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Abstract
This paper presents a framework for finding point corre-
spondences in monocular image sequences over multiple
frames. The general problem of multi-frame point corre-
spondence is NP Hard for three or more frames. A poly-
nomial time algorithm for a restriction of this problem is
presented, and is used as the basis of proposed greedy al-
gorithm for the general problem. The greedy nature of the
proposed algorithm allows it to be used in real time systems
for tracking and surveillance etc. In addition, the proposed
algorithm deals with the problems of occlusion, missed de-
tections, and false positives, by using a single non-iterative
greedy optimization scheme, and hence, reduces the com-
plexity of the overall algorithm as compared to most ex-
isting approaches, where multiple heuristics are used for
the same purpose. While most greedy algorithms for point
tracking do not allow for entry and exit of points from the
scene, this is not a limitation for the proposed algorithm.
Experiments with real and synthetic data show that the pro-
posed algorithm outperforms the existing techniques and is
applicable in more general settings.

1 Introduction
In motion correspondence, given an image sequence, the
problem is to find the correspondences between the feature
points in the images that occur due to the same object in the
real world at different time instances. We assume that the
only information available about the feature points, is their
position in the image, and there is no other distinguishing
feature among these points. This assumption is particularly
useful in applications like particle tracking, or tracking of
dense field of similar objects.

We formulate the problem as follows. The same notation
will be used throughout the rest of the paper. Let a sequence
of n framesFi (each of dimensionsSx × Sy), 1 ≤ i ≤
n, and letXi = {xi

1, x
i
2, . . . , x

i
r} be the set ofr points

detected in frameFi (The number of points detected in each
frame need not be the same). We define atrackT of length
m, to be a sequence ofm points〈xi1

a1
, xi2

a2
, . . . , xim

am
〉, such

that 1 ≤ i1 < i2 < . . . ≤ n and1 ≤ aj ≤ |Xij |. The
backward correspondenceand forward correspondenceof
a pointxij

aj in trackT are respectively defined by the points

preceding and succeedingxij
aj , i.e. xij−1

aj−1 andx
ij+1
aj+1 .

The point correspondence problem is to find a set of
tracksA = {T1, T2, . . . , Tm}, such that∀Ti ∈ A, either
one of the following is true:
• If ∃xk

j ∈ Ti, such thatxk
j is a 2D projection ofonly

point Zi in the real world, then every point inTi is a
2D projection ofZi (or more points in occlusion with
Zi), and no other trackTr contains a 2D projection of
onlyZi.

• ∀xk
j ∈ Ti, xk

j is not a 2D projection of any real world
pointZi.

The first condition requires each real world point to have
exactly one track associated with it, and vice versa. The
second condition disallows any overlap between tracks cor-
responding to a real world point and tracks composed of
noise. The distinction between these two types of tracks
is usually done by higher level processes and is not in the
scope of this paper.

The major contribution of this paper is formulation of
a framework for efficient and robust solution to the multi-
frame correspondence problem as defined above. We pro-
pose a look-ahead technique to solve the correspondence
problem by using a sliding window over multiple frames.
Our framework deals with the problems of occlusion han-
dling, missed detections and false positives, by using a sin-
gle greedy optimization scheme as compared to most exist-
ing approaches, where different heuristics are used for the
same purpose.

The organization of the paper is as follows. In the next
section, we present a survey of the related work. In Sec-
tion 3, we define the terminology and notation for this paper,
and provide a graph theoretical formulation of the corre-
spondence problem and its solution in Section 4. We refine
the solution of Section 4 and present details of our algo-
rithm in Section 5. In Section 6, we demonstrate the results
of the proposed approach on a variety of synthesized and
real sequences, and compare our results to the previous ap-
proaches. Section 7 concludes the paper.

2 Related Work
A large number of correspondence methods have been pro-
posed in recent years. Ullman [15] proposed a minimal
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mapping approach, where the probabilistic cost function
was based on the distance between the points in consecutive
frames. A linear programming approach was used to min-
imize the cost function. The cost function was further im-
proved by Jenkin [7], who introduced the smoothness con-
straint along with the nearest neighbor relationship and used
a greedy approach for optimization. Barnard and Thompson
[1] used relaxation based approach to solve this problem.
Sethi and Jain [13] proposed an iterative greedy exchange
algorithm using both nearest neighbor and smoothness con-
straints. The self initializing version of the algorithm re-
peats the optimization step in forward and backward direc-
tions until an equilibrium state is achieved. The algorithm,
however, assumes that the points do not enter or leave the
scene and that there is no occlusion and detection errors.
The latter condition was relaxed by Salari and Sethi in [12].

