
View-invariant Alignment and Matching of Video Sequences

Cen Rao, Alexei Gritai, Mubarak Shah Tanveer Syeda-Mahmood

SEECS K57/B2
University of Central Florida IBM Almaden Research Center

Orlando, FL 32816 San Jose, CA 95120
{rcen, agritsay, shah}@cs.ucf.edu stf@almaden.ibm.com

Abstract
In this paper, we propose a novel method to establish temporal
correspondence between the frames of two videos. 3D epipo-
lar geometry is used to eliminate the distortion generated by
the projection from 3D to 2D. Although the fundamental ma-
trix contains the extrinsic property of the projective geom-
etry between views, it is sensitive to noise. Therefore, we
propose the use of a rank constraint of corresponding points
in two views to measure the similarity between trajectories.
This rank constraint shows more robustness and avoids com-
putation of the fundamental matrix. A dynamic programming
approach using the similarity measurement is proposed to find
the non-linear time-warping function for videos containing
human activities. In this way, videos of different individu-
als taken at different times and from distinct viewpoints can
be synchronized. A temporal pyramid of trajectories is ap-
plied to improve the accuracy of the view-invariant dynamic
time-warping approach. We show various applications of this
approach such as video synthesis, human action recognition,
and computer aider training. Compared to state-of-the-art
techniques, our method shows a great improvement.

1. Introduction
Video mosaicing, video retrieval, image based modelling and
rendering, video synthesis, multi-sensor surveillance, and hu-
man action recognition require spatiotemporal alignment of
video sequences. Methods that tackle this problem discover
a correspondence between video sequences. Some methods
assume the input video sequences are already synchronized,
while others use optional built-in expensive hardware that
provides synchronization. We present a novel approach of
alignment and matching of video sequences and only assume
that the given two video sequences are correlated due to the
motion of objects. Based on this correlation we discover the
correspondences (temporal alignment) between the frames of
the two sequences.

When a feature point moves in a 3D space with re-
spect to time, it generates a 3D trajectory:{(X1, Y1, Z1),
(X2, Y2, Z2), . . ., (Xt, Yt, Zt)}, wheret is the time stamp.
This 3D trajectory is projected as a 2D trajectory in the im-
age plane:{(u1, v1), (u2, v2),. . . , (ut, vt)}. The relationship

between a point(Xi, Yi, Zi) in 3D trajectory and its 2D pro-
jection(ui, vi) is defined as follows:

[
ui

vi

1

]
= P




Xi

Yi

Zi

1


 , i = 1, 2, ..., t, (1)

whereP is the projection matrix (camera model).
Assume that the same motion is occurred with a

different speed, then we obtain another 3D trajec-
tory: {(XC(1), YC(1), ZC(1)), (XC(2), YC(2), ZC(2)), · · · ,
(XC(t), YC(t), ZC(t))}, whereC(i) is a time-warping func-
tion such that


Xi

Yi

Zi

1


 =




XC(i)

YC(i)

ZC(i)

1


 , i = 1, 2, ..., t.

Now assume that the viewpoint of the camera has also been
changed. The projection of this 3D trajectory to a 2D trajec-
tory, {(u′1, v′1), (u′2, v

′
2), . . ., (u′t, v

′
t)}, is defined as:


u′C(i)

v′C(i)

1


 = P ′




XC(i)

YC(i)

ZC(i)

1


 , i = 1, 2, ..., t.

Therefore, the problem of aligning video sequences is to
discoverC(i), for i = 1, 2, . . . , t, using the information in
two 2D trajectories,{(u1, v1), (u2, v2), . . ., (ut, vt)} and
{(u′C(1), v

′
C(1)), (u′C(2), v

′
C(2)), . . ., (u′C(t), v

′
C(t))}.

There are two crucial considerations when exploring cor-
respondences of video sequences. First, the 2D trajectory is
highly dependent on the viewpoint. That is, the same 3D tra-
jectory may look different in videos shot from different view-
points. Second, the same motion may have different tem-
poral extents. The second problem becomes more compli-
cated when the motion changes dynamically, such that the
indices of corresponding frames are not linearly related. This
is very common in videos depicting human activities, since
even the same person may perform the same activity with dif-
ferent speeds. We propose a novel approach for alignment and
matching of videos, which is based on epipolar geometry, and
we can discover the nonlinear time-warping function.

