory may look different in V'deF’S shot from dn‘fe_rent view-
while others use optional built-in expensive hardware thaPoints. Second, the same motion may have different tem-
provides synchronization. We present a novel approach dioral extents. The second problem becomes more compli-

alignment and matching of video sequences and only assunf@ted when the motion changes dynamically, such that the

that the given two video sequences are correlated due to tl%dices of corresponding frames are not linearly related. This

motion of objects. Based on this correlation we discover thé VETY common in videos depicting human activities, since

correspondences (temporal alignment) between the frames gyen the same person may perform the same actiyity with dif-
the two sequences. ferent speeds. We propose a novel approach for alignment and

When a feature point moves in a 3D space with rematching of videos, which is based on epipolar geometry, and
spect to time, it generates a 3D trajector/(X;,Y;, Z;), Wecan discover the nqnlinear time-warping function. o
(X2,Ya,Zs), ..., (X4,Ys, Z;)}, wheret is the time stamp. There are two main types of app_roaches for gllgmng
This 3D trajectory is projected as a 2D trajectory in the im-sequences: sequence-to-sequence (direct) and trajectory-to-
age plane{(u,v1), (u2,v2),..., (s, v¢)}. The relationship trajectory. The direct approach takes video frames as input



and applies the computation over all pixels in video framestion patterns.
The trajectory-to-trajectory approach tracks the movement of Caspi and Iranil] proposed a direct approach to align two
feature points in the field of view, and the computation issurveillance videos by finding the spatiotemporal transfor-
based on the information from trajectories. Advantages of thenation that minimizes the sum of squares differences (SSD)
direct approach include: it determines the spatial transformadetween sequences. They extended the direct approach to
tion between sequences more accurately than the trajectopre alignment of non-overlapping sequences captured by a
to-trajectory approach does, and it does not require explicitereo rig [2]. In these video sequences, the same motion
feature detection and tracking. On the contrary, since trajeénduces “similar” changes in time. This correlated temporal
tories contain explicit geometric information, the trajectory-behavior was used to recover the spatiotemporal transforma-
to-trajectory approach better determines large spatiotemporédbn between sequences. They also proposed a trajectory-to-
misalignments, can align video sequences acquired by diffetrajectory approach for alignment of sequences captured by
ent sensors and is less affected by changes in backgrourmhmeras with significantly different viewpoini8]{ In this
The detailed comparison between these approaches is avaitethod the alignment of trajectories is based on computation
able in [11, [1]. Since video sequences in most applicationsof the fundamental matrix. Their approaches can only be used
contain a significant spatiotemporal variance, we choose thfer applications, in which the time shift between video se-
trajectory-to-trajectory approach. Because of its benefits, wguences is constant or is a linear function. Therefore, their
can align video sequences where different people perform thmeethod may fail for videos with a dynamic time shift.
same action. Wolf and Zomet|1L3] proposed a method for self calibrat-
Previously, researchers have tried using caliing a moving rig. During movement, the viewing angles be-
brated/uncalibrated stereo-ri@;8] to recover the projection tween cameras and the time shift are fixed, but internal cam-
relationships among the videos. In these approaches, tiega parameters are allowed to change.
fundamental matrix is used to find the spatial relationship Extensive research has been done to find the period of
between trajectories3[/13]. However, due to the instability cyclic motion. The repeating pose of the human body is dis-
of the reconstruction process, those approaches can only bevered by measuring the similarity between video frames
applied to some limited video sequences (e.g. simultaneous]], or computing peaks in the Fourier transfor®] of tra-
shot videos). Therefore, there is no previous method to synectories. However, only Seitz and Dyed] [used a view-
chronize two videos of different people performing the saménvariant approach, which employed the affine camera model.
3D activity at different times employing the fundamental From these reviews, we can conclude existent methods are
matrix. not successful in aligning video sequences containing differ-

This paper propose a method, which is based on the epipént instances of human activities.

lar constraint, but does not need explicit reconstruction of th?_ View-invariant Alignment of Video