Our work is closely related to the GOA Tracker of Veen-
man et al [16], who proposed the Hungarian search as an
optimization tool for their GOA Tracker, along with the
different motion models defined in [3, 10, 13]. However,
we present a solution to the ”Multi-frame” correspondence
problem, as opposed to the 2-frame correspondence prob-
lem in [16]. The latter is a special case of the former and
is inherently an easy problem, for which a polynomial time
optimal solution exists. In addition, GOA assumes that the
number of points in the scene remains constant, which is not
a restriction for the proposed algorithm. Further, self initial-
izing version of GOA is a two-pass algorithm compared to
the proposed algorithm, which is a single pass algorithm
and hence, is applicable in real time systems.

Apart from these methods, quite a few algorithms have
been proposed in the statistical domain [4], of which the
most well known is Multiple Hypothesis Tracking (MHT)
[11], which though being optimal, suffers from very high
computational complexity. More efficient approximations
of MHT have been presented. Some of these techniques
use Murti’s Algorithm to find thek best hypotheses to re-
duce the search space [5], while others reduce the search
space by using a limited temporal scope and a sliding win-
dow technique. However, the problem remains intractable
and further approximations are used for efficient implemen-
tation [6, 9].

3 Definitions and Notations
LetD = (V, E) be an edge weighted directed graph without
self loops and multiple edges, whereV andE are respec-
tively, the set of vertices and edges of digraphD. A vertex
disjoint path coverC of D is a set{P1, P2, . . . , Pk} of di-
rected pathsPi (of length≥ 0), if V =

⋃k
i=1 V (Pi) and

V (Pi) ∩ V (Pj) = Ø wheneveri 6= j, whereV (Pi) is the
set of vertices of directed pathPi. For simplicity of nota-
tion, we will refer to vertex disjoint path cover as path cover.
Let W (C) denote the weight of path coverC, whereW (C)

is defined by the sum of weights of all the edges in the cover
C. A maximum weight path coverof D is a path coverC ′,
such thatC ′ = arg max

Ci

W (Ci), for all path coversCi of

D.
A Split of an edge weighted digraphD, is an edge

weighted bipartite graphG, whose partite setsV +, V − are
copies ofV (D). For each vertexx ∈ V (D), there is one
vertexx+ ∈ V + and one vertexx− ∈ V −. For each edge
e from u to v in D, there is a corresponding edgee′ with
endpointsu+, v− in G, such thatw(e′) = w(e).

A matchingin a graphG is a set of edges with no shared
end-vertices. Amaximum matchingin a weighted graph is
a matching with the maximum weight among all matchings
in the graph.

4 Graph Theoretical Formulation
There is an obvious graph theoretical formulation of 2-
frame correspondence problem [15, 16]. The problem can
be viewed as finding a maximum matching of a bipartite
graphG. Where the partite setsV1, V2 correspond to the
sets of pointsX1 and X2, detected in framesF1 and F2

respectively. An edge between two points correspond to a
match hypothesis between those points, and the weight of
the edge is the gain associated with this match. The to-
tal gain among all points is maximized by the maximum
matching of graphG, which can be found in polynomial
time [8]. Unfortunately, the extension of this approach to
multiple frames (k−Dimensional matching problem) is NP-
Hard fork ≥ 3. The other drawback of usingk−D match-
ing is that, it requires the point to be visible in allk frames
and hence, does not allow for occlusions, missed detections
and tracks of length less thank. Researchers have worked
their way around these problems by using Lagrangian ap-
proximations to reduce the complexity and by introducing
multiple heuristics to incorporate occlusions and missed de-
tections, e.g., [6, 9].

In our approach, instead of using ak−D hypergraph
to model thek−frame problem, we construct a weighted
digraph D = (V, E), such that{V1, V2, . . . , Vk} par-
titions V, and each vertexv(x) ∈ Vi corresponds to
a point x ∈ Xi, detected in frameFi. Further,

E =
{

v(xi
a)v(xj

b)|v(xi
a) ∈ Vi ∧ v(xj

b) ∈ Vj , ∀i < j
}

,

i.e., there is a directed edge from every vertex in setVi to
every vertex in setVj , such thati < j. Once again, each
edgee = v(xi

a)v(xj
b) corresponds to a match hypothesis

of point xi
a in frameFi to pointxj

b in frameFj , where the
edge weightw(e) is the gaing(xi

a, xj
b) associated with this

match. A sample digraph formed this way is shown in Fig-
ure 1a.