There are two main types of approaches for aligning
sequences: sequence-to-sequence (direct) and trajectory-to-
trajectory. The direct approach takes video frames as input
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and applies the computation over all pixels in video frames.
The trajectory-to-trajectory approach tracks the movement of
feature points in the field of view, and the computation is
based on the information from trajectories. Advantages of the
direct approach include: it determines the spatial transforma-
tion between sequences more accurately than the trajectory-
to-trajectory approach does, and it does not require explicit
feature detection and tracking. On the contrary, since trajec-
tories contain explicit geometric information, the trajectory-
to-trajectory approach better determines large spatiotemporal
misalignments, can align video sequences acquired by differ-
ent sensors and is less affected by changes in background.
The detailed comparison between these approaches is avail-
able in [11, 1]. Since video sequences in most applications
contain a significant spatiotemporal variance, we choose the
trajectory-to-trajectory approach. Because of its benefits, we
can align video sequences where different people perform the
same action.

Previously, researchers have tried using cali-
brated/uncalibrated stereo-rigs [6, 8] to recover the projection
relationships among the videos. In these approaches, the
fundamental matrix is used to find the spatial relationship
between trajectories [3, 13]. However, due to the instability
of the reconstruction process, those approaches can only be
applied to some limited video sequences (e.g. simultaneously
shot videos). Therefore, there is no previous method to syn-
chronize two videos of different people performing the same
3D activity at different times employing the fundamental
matrix.

This paper propose a method, which is based on the epipo-
lar constraint, but does not need explicit reconstruction of the
3D relationships. This method can align videos containing
3D actions with large spatiotemporal variation. Since it is a
well-studied problem to reconstruct the spatial alignment of
video sequences given the correspondent frames, we do not
discuss spatial registration in this paper. The experimental re-
sults show that our method is much more stable than previous
approaches, and can be used in many applications.

1.1. Previous Work
Stein [10] achieved the alignment of tracking data obtained
from multiple camera assuming a homography relationship
between cameras. Stein did not use the trajectory informa-
tion, but discovered the temporal alignment using exhaustive
search among different intervals between video sequences.
Due to this, his method is computationally quite expensive,
and it can only align videos with a constant time shift.

Giese and Poggio [7] proposed a method to find the spa-
tiotemporal alignment of two video sequences using the dy-
namic shift of the time stamp of the spatial information. They
assumed that a 2D action trajectory can be represented as a
linear combination of prototypical views, and the effect of
viewpoint changes can be expressed by varying the coeffi-
cients of the linear combination. Since they did not use the
3D information, this method can only align some simple mo-

tion patterns.
Caspi and Irani [1] proposed a direct approach to align two

surveillance videos by finding the spatiotemporal transfor-
mation that minimizes the sum of squares differences (SSD)
between sequences. They extended the direct approach to
the alignment of non-overlapping sequences captured by a
stereo rig [2]. In these video sequences, the same motion
induces “similar” changes in time. This correlated temporal
behavior was used to recover the spatiotemporal transforma-
tion between sequences. They also proposed a trajectory-to-
trajectory approach for alignment of sequences captured by
cameras with significantly different viewpoints [3]. In this
method the alignment of trajectories is based on computation
of the fundamental matrix. Their approaches can only be used
for applications, in which the time shift between video se-
quences is constant or is a linear function. Therefore, their
method may fail for videos with a dynamic time shift.

Wolf and Zomet [13] proposed a method for self calibrat-
ing a moving rig. During movement, the viewing angles be-
tween cameras and the time shift are fixed, but internal cam-
era parameters are allowed to change.

Extensive research has been done to find the period of
cyclic motion. The repeating pose of the human body is dis-
covered by measuring the similarity between video frames
[9], or computing peaks in the Fourier transform [12] of tra-
jectories. However, only Seitz and Dyer [9] used a view-
invariant approach, which employed the affine camera model.