3D relationships. This method can align videos containinqu propose a dynamic computation of the time-warping func-

3D actions with large spatiotemporal variation. Since it is ion. and a novel measure of similarity that is based on epipo-
well-studied problem to reconstruct the spatial alignment c? {g;eometry d i

video sequences given the correspondent frames, we do nd ] ) }
discuss spatial registration in this paper. The experimental ré-1. View-invariant Measure

sults show that our method is much more stable than previousrst, let us consider measuring similarity between 2D
approaches, and can be used in many applications. trajectories, which are repre/sented {/3(&17 U1/), (uz,v2),
1.1. Previous Work (u; , (Z/hvt))}} and {(ug (1) vomy)r (U Vo) -
Stein [1Q] achieved the alignment of tracking data obtained C|r(1t)|75q?1(,t)the general camera projection can be modelled
from multiple camera assuming a homography relationshigsing the following perspective matrix

between cameras. Stein did not use the trajectory informa-

tion, but discovered the temporal alignment using exhaustive p—
search among different intervals between video sequences.

Due to this, his method is computationally quite expensive
and it can only align videos with a constant time shift.

P11 P12 P13 Pi4
b21 P22 P23 P24
P31 P23 P33 P34
Readers can reference to any computer vision textbook to find

Giese and Poggid?] proposed a method to find the spa- properties of this projection matrix. We focus on the epipolar

tiotemporal alignment of two video sequences using the dygeometry, .Wh'Ch represents the extrinsic projective geometry
between views.

namic shift of the time stamp of the spatial information. They For the perspective model, the fundamental maffixjs
assumed that a 2D action trajectory can be represented a&ined by the equation '

linear combination of prototypical views, and the effect of wi -

viewpoint changes can be expressed by varying the coeffi- s(i) = [ vi ] F| vep | =0, @)
cients of the linear combination. Since they did not use the 1

3D information, this method can only align some simple mo-



for a pair of matching point$u;,v;) < (u/C(i)’UIC(i)) in mgltaneously, or synch'roniz.ing stereo cameras. Geperally,
two trajectories. Therefore, given a fundamental matrix, wdhiS approach fails to align video sequences shot at different
can use E@ to measure the similarity between trajectories,iMes and containing human activities, since the time-warping
such that the summation sfi) for all points is minimized. function for human activities can not be easily modelled by a

Itis a well known fact computation of the fundamental ma-Polynomial. - . _
trix is not robust. The variation in motion can further worsen2.2. View-invariant Dynamic Time Warping
stability. For instance, video sequences containing human aBynamic Time Warping (DTW) is a widely used method
tivities captured at different times may vary significantly. If for warping two temporal signals. The applications include
a person performs the same movement differently, previouspeech recognition, gesture recognition, signature recognition
approaches3d;, [13] will fail to synchronize these two video [5]. It uses an optimum time expansion/compression function
sequences. Therefore, we propose a novel approach, whitthperform nonlinear time alignment.For two signaland.J,
avoids computation of the fundamental matrix. a distance measut® is computed to measure the misalign-
Given a sufficient number of point matches, Zgan be ment between temporal signals, whété, j) represents the
used to compute the unknown matiixusing the following error of aligning signals up to the time instantsand¢; re-

equation: [l AT T spectively. The error of alignment is computed incrementally
UpyUL e ULV using the formula:
whay o Ul E(i,j) = dist; j +e,and @)
VUl UgpyUt e=min{E(—-1,5),E(—-1,j—-1),E(i,j—1)}
Mf = | v/ v - vyyve | £=0 (3)  Heredist, ; captures the cost of making time instahtandt ;
Vory Vs correspondent to each other. The best alignment is then found
U1 Ut by keeping track of the elements that contribute the minimal
Y1 vt alignment error at each step and backward following a path
1 1 from elementE (i, j) to E(1,1).