By the definition of correspondence problem in sec-
tion 1, the task is to find a set of vertex disjoint directed
paths (Tracks) of length 0 or more, such that the total gain
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(a) (b)

Figure 1: (a) An instance of digraphD as defined in Section 4
and (b) a candidate solution

is maximum among all such paths, i.e., we want to find a
maximum weight path cover of the directed graphD. A
sample solution to the problem is shown in Fig 1b.

Once again, the problem of finding maximum path cover
is NP-Hard, even in the case of unweighted graphs [2].
However, by the following theorem, a polynomial solution
exists if the directed graph is acyclic:

Theorem 1 The edges of maximum matching of the split
graphG of an acyclic edge-weighted digraphD correspond
to the edges of a maximum path cover ofD.

The proof of the above theorem is straight forward and
is omitted for the sake of brevity. By the construction of di-
graphD, all the edges inD are in the direction of increasing
time, thusD is acyclic. Hence, given the weighted directed
graphD, an optimal set of tracks that maximizes the overall
gain can be obtained in polynomial time.

Let T = 〈xi1
a1

, xi2
a2

, . . . , xim
am
〉 be a track corresponding

to some real world pointZi, we require that∀p, q, 1 <

p + 1 < q ≤ m, the gain functiong(xip
ap , x

iq
aq ) satisfies the

following inequality:

g(xip
ap

, xiq
aq

) < g(xip
ap

, xip+1
ap+1

) + g(xiq−1
aq−1

, xiq
aq

) (1)

This condition guarantees that the total gain is maxi-
mized only if all the edges ofT are in the path cover and
penalizes the choice of a shorter track when a longer valid
track is present.

5 Greedy Algorithm
The construction of digraph, as mentioned in section 4, as-
sumes the gaing(xi

a, xj
b) to be independent of backward

correspondences ofxi
a. For simpler cases, such as gain

function based on the nearest neighborhood criteria [15] or
correlation, this condition is satisfiable. However, this con-
dition is not satisfied if the gain function,g(xi

a, xj
b), requires

velocity or acceleration of pointxi
a (which is computable

only if the backward correspondence ofxi
a is known). We

present a solution to this problem by proposing a greedy
algorithm based on the framework of section 4.

Assume first, that the correspondences of points
X1, X2, . . . , Xk−1, in k−1 frames,F1, F2, . . . , Fk−1, k >

2, have been established, and letCk−1 be the set of these
correspondences. These correspondences ofk − 1 frames
were made by the information available till time instant
tk−1, and may be changed once more information is avail-
able. Also, letFk be the current frame and construct a di-
graphD = (V, E) as follows: V = V1 ∪ V2 ∪ . . . ∪ Vk

such thatV1, V2, . . . , Vk are pairwise disjoint and each ver-
texv(x) ∈ Vi corresponds to a pointx ∈ Xi. For every ver-
tex pairv(x) ∈ Vi, v(y) ∈ Vj , there is an edge fromv(x)
to v(y), if i < j = k or there is a correspondence from
x to y in Ck−1. Hence, apart from the edges defining the
correspondences inCk−1, sayold edges, all the other edges
have some vertex inVk as their end-vertex . For a point, say
x, which has a forward correspondence inCk−1, the new
edges fromv(x) to the vertices inVk represent the possi-
bility of forward correspondence inCk−1 to be false and
that the pointx was mis-detected or occluded till frameFk.
We refer to such edges ascorrection edges. For the other
points, these edges represent the extension of correspon-
dence inCk−1 to frameFk, and are referred to asextension
edges. The digraph obtained this way is calledextension di-
graph (Figure 2). Since, all the backward correspondences
except for the points inXk have been established, all the
edge weights inD can now be computed, regardless of the
type of gain function used.

(a) (b)

(c)

Figure 2: (a) An initial correspondence. (b)The extension di-
graphD. (c) A maximum path cover of extension digraph. The
correction edges are shown as dotted lines, while the old edges are
shown by bold lines. (Not all edges and vertices are shown)

Once the digraph,D, is constructed, we again seek a set
of vertex disjoint paths (tracks) inD that maximizes the
total gain. A candidate solutionCk may contain all three
types of edges, i.e., old edges, correction edges and exten-
sion edges. While an extension edge does not change any
correspondence inCk−1, a correction edgee′ = v(x)v(w)
always replace some old edgee = v(x)v(y). Suppose now,
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that the pointy has a forward correspondencez in Ck. Since
this correspondence was obtained by assuming the corre-
spondencexy in Ck−1, and since the correspondencexy is
voided inCk, the correspondenceyz and all such forward
correspondences must be removed fromCk and if possible
be replaced with new edges. We define an edge to be afalse
hypothesis, if it has a directed path from an edge that is re-
placed by a correction edge, e.g., the edgeyz in Figure 2(c)
is a false hypothesis. The replacement of false hypotheses
with the new edges can be performed by the following re-
cursive scheme:

Procedure FalseHypothesisReplacement()
for i = 1 to k − 2
begin

While there is a false hypothesis originating from some
vertex inVi+1

begin
Delete all the false hypotheses in graphD
Solve the(k−i+1)− frame correspondence problem

for all the uncorresponded vertices in setsVi, Vi+1, . . . , Vk

end
end

We have found through experiments that the following
efficient greedy step also performs reasonably well in most
cases, even form = 2:

Procedure GreedyFalseHypothesisReplacement(m)
for i = 1 to k −m + 1
begin

Delete all the false hypotheses in graphD
Solve them− frame correspondence problem for all the

uncorresponded vertices in setsVi, Vi+1, . . . , Vi+m−1

end

Once the greedy step is completed, we obtain a new cor-
respondence set,Ck, of all points up to frameFk. Similarly
a correspondence can be extended for any number of frames
by adding one frame at a time.

The initialization is done by first using the 2-frames al-
gorithm to obtain the correspondence of first two framesF1

andF2. This correspondence is then extended for each new
frame by using the algorithm described above till thekth

frame. At this stage, a backtracking is performed by ap-
plying the same algorithm in the reverse direction, i.e., on
framesFk, Fk−1, . . . , F1, using the established correspon-
dences. This takes care of any wrong correspondence that
was made when no or less motion information was avail-
able, and is done just once for the firstk frames.

6 Results
In this section, we present the results of our algorithm on
both synthetic and real sequences. Given a pointx

ij
aj , and

its predicted position in frameb, xb, we define the gain func-

tion g(xij
aj , x

b
a) to be the convex combination of two terms,

referred to asdirectional coherenceandspeed consistency,
as follows:

g(xij
aj , x

b
a) = α

[
1
2 +

x
ij
aj

xb·xij
aj

xb
a

2‖xij
aj

xb‖‖xij
aj

xb
a‖

]
+

(1− α)
[
1− ‖xij

aj
xb−x

ij
aj

xb
a‖p√

S2
x+S2

y

]
, α ∈ [0, 1]

To satisfy the constraint of equation 1, we add a small
constant penaltyε to the gain functiong(xij

aj , x
b
a) when-

ever b > ij + 1. For all of our experiments, we
used constant acceleration motion model,α = 0.1, ε =
−10−3, and a sliding window of size 5. The procedure
GreedyFalseHypothesisReplacement(m = 2) is used in-
stead of its recursive counterpart. The results are com-
pared with the self initializing version of GOA tracker with
the smooth motion model, as defined in [16]. Since Veen-
man et al have shown experimentally [16] that, in most sit-
uations, the GOA Tracker outperforms the algorithms in
[3, 10, 11, 13], a comparison against GOA Tracker implies
a comparison against all these algorithms.

The synthetic sequences in this section are generated
by a data set generator calledPoint Set Motion Generator
(PSMG)[17]. The generator provides control over the size
of image space, number of points, number of frames, mean
and variance of initial velocity, mean and variance of the
change in velocity, probability of occlusion etc. For ev-
ery experiment, we consider the following three scenarios
separately; i) Points are not allowed to enter or leave the
scene, though they may be occluded or miss-detected. ii)
Points are allowed to leave the scene but new points may
not enter. iii) Points are allowed to leave the scene and
for every point that leaves the scene, a new point enters the
scene. To analyze the performance of tracking and to com-
pare the results, we usetrack-based error, ET [17], defined
asET = 1− Tc

Tt
, whereTt is the total number of true tracks,

andTc is the number of completely correct tracks generated
by the tracker. The error is calculated by averaging the error
of 100 sequences generated by using the same parameters.

Since GOA-tracker does not allow the points to enter
or leave the scene, the output of GOA is only shown for
the first scenario. To analyze the noise handling capability
of the algorithms, we consider the scenario when the new
points are generated in the middle of the sequence and use
a modified track based errorEc

T , for both GOA and the pro-

posed tracker.Ec
T is defined asEc

T = 1− T c
c

T c
t

, whereT c
t is

the total number of true tracks of points that were visible in
both first and last frame, andT c

c is the number of completely
correct such tracks generated by the tracker. The points that
enter or leave the image in these sequences are then consid-
ered as noise, while only the points that are visible in both
first and last frames are considered as valid tracks.