From these reviews, we can conclude existent methods are
not successful in aligning video sequences containing differ-
ent instances of human activities.

2. View-invariant Alignment of Video
We propose a dynamic computation of the time-warping func-
tion, and a novel measure of similarity that is based on epipo-
lar geometry.

2.1. View-invariant Measure
First, let us consider measuring similarity between 2D
trajectories, which are represented as{(u1, v1), (u2, v2),
. . . , (ut, vt)} and {(u′C(1), v

′
C(1)), (u′C(2), v

′
C(2)), . . . ,

(u′C(t), v
′
C(t))}.

In Eq.1, the general camera projection can be modelled
using the following perspective matrix

P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p23 p33 p34


 .

Readers can reference to any computer vision textbook to find
properties of this projection matrix. We focus on the epipolar
geometry, which represents the extrinsic projective geometry
between views.

For the perspective model, the fundamental matrix,F, is
defined by the equation

s(i) =

[
ui

vi

1

]T

F




u′C(i)

v′C(i)

1


 = 0, (2)
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for a pair of matching points(ui, vi) ↔
(
u′C(i), v

′
C(i)

)
in

two trajectories. Therefore, given a fundamental matrix, we
can use Eq.2 to measure the similarity between trajectories,
such that the summation ofs(i) for all points is minimized.

It is a well known fact computation of the fundamental ma-
trix is not robust. The variation in motion can further worsen
stability. For instance, video sequences containing human ac-
tivities captured at different times may vary significantly. If
a person performs the same movement differently, previous
approaches [3, 13] will fail to synchronize these two video
sequences. Therefore, we propose a novel approach, which
avoids computation of the fundamental matrix.

Given a sufficient number of point matches, Eq.2 can be
used to compute the unknown matrixF using the following
equation:

Mf =




u′c(1)u1 · · · u′c(t)ut

u′c(1)v1 · · · u′c(t)vt

u′c(1) · · · u′c(t)
v′c(1)u1 · · · v′c(t)ut

v′c(1)v1 · · · v′c(t)vt

v′c(1) · · · v′c(t)
u1 · · · ut

v1 · · · vt

1 · · · 1




T

f = 0 (3)

where f is the elements of the fundamental matrix:
f =

[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T
.

Let us denoteM by the observation matrix, which is con-
structed using coordinates of points of two 2D trajectories.
Since (3) is a homogenous equation, for a solution off to
exist, M must have rank at most eight. However, due to
the noise or the matching error, the rank ofM may not be
exactly eight. In this case the9th singular value ofM, denote
it asdist, estimates the necessary perturbation of coordinates
of each point in matrixM to produce two projections of the
same 3D trajectory. Therefore, we can usedist to measure
the matching of two trajectories. The smallest singular value
of M corresponds to the best match of trajectories.

We generated two trajectories, selected nine points from
each trajectory and put them intoM. The9th eigenvalue in-
creases dramatically when there is a large change inx andy
coordinates of one point, and it is close to zero only within a
very small range. Therefore, if points are spread far enough
from each other (points are not clustered in one specific lo-
cation), by picking the nine corresponding points from each
trajectory, we can decide whether two trajectories match or
not. Since the trajectory contains temporal information, we
can also use it to align trajectories. We discuss the use of
temporal information for alignment in the section2.2.

In some applications it is reasonable to assume that the
time-warping function is linear,C(i) = ai + b. Then pa-
rameters of the time-warping function,a andb, can be found
by using an exhaustive search and by minimizing thedist.
To model more complicated time-warping functions, a higher
order polynomial must be used. However, these types of
time-warping function have very limited applications, such
as synchronizing two video sequences that are captured si-

multaneously, or synchronizing stereo cameras. Generally,
this approach fails to align video sequences shot at different
times and containing human activities, since the time-warping
function for human activities can not be easily modelled by a
polynomial.
2.2. View-invariant Dynamic Time Warping
Dynamic Time Warping (DTW) is a widely used method
for warping two temporal signals. The applications include
speech recognition, gesture recognition, signature recognition
[5]. It uses an optimum time expansion/compression function
to perform nonlinear time alignment.For two signalsI andJ ,
a distance measureE is computed to measure the misalign-
ment between temporal signals, whereE(i, j) represents the
error of aligning signals up to the time instantsti andtj re-
spectively. The error of alignment is computed incrementally
using the formula:

E(i, j) = disti,j + e, and
e = min {E(i− 1, j), E(i− 1, j − 1), E(i, j − 1)} (4)

Heredisti,j captures the cost of making time instantsti andtj
correspondent to each other. The best alignment is then found
by keeping track of the elements that contribute the minimal
alignment error at each step and backward following a path
from elementE(i, j) to E(1, 1).