where f is the elements of the fundamental matrix: The above method can only align video sequences shot
f=[/fu fiz fis fa fo fu fa fuo fs] from the same viewpoint. To achieve view-invariance, we
Let us denoteM by the observation matrix, which is con- introduce 3D shape information into the analysis through
structed using coordinates of points of two 2D trajectoriesg;st, ;. Based on the view-invariant similarity metric from
Since B) is a homogenous equation, for a solutionfofo  Section 2.1, we propose a view-invariant DTW algorithm as
exist, M must have rank at most eight. However, due tofg|lows:

the noise or the matching error, the rankMf may not be (1) We specify eight corresponding points between first

exactly eight. In this case tt#" singular value oM, denote  frames of two videos, and denote the image coordinates as
it asdist, estimates the necessary perturbation of coordinates /), ..., (4, y4) and(z1, 1), ..., (zs, ys).-
of each point in matriXVI to produce two projections of the  (2) Track the feature points in two videos to ac-
same 3D trajectory. Therefore, we can uSet to measure quire trajectories/ = {(u},v}),...,(u,,v,)} and J =
the matching of two trajectories. The smallest singular valug(y, v,),... (un,v,,)}. In our experiments we used the
of M corresponds to the best match of trajectories. mean-shift trackerd].

We generated two trajectories, selected nine points from (3) For each pair of corresponding points in trajectories,
each trajectory and put them inM. The9*" eigenvalue in-  ¢construct theé x 9 observation matrix:

. . . 1T

creases dramatically when there is a large changeandy ey - xETs U,

coordinates of one point, and it is close to zero only within a Thyr - TRYs  wL;

very small range. Therefore, if points are spread far enough R A ul

from each other (points are not clustered in one specific lo- Yo YsTs v,

cation), by picking the nine corresponding points from each Mo YLy Ysys Vv (5)
trajectory, we can decide whether two trajectories match or 4 4 v

not. Since the trajectory contains temporal information, we 1 xs Uj

can also use it to align trajectories. We discuss the use of Y1 ys v;

temporal information for alignment in the sectiar®. 1 1 1

In some applications it is reasonable to assume that the (4) Execute the DTW algorithm but usim@éti’j, which is
time-warping function is linearC'(i) = ai + b. Then pa- the9'" singular value of the matriN o in step 3.
rameters of the time-warping functiom.andb, can be found (5) Generate” (i) = i,i = 1,...,n by back tracing the
by using an exhaustive search and by minimizing diaig.  path that minimizes the value &(i, 7). If the cell E(i, j) is
To model more complicated time-warping functions, a higheon the warping path, it meari&® point of trajectoryl corre-
order polynomial must be used. However, these types adponds to thg*" point from.J.
time-warping function have very limited applications, such Note that the DTW can establish the correspondence “on
as synchronizing two video sequences that are captured she fly”, which means that it determines the best warping path



to elementE(i, j). To achieve more robust measure, we put W) u)® o (uh)* ()
previously found corresponding points upit@and j in M, (uh)* (v1)* (uh)* (Ve )*
and updatdo in Eq5. The matrixMg is given as follows: (uh)* (uin)®
- , 17 Mp @) () () ()
o et Mg = | Mg |;Mp = | (@)"(@)" - ()" (em)"
A Mo (W)F e ()
}Ll , Ui—q (Ul k (utm)k
" vju1 Vi 1Uj-1 (v1)k (vem )"
Mg = [M—g} ; Mp Vi Vi U1 (6) 1 |
’Uﬂ Ué_l (ul k+1(u1)k:+1 (’LL:;, )k+1 wj— )k+1
w Uj-1 (uy) () (uf )" (v 1)
1 vj-1 (uy)* (ui_p)*
|1 1 i (1) (g ) (V1) T (ujq) ot
This algorithm is not affected by a change in the view- Mq = | (v1)""'(v)"*! (vi—)*H (vj—1)" !
point, since the matching measure does not depend on the ('U'l)ii (”g—l)iﬂl
viewpoint, and it dynamically computes the nonlinear time- (ul)kil (“ifl)kil
warping function between the two 2D trajectories. (”1)1 (”1*1)
2.3. Temporal Coarse-to-fine Refinement - , / et kb1 7T
: : ) : 121 wsws  (ui)" " (uy)
As mentioned in Section 2.1, the matching measure does not 2y Thys  (uh)FH(v;)E L
require the explicit computation of the fundamental matrix, z zh (u))F+1
therefore therank(M) = 8 is only a necessary condition vz T (ALY (T Lag)
to determine whether or not the two points match. It canbe Mg = | iy vhys (v (vy)FT!
noticed that the last singular value of the observation matrix yh yh CALE
shows an ambiguity if many points are very close to the cor- x1 x8 (uy)F Tt
rect one. Therefore, the matching algorithm might give wrong Y1 Y8 (vj)F
results due to the noise in the trajectory. The DTW is also 1 1