Our first experiment demonstrates the effectiveness of
the proposed initialization scheme (i.e., backtracking after
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first k frames). The experiments were performed for vary-
ing number of points with three different modes, i) Manual
Initialization, ii) Self Initialization by backtracking and iii)
No Initialization. The Track errors are shown in Figure 3.
The results show that the proposed initialization scheme is
almost as good as the manual initialization and improves the
results significantly as compared to no initialization.
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Figure 3:Track errors with different modes of initialization. The
upper curve is obtained by no initialization, while the middle and
lower curves are the errors of backtracking and manual initializa-
tion respectively.

In the next experiment, we analyze the performance of
the proposed multiframe algorithm (MF) with respect to
point density. The experiments were performed by increas-
ing the number of point tracks in a fixed image space. In
Figure 4(a), the track based errorsET , are shown for apply-
ing MF on three different types of sequences, as described
above. In addition, the track based errors of GOA tracker
are also shown on the sequences, where points are not al-
lowed to leave or enter the scene. In Figure 4(b), we show
the effect of noise on both trackers by using the modified
track based errorEc

T , and allowing the points to enter and
exit the scene.
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Figure 4:Variable point density performance: (a)ET of the pro-
posed Multiframe algorithm (MF) and GOA algorithm. The lower
three curves are the errors of GOA (with no entry and exit) and
MF (with no entry and exit, and no exit), while the upper curve is
the error of MF (with both entry and exit). (b) Effect of noise:Ec

T ,
when points are allowed to leave and enter the scene. The upper
curve is the error of GOA, and lower curve is the error of MF.

Similar experiments were performed on occlusion han-
dling (Figure 5) and variable velocity performance (Figure

6), where the probability of occlusion was varied in former
and the mean velocity was increased in the latter.
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Figure 5:Occlusion Handling: (a)ET , (b) Ec
T .
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Figure 6:Variable Velocity Performance: (a)ET , (b) Ec
T .

The results show that the proposed algorithm performs
equally well as GOA tracker when the points are not al-
lowed to enter or leave the scene. However, the performance
of the proposed tracker is unaltered when the points are al-
lowed to leave the scene, or when additional noise is intro-
duced. The proposed tracker also performs reasonably well
on sequences where points are allowed to leave and enter
the scene simultaneously, given the higher degree of am-
biguity in such sequences. In addition, the results clearly
show that the proposed algorithm outperforms GOA tracker
in the presence of noise.

Next, we show the results of our algorithm on real data.
Our first set of experiments is based on the standard se-
quences in dense point correspondence literature. In the first
experiment, we use a sequence from [16], where 80 black
seeds are placed on a rotating dish. Figure 7 (a) shows that
all 80 seeds were correctly tracked over the sequence (This
claim is also verified by the ground truth).

In the next two standard real sequences, we used KLT
method [14] to only detect the feature points, then used our
algorithm to establish correspondences. The visual analysis
of both outputs (Figure 7 (b) and (c)) show that most of the
tracks were perfectly tracked through out the sequence.

Our second set of experiments is based on natural se-
quences with very dense feature points and high occlusion
scenarios. The moving objects are detected by background
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(a) (b) (c)

Figure 7: Tracks generated for (a) rotating dish sequence. (b)
rotating ball sequence. (c) house sequence.

(a) (b)

Figure 8:Tracks generated for (a) cylindrical reservoir sequence.
(b) flock of fish.

subtraction and their centroids are used as the feature points
for tracking. Our first example in this set is from particle
tracking (Figure 8(a)). It is a ten frame sequence showing
particles in a cylindrical reservoir containing liquid, and a
tubular heater, which drives counter-clockwise rotating con-
vection cells. There are more than 100 particles in each
frame (some of them are almost stationary, while others ap-
pear for one or two frames only). In Figure 8(b), we show
the tracking results of a flock of more than 150 fish in the
sea. The next two examples (Figure 9) show the tracking
results for bird flocks, where birds are at different altitudes
and are having frequent occlusions.

(a) (b)

Figure 9:Tracks generated for two sequences of bird flocks

7 Conclusion
We have presented a framework for efficient and robust so-
lution of multi-frame point correspondence problem. The
proposed framework provides an optimization algorithm
that optimizes the gain function over multiple frames and
may be used for a large variety of motion models and cost

functions that satisfy the constraints as posed by it. The
presented algorithm is applicable in more general settings
and is shown to perform well by extensive experimentation
using synthetic data. Results on real data also support the
experimental evaluation.
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