The above method can only align video sequences shot
from the same viewpoint. To achieve view-invariance, we
introduce 3D shape information into the analysis through
disti,j . Based on the view-invariant similarity metric from
Section 2.1, we propose a view-invariant DTW algorithm as
follows:

(1) We specify eight corresponding points between first
frames of two videos, and denote the image coordinates as
(x′1, y

′
1), ..., (x

′
8, y

′
8) and(x1, y1), ..., (x8, y8).

(2) Track the feature points in two videos to ac-
quire trajectoriesI = {(u′1, v′1),. . . ,(u′n, v′n)} and J =
{(u1, v1),. . . ,(um, vm)}. In our experiments we used the
mean-shift tracker [4].

(3) For each pair of corresponding points in trajectories,
construct the9× 9 observation matrix:

MO =




x′1x1 · · · x′8x8 u′iuj

x′1y1 · · · x′8y8 u′ivj

x′1 · · · x′8 u′i
y′1x1 · · · y′8x8 v′iuj

y′1y1 · · · y′8y8 v′ivj

y′1 · · · y′1 v′i
x1 · · · x8 uj

y1 · · · y8 vj

1 · · · 1 1




T

. (5)

(4) Execute the DTW algorithm but usingdisti,j , which is
the9th singular value of the matrixMO in step 3.

(5) GenerateC(i) = i, i = 1, . . . , n by back tracing the
path that minimizes the value ofE(i, j). If the cellE(i, j) is
on the warping path, it meansith point of trajectoryI corre-
sponds to thejth point fromJ .

Note that the DTW can establish the correspondence “on
the fly”, which means that it determines the best warping path
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to elementE(i, j). To achieve more robust measure, we put
previously found corresponding points up toi and j in M,
and updateMO in Eq.5. The matrixMR is given as follows:

MR =
[

MP

MO

]
; MP =




u′1u1 · · · u′i−1uj−1

u′1v1 · · · u′i−1vj−1

u′1 · · · u′i−1

v′1u1 · · · v′i−1uj−1

v′1v1 · · · v′i−1vj−1

v′1 · · · v′i−1

u1 · · · uj−1

v1 · · · vj−1

1 · · · 1




T

(6)

This algorithm is not affected by a change in the view-
point, since the matching measure does not depend on the
viewpoint, and it dynamically computes the nonlinear time-
warping function between the two 2D trajectories.

2.3. Temporal Coarse-to-fine Refinement
As mentioned in Section 2.1, the matching measure does not
require the explicit computation of the fundamental matrix,
therefore therank(M) = 8 is only a necessary condition
to determine whether or not the two points match. It can be
noticed that the last singular value of the observation matrix
shows an ambiguity if many points are very close to the cor-
rect one. Therefore, the matching algorithm might give wrong
results due to the noise in the trajectory. The DTW is also
sensitive to errors, such that if the warping function is incor-
rect atE(i, j), then the error will be propagated to the rest of
the warping path. To solve these problems we use temporal
pyramids of trajectories.

In the temporal pyramid, a higher level has fewer points
than the previous level, increasing the distance between con-
secutive points. The larger distance between points gen-
erates a larger change of the last singular value. Conse-
quently, the significant variation of the last singular value de-
termines matching points without ambiguity. Furthermore,
the higher level of the pyramid provides a constraint for the
lower level by propagating point correspondences. So by us-
ing the coarse-to-fine approach, we can prevent error propa-
gation.