sensitive to errors, such that if the warping function is incor- (4) Compute the alignment of trajectorigs™! a_ndJk+1_

rect atE(i, j), then the error will be propagated to the rest of 5y Repeat steps 3 and 4 till the lowest level is completed.

the warping path. To solve these problems we use temporal The correspondences of points from the upper level are
pyramids of trajectories. smoothly transitioned to the lower level of the pyramid. The

In the temporal pyramid, a higher level has fewer points;mpiguity is resolved and the error does not affect the rest of
than the previous level, increasing the distance between COfime-warping function.

secutive points. The larger distance between points gens | d l .

erates a larger change of the last singular value. Consr;z' Examp es an App Ications

quently, the significant variation of the last singular value de¥Ve have applied our algorithm on various video sequences.
termines matching points without ambiguity. Furthermore First, we used synthetic trajectory data for an accurate eval-
the higher level of the pyramid provides a constraint for theuation of the proposed approach. Next, we applied our
lower level by propagating point correspondences. So by ugnethod to synchronize real videos. From Caspi and Irani's
ing the coarse-to-fine approach, we can prevent error prop&xperiments2], we chose sequences acquired by cameras
gation. with non-overlapping FOVs, and cameras with zoomed and

We propose a novel coarse-to-fine refinement for the viewdon-zoomed overlapping FOV in order to show the view-
invariant DTW algorithm: invariance of the proposed approach. The alignment of

(1) For the trajectory/ use a spline to sub-sample the Videos, containing human activities captured by moving and
trajectory by factor of 2, such thdtngth(I¥) = 0.5 «  Stationary cameras, illustrates the robustness of the view-
length(I*+1)) (length is the total number of points in the invariant measure used in DTW. The synchronization of

trajectory), where is the index of level of the pyramid and videos of different dancers and matching results can be ap-
the highest level is labelled &= 0. The same approach is Plied in training dancers.
applied for the trajectory. Theit" point in trajectory/* is ~ 3.1. Synthetic Examples
represented aqu})*, (v;)*), and thej* point in trajectory We generated a 3D sinusoidal curve, and projected it onto a
J* is represented a$u;)*, (v;)"). 2D plane using different projection matrices. @) shows

(2) At the top levelk = 0), compute view-invariant DTW the synthetic 3D trajectory, and Fiifb) shows projected 2D
usingZ® andJ®. trajectories.

(3) For levelk + 1, generate the observation mathdg, First, we usedz, y) coordinates of trajectories for the gen-
whose first rows are the rows of observation malvixfrom  eral DTW algorithm. The DTW using Euclidian distance can-
thek level. not match two trajectories, since the shape of two trajectories



Perspective camera Fundamental matrix
model with rank con-| based similarity k
straint similarity ’
No Figi2(a): excellent re-| Figi2(a): excellent re-
noise | sults sults
With Same as Fi2(a): excel-| Figi2(b): very bad re-
noise | lentresults sults
able 1:The performance evaluation for different model based ap-
proaches. Each approach was tested with perfect data and degener-
ated data.

(b)

is significantly different due to projection effects. Second, we

compared the view-invariant metric using the rank constraint

and applied view-invariant DTW to obtain correspondence.