We propose a novel coarse-to-fine refinement for the view-
invariant DTW algorithm:

(1) For the trajectoryI use a spline to sub-sample the
trajectory by factor of 2, such thatlength(Ik) = 0.5 ∗
length(I(k+1)) (length is the total number of points in the
trajectory), wherek is the index of level of the pyramid and
the highest level is labelled ask = 0. The same approach is
applied for the trajectoryJ . Theith point in trajectoryIk is
represented as((u′i)

k, (v′i)
k), and thejth point in trajectory

Jk is represented as((uj)k, (vj)k).
(2) At the top level(k = 0), compute view-invariant DTW

usingI0 andJ0.
(3) For levelk + 1, generate the observation matrixMR,

whose first rows are the rows of observation matrixM from
thek level.

MR =




MP

MQ

MO


 ; MP =




(u′1)
k(u1)

k · · · (u′tn)k(utm)k

(u′1)
k(v1)

k · · · (u′tn)k(vtm)k

(u′1)
k · · · (u′tn)k

(v′1)
k(u1)

k · · · (v′tn)k(utm)k

(v′1)
k(v1)

k · · · (v′tn)k(vtm)k

(v′1)
k · · · (v′tn)k

(u1)
k · · · (utm)k

(v1)
k · · · (vtm)k

1 · · · 1




T

MQ =




(u′1)
k+1(u1)

k+1 · · · (u′i−1)
k+1(uj−1)

k+1

(u′1)
k+1(v1)

k+1 · · · (u′i−1)
k+1(vj−1)

k+1

(u′1)
k+1 · · · (u′i−1)

k+1

(v′1)
k+1(u1)

k+1 · · · (v′i−1)
k+1(uj−1)

k+1

(v′1)
k+1(v1)

k+1 · · · (v′i−1)
k+1(vj−1)

k+1

(v′1)
k+1 · · · (v′i−1)

k+1

(u1)
k+1 · · · (uj−1)

k+1

(v1)
k+1 · · · (vj−1)

k+1

1 · · · 1




T

MO =




x′1x1 · · · x′8x8 (u′i)
k+1(uj)

k+1

x′1y1 · · · x′8y8 (u′i)
k+1(vj)

k+1

x′1 · · · x′8 (u′i)
k+1

y′1x1 · · · y′8x8 (v′i)
k+1(uj)

k+1

y′1y1 · · · y′8y8 (v′i)
k+1(vj)

k+1

y′1 · · · y′1 (v′i)
k+1

x1 · · · x8 (uj)
k+1

y1 · · · y8 (vj)
k+1

1 · · · 1 1




T

.

(4) Compute the alignment of trajectoriesIk+1 andJk+1.
(5) Repeat steps 3 and 4 till the lowest level is completed.
The correspondences of points from the upper level are

smoothly transitioned to the lower level of the pyramid. The
ambiguity is resolved and the error does not affect the rest of
time-warping function.

3. Examples and Applications
We have applied our algorithm on various video sequences.
First, we used synthetic trajectory data for an accurate eval-
uation of the proposed approach. Next, we applied our
method to synchronize real videos. From Caspi and Irani’s
experiments [2], we chose sequences acquired by cameras
with non-overlapping FOVs, and cameras with zoomed and
non-zoomed overlapping FOV in order to show the view-
invariance of the proposed approach. The alignment of
videos, containing human activities captured by moving and
stationary cameras, illustrates the robustness of the view-
invariant measure used in DTW. The synchronization of
videos of different dancers and matching results can be ap-
plied in training dancers.
3.1. Synthetic Examples
We generated a 3D sinusoidal curve, and projected it onto a
2D plane using different projection matrices. Fig.1(a) shows
the synthetic 3D trajectory, and Fig.1(b) shows projected 2D
trajectories.

First, we used(x, y) coordinates of trajectories for the gen-
eral DTW algorithm. The DTW using Euclidian distance can-
not match two trajectories, since the shape of two trajectories
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Perspective camera
model with rank con-
straint similarity

Fundamental matrix
based similarity

No
noise

Fig.2(a): excellent re-
sults

Fig.2(a): excellent re-
sults

With
noise

Same as Fig.2(a): excel-
lent results

Fig.2(b): very bad re-
sults

Table 1:The performance evaluation for different model based ap-
proaches. Each approach was tested with perfect data and degener-
ated data.

is significantly different due to projection effects. Second, we
compared the view-invariant metric using the rank constraint
and applied view-invariant DTW to obtain correspondence.
Fig.1(c) shows results, in this figure the dotted lines connect
corresponding points in each trajectory. Table1 shows the
error under different conditions.