Figll(c) shows results, in this figure the dotted lines connect

corresponding points in each trajectory. Talilshows the (c)

error under different conditions. Figure 1:(a) A synthetic trajectory in 3D space. (b) The two pro-
The noise with a normal distributioer = 0.00001 jected trajectories of (a) in 2D space. (b) The view-invariant dynamic

and mean = 0 was added to(z,y) coordinates of 2D time warping result, where the dot lines connect the corresponding

trajectories. Fi@® shows the histogram of correspondenceIDOIntS
errors for different methods. The horizontal axis is the
error, number of frames between correspondent frames, and
the vertical axis is a total number of frames that have a
certain error. There are totaB3 points in the sequences.

Rank based approaches are not affected by this small dis-
turbance, however, the fundamental matrix based approach
degraded dramatically. We used the toolbox provided by Torr | | d
(http://research.microsoft.com/ philtorr/ S (b) S

to (;:omprte the fundan;]ental matrix and f?pglle(:] thehlmeahgure 2:(a) The histogram of matching error using the rank con-
and nonlinear approaches. We can conclude that the r"’“%lﬁaint of the perspective camera with/without noise. (b) The his-

constraint based . approach is much more stable than thgyram of matching error using fundamental matrix with very small
fundamental matrix based approach. noise in the data.

3.2. Zoomed and Non-overlapping Sequences  sed non-overlapping sequences. The first half of the videos
In [2], Caspi and Irani propose an attractive method tacontains the building around the football stadium. We tracked
align two non-overlapping video sequences. Their approachne feature on the wall of the football stadium and the corner
is based on the computation of inter-frame transformationsf the window. The view-invariant DTW discovered 151 cor-
along each video sequence. This approach requires two fixedct correspondences, 21 frames with one frame shift, and 28
cameras installed on a common platform. In their experiframes with two frames shift. F§shows results and the his-
ments, the scene is static, but video cameras are moving. Alogram of matching error. The error may due to the tracking
though the field of views is non-overlapping, the spatial relaerror.
tionship (epipolar geometry) is still maintained. . . ..
We applied our method to sequences used in experimen 3'3' Allgnment of Videos Containing Human
in [2]. The first experiment contains one sequence captured ~ ACtivities
by a camera with a wide FOV and the other captured by &rom the previous experiments it is hard to evaluate the ef-
camera with a zoomed FOV. The length of sequences is 3d@ctiveness of the DTW function. Video sequences were cap-
frames. We tracked the lower left corner of the blue logo intured simultaneously so the trajectories do not contain the dy-
both sequences to obtain trajectories. After alignment onlypiamic changes among the corresponding frames.
nine frames had incorrect correspondences.3FRgows re- In the first experiment, we capture two students moving
sults and the histogram of matching error. In the secontheir hands up and down with different speeds. We recorded
experiment they used videos captured by moving camerathree videos using one camera. The first two videos were cap-
There are 80 frames in each video. We tracked the right-uppéured using a static camera from different viewpoints, while
corner of the gate in the right camera sequence and the lette third one was captured using a moving camera. The hands
upper corner of the gate in the left camera sequence. Theere tracked using the mean-shift tracker. We stabilize the
view-invariant DTW discovered 71 correct correspondencedrames of the third video by subtracting the image coordi-
and eight frames with one frame shift. Fighows results and nates of a static point from the image coordinates of the hand.
the histogram of matching error. In the third experiment theyThere was a time-shift of approximately half of the motion cy-




L ot
. Figure 5:The view-invariant DTW correspondence result for foot-
y b ball sequences.

Figure 3:The correspondence results for the zoom sequences
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Figure 4: The view-invariant DTW correspondence result for jump Figure 6: The human activity sequences. The first, second and
sequences. third rows respectively shows the first, second and third input se-

cle between videos. We used the perspectlve camera modelggences, which are not synchronized. The columns are ordered as
frame 0,20,40,60,80,100, and 120 for each sequence

method successfully established the correspondence betwe " " i (if ‘ i i
videos. Fig6 shows input videos. Fid.shows results of the s 55 7 ) o ) o
view-invariant DTW. Results are quite impressive, since Iargﬂﬂﬁ 4ﬂﬁ£ﬂ
temporal variation has been dealt with. i ; ; i

The next experiment dealt with synchronizing of videoser
that contain more complicated human activities. We recorde;, %ﬁ%ﬂ! %1 T%ﬁ T
three dancers performed the same dance. For each dancer

Figure 7: The output of the view invariant dynamic time warp-
captured two video sequences from two significantly differ- ngg The columnps represent the Synchm)r/]lze j Corresponzmg
ent view points. Fi@ shows trajectories of the left feet of frames. Every 40th of the output frames are shown, they are
dancers in the six sequences. The differences between trajelc‘1 51.01,131,171,211,251,291 '

tories are due to variations in viewpoint, speed, and motion.

We computed the temporal correspondence for each trajegame point in trajectory, then it means that the movement
tory point with respect to the points in the other five trajec-of sequencd is slower than the movement of sequentat
tories. So there are total = 15 computations. Based on that moment. This observation gives us a clue about the per-
the pair-wise correspondences, we generated a video contaigrmance estimation. We considered sequeféas a model

ing all six SynChroniZEd dance sequences, such that sequenged Sequenc#l as atest, and Computed the Warping path be-
#1 is warped to sequencg6 based on the warping func- tween them. Fi0(a) shows results. From this figure we can
tion computed from trajectorieg1l and #6, sequence#2  notice danceft1 had a pause at around frame 150. Egb)

is warped to sequencg6, and so on. Note the large spa- shows the time-warping path between sequest2and+6.

tial difference between trajectorigs3 and#4. Figl9 shows  This figure shows dancet2 did not slow down at frame 80.
one of the Warping reSUltS, in which all sequences are Warpeﬁ]is method shows where improvement is needed 1Eﬁg)

to sequence#6. Each row contains some key frames in theshows the similarity measure along the time-warping path for
video, and corresponding frames are shown in each columgequence#l and+#6. We noticed dancer#1 did well over-
Please visihttp://cs.ucf.edu/"vision forthe full a1, but she had a bad movement from frames 150 to 200. We
size input/output movies. Although videos contain large varichecked the input sequence, and found that she lowered her
ations in motion, our algorithm successfully computed thqeg from the upper most position around that time. There-
correspondence from one frame to the frames in the other sgyre. we concluded that she may need to improve that part.
quences. Fig/11(b) shows the similarity measure for sequeng@sand
3.4. Computer Aider Training #6, we detected dance#2 had the same problem as dancer
The time-warping function is a path that minimizes the align-#1.

ment error at each step through the similarity meadure With the help of view-invariant DTW, we can easily de-
Each point from the path represents the correspondence beeslop a self-training system, such that the users (dangéérs
tween thei*” point in trajectoryl and thej” point in trajec- and+#-2) record their performance, and compare them to the
tory J. If many points in the trajectory correspond to the master's (dance#3) performance. Then the system can give




Trajectory #1 Trajectory #2 Trajectory #3

? ? : (@) (b
&% ‘ S&\ : Figure 10:(a) The time-warping path between sequengdsand
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Tewoy#  Teety#s  Tietoy#s
Figure 8: Trajectories of the right feet of dancers in 6 sequences. o -
The 15t row contains trajectorieg1, #2 and+#3 corresponding to
1°¢, 2" and3"¢ dancers respectively. TI&¢ row contains trajec-
tories #4, #5 and #6 corresponding td *?, 2"¢ and3"¢ dancers
respectively.

53868 ¢

a b
Figure 11:(a) Tgle)similarity measure bet\/\fegn sequengésand
#6; there is a large spatial difference from frame 150 to 200. (b)
The similarity measurement between sequeng2sand #6; there
is a large spatial difference from frame 120 to 160.
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