The noise with a normal distributionσ = 0.00001
and mean = 0 was added to(x, y) coordinates of 2D
trajectories. Fig.2 shows the histogram of correspondence
errors for different methods. The horizontal axis is the
error, number of frames between correspondent frames, and
the vertical axis is a total number of frames that have a
certain error. There are total183 points in the sequences.
Rank based approaches are not affected by this small dis-
turbance, however, the fundamental matrix based approach
degraded dramatically. We used the toolbox provided by Torr
(http://research.microsoft.com/˜philtorr/ )
to compute the fundamental matrix and applied the linear
and nonlinear approaches. We can conclude that the rank
constraint based approach is much more stable than the
fundamental matrix based approach.

3.2. Zoomed and Non-overlapping Sequences
In [2], Caspi and Irani propose an attractive method to
align two non-overlapping video sequences. Their approach
is based on the computation of inter-frame transformations
along each video sequence. This approach requires two fixed
cameras installed on a common platform. In their experi-
ments, the scene is static, but video cameras are moving. Al-
though the field of views is non-overlapping, the spatial rela-
tionship (epipolar geometry) is still maintained.

We applied our method to sequences used in experiments
in [2]. The first experiment contains one sequence captured
by a camera with a wide FOV and the other captured by a
camera with a zoomed FOV. The length of sequences is 300
frames. We tracked the lower left corner of the blue logo in
both sequences to obtain trajectories. After alignment only
nine frames had incorrect correspondences. Fig.3 shows re-
sults and the histogram of matching error. In the second
experiment they used videos captured by moving cameras.
There are 80 frames in each video. We tracked the right-upper
corner of the gate in the right camera sequence and the left-
upper corner of the gate in the left camera sequence. The
view-invariant DTW discovered 71 correct correspondences,
and eight frames with one frame shift. Fig.4 shows results and
the histogram of matching error. In the third experiment they
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Figure 1: (a) A synthetic trajectory in 3D space. (b) The two pro-
jected trajectories of (a) in 2D space. (b) The view-invariant dynamic
time warping result, where the dot lines connect the corresponding
points
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Figure 2: (a) The histogram of matching error using the rank con-
straint of the perspective camera with/without noise. (b) The his-
togram of matching error using fundamental matrix with very small
noise in the data.

used non-overlapping sequences. The first half of the videos
contains the building around the football stadium. We tracked
one feature on the wall of the football stadium and the corner
of the window. The view-invariant DTW discovered 151 cor-
rect correspondences, 21 frames with one frame shift, and 28
frames with two frames shift. Fig.5 shows results and the his-
togram of matching error. The error may due to the tracking
error.

3.3. Alignment of Videos Containing Human
Activities

From the previous experiments it is hard to evaluate the ef-
fectiveness of the DTW function. Video sequences were cap-
tured simultaneously so the trajectories do not contain the dy-
namic changes among the corresponding frames.

In the first experiment, we capture two students moving
their hands up and down with different speeds. We recorded
three videos using one camera. The first two videos were cap-
tured using a static camera from different viewpoints, while
the third one was captured using a moving camera. The hands
were tracked using the mean-shift tracker. We stabilize the
frames of the third video by subtracting the image coordi-
nates of a static point from the image coordinates of the hand.
There was a time-shift of approximately half of the motion cy-
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Figure 3:The correspondence results for the zoom sequences.
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Figure 4:The view-invariant DTW correspondence result for jump
sequences.

cle between videos. We used the perspective camera model in
the rank-based approach to synchronize these videos. Despite
the changes in the viewpoints and the nonlinear time shift, our
method successfully established the correspondence between
videos. Fig.6 shows input videos. Fig.7 shows results of the
view-invariant DTW. Results are quite impressive, since large
temporal variation has been dealt with.

The next experiment dealt with synchronizing of videos
that contain more complicated human activities. We recorded
three dancers performed the same dance. For each dancer we
captured two video sequences from two significantly differ-
ent view points. Fig.8 shows trajectories of the left feet of
dancers in the six sequences. The differences between trajec-
tories are due to variations in viewpoint, speed, and motion.
We computed the temporal correspondence for each trajec-
tory point with respect to the points in the other five trajec-
tories. So there are totalC6

2 = 15 computations. Based on
the pair-wise correspondences, we generated a video contain-
ing all six synchronized dance sequences, such that sequence
#1 is warped to sequence#6 based on the warping func-
tion computed from trajectories#1 and #6, sequence#2
is warped to sequence#6, and so on. Note the large spa-
tial difference between trajectories#3 and#4. Fig.9 shows
one of the warping results, in which all sequences are warped
to sequence#6. Each row contains some key frames in the
video, and corresponding frames are shown in each column.
Please visithttp://cs.ucf.edu/˜vision for the full
size input/output movies. Although videos contain large vari-
ations in motion, our algorithm successfully computed the
correspondence from one frame to the frames in the other se-
quences.

3.4. Computer Aider Training
The time-warping function is a path that minimizes the align-
ment error at each step through the similarity measureE.
Each point from the path represents the correspondence be-
tween theith point in trajectoryI and thejth point in trajec-
tory J . If many points in the trajectoryI correspond to the
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Figure 5:The view-invariant DTW correspondence result for foot-
ball sequences.

       

       

       

Figure 6: The human activity sequences. The first, second and
third rows respectively shows the first, second and third input se-
quences, which are not synchronized. The columns are ordered as
frame 0,20,40,60,80,100, and 120 for each sequence.

        

Figure 7: The output of the view invariant dynamic time warp-
ing. The columns represent the synchronized corresponding
frames. Every 40th of the output frames are shown, they are
11,51,91,131,171,211,251,291.

same point in trajectoryJ , then it means that the movement
of sequenceI is slower than the movement of sequenceJ at
that moment. This observation gives us a clue about the per-
formance estimation. We considered sequence#6 as a model
and sequence#1 as a test, and computed the warping path be-
tween them. Fig.10(a) shows results. From this figure we can
notice dancer#1 had a pause at around frame 150. Fig.10(b)
shows the time-warping path between sequences#2 and#6.
This figure shows dancer#2 did not slow down at frame 80.
This method shows where improvement is needed. Fig.11(a)
shows the similarity measure along the time-warping path for
sequences#1 and#6. We noticed dancer#1 did well over-
all, but she had a bad movement from frames 150 to 200. We
checked the input sequence, and found that she lowered her
leg from the upper most position around that time. There-
fore, we concluded that she may need to improve that part.
Fig.11(b) shows the similarity measure for sequences#2 and
#6, we detected dancer#2 had the same problem as dancer
#1.

With the help of view-invariant DTW, we can easily de-
velop a self-training system, such that the users (dancers#1
and#2) record their performance, and compare them to the
master’s (dancer#3) performance. Then the system can give
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 Figure 8: Trajectories of the right feet of dancers in 6 sequences.
The1st row contains trajectories#1, #2 and#3 corresponding to
1st, 2nd and3rd dancers respectively. The2nd row contains trajec-
tories#4, #5 and#6 corresponding to1st, 2nd and3rd dancers
respectively.

      

19  63  75  114  148  194 

Figure 9: Key frames of output sequences (the frame index is
shown at the bottom of figures). Sequences#1, #2, #3, #4, #5
are warped to sequence#6 and are shown according to rows. The
1st and4th correspond to dancer#1, the2nd and5th correspond to
dancer#2, and the3rd and6th correspond to dancer#3.

suggestions about the speed and the extent of their movement.
Note that the beginner’s and master’s camera viewpoints can
be different. Therefore, this method has great potential.

3.5. Conclusion
In this paper, we proposed the view-invariant DTW method
to establish the temporal correspondence between frames of
two videos. We demonstrated applications using this method,
such as video synthesizing, computer aider training, and non-
overlapping video sequences.
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