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Abstract

Multi-sensor fusion deals with the combination of com-
plementary and sometimes competing seasor data into a re-
liable estimate of the environment to achieve a sum which is
better than the parts. Seme of the commonly used sensors
are vidro camera, tactile sensor, laser range finder, infra-red
sensor, and senar, Multi-sensor systems have applications in
automatic target recognition, autonomous robot navigation,
and automatic manufacturing. This paper presents a current
survey of the state of the art in multi-gsensor fusion. We have
surveyed papers related to fuston and classified them into six
categories: scene segmentation, represcutation, 3-I shape,
sensor snodeling, autonomous robots, and object recogni-
tion. A number of fusion stralegies have been employed to
combine sensor outputs. These strategies range from simple
set tersection, logical and operations, and heuristic pro-
duretion rules to more camnplex methods involving non-linear
least squares fit and maxtmum likelihood estimates, Sensor
uncertaingy kas been modeled using Bayesian probabilities,
and support and plausibility involviag the Dempster-Shater
formalisin.

1 Introduction

Sensor fusion combines the cutput from two or more de-
vices that retrieve a particular property of the environment.
Commonly used sensors are a video camcta. range finder,
sonar, and tactile sensor. The sensor outputs can be com-
bined at the lowest level. For instance, depth maps obtained
from the laser range finder and sonar can be combined to
produce a better depth estimate. In an autonomous robot
environment, vision can be used to locate objects, sonar can
be used to determine the distance of an object from the cam-
era to compute three dimensional locations, a tactile sensor
can be used o detect the contact between the robol end
effector and the object. Multi-sensor systems have appli-
cations in automatic targel recognition systems, automatic
manufacturing, and autonomous robots.

*The research teported in this paper was supported by the Center for Research in Electro
Optics and Lasers (CREQL) University of Central Florida eader grant aumber
20.52-043 and by the National Science Foundation under grant number IRT §7-13120

The advantages of using muliiple sensors are many, Sinee
cach sensor output ¢contains noise and measurenient crrors,
multiple sensors can be waed to determine the sime prop-
erty, but with the cousensus of all sensors. In this way,
sensor wncertainty can be reduced. The output of a single
sensor in some cases may be ambiguous and misleading, in
which case another sensor can e used to resolve the ambi-
guity. For instance, vision docs a poor job in scenes with
shadows. 50 a range sensor can be used because it does not
have such problems. In some cases, multiple sensor data can
be integrated in a way that can provide information other-
wise unavaitable, or diffienlt 1o obtain from any single type
of sensor. In an object recognition systeny, where a single
sensor might not be able to constrain the system to produce
a unique interpretation. mutltiple sensors can be employed
to introduce multiple position constraints which will reduce
the scarch space. Multiple sensors can be used to obtain
mntltiple views of the same scene, in this way a large part
of the envitonment. can be sensed, and the problem of o¢-
clusion can be deall with. Every sensor is sensitive Lo a
different. property of the environment; in order to sense nml-
tiple propertties, it is necessary to use multiple scnsors, The
s¥stem can be made fault tolerant by designing redundancy -
into the system. This means that a system using multiple
schisors 1hat sense a single property can be used. In case of
failure of any single sensor, the system will still be able to
funiction.

The addition of more sensors to the system gives rise to
more data which need to be processed and intetligently com-
bined. 1t is true that i one sensor provides a certain lovel
of performance, then obviously two sensors would be bet-
ter, and three would be even better; and with many more
sensors we should be able to build a system that is much
better than a system with just one sensor! The guestion is,
Is this really true? {Nakin 1977). Massaging a lot of inaceu-
rate data does not produce good data, it just requires a lot
of extra equipment and may even reduce the quality of the
output by introducing extra time delays and unwarranted
confidence [Fowler 1979]. When raw sensor measurements
are imprecise and noisy, they need to be modeled and char-
acterized. Methods need to be developed for determining
consistency of data, and fusion of consistent data. The pre-
cise operations involved in fusion depend on the level of data
used. The most simple case of fusion for a multi-sensor con-
figuration that records the same property of the environment
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is to combine the data using averaging. Here it is assumed
that nothing is known a priori about the sensors. Thus each
sensor’s measurement is equally likely, In the cases when
it is known that a particular sensor reading is more reliable
than the others, a weighted average can be be used instead.
Appropiiate weights can be assigned proportional to the re-
liability of the sensor. This simple heuristic method will
have problems when a large number of sensors are used and
sensor interaction is more complex. There are formal ap-
proaches involving probability distributions to model these
situations. Sensor fusion deals with the selection of a proper
model for each sensor, and identification of an appropriate
fusion method.

This paper deals with a current survey of research in the
multi-sensor fusion area. We have confined ourselves to the
papers related to vision, Al, and robotics. We are not aware
of any previous survey done on the muiti-sensor fusion topic,
except a summary paper by [Mitiche and Aggarwal 1986],
which summarizes their own group’s research in sensor in-
tegration. A workshop on Multisensor Integration in Man-
ufacturing was held in 1987 and a technical report by
[Henserson et al. 1987] summarizes the conclusions of this
workshop. Another workshop on Spatial Reasoning and
Multisensor Fusion in the same year was organized by AAAI
[KaK and Chen 1987]. A special issue of International Jour-
nal of Robotics and Avtomation, edited by Brady in De-
cember 1988 {Brady 1988] contained many papers on multi-

t

multl -sensor fusxon are: IEEE Transact.:ons on Automation
and Robotics and regularly scheduled conferences: Confer-
ence on Robotics and Autemation, Computer Vision and
Pattern Recognition, International Conference on Pattern
Recognition, International Joint Conference on Al.

‘The organization of the rest of the paper is as follows. In
the next section, we discuss some issues related to a multi-
sensor system. In particular, we outline various possible con-
figurations of a multi-sensor system, and describe a general
framework for fusion and integration systems using block di-
agrams. Section three is devoted to the description of com-
monly used sensors and a few specialized sensors. There ate
a few fusion strategies which have been used in various forms
in most of the papers surveyed. Therefore, in order to make

this paper self contained we have included some introdus-
LIS papor sCu CONLaINed wo nave INAUGed Some MIeGus

tory material on fusion strategies in section four. Finally,
section five deals with the survey of existing methods. We
have classified the papers into six categories: segmentation,
representation, shape, sensor modeling, autonomous robots,
and recognition.

2 Multisensor Systems

The span of possible multi-sensor systems can be de-
scribed by the product of three variables: ‘sensor, property,
and data, with two possible values, single or multiple, for
each variable. This yields a total of eight different config-
urations. For instance, the single sensor, single property,
single data configuration is an example of a system having
only one sensor (e.g., one visual image obtained by a video
camera). A single sensor, single property, multiple data is

the configuration in which a single sensor records a property
as a function of time, (e.g., a sequence of images describing a
dynamic scene). An instance of multiple sensor, single prop-
erty, single data configuration is a system with many range
finders employed for redundancy purposes. A multiple sen-
sor, multiple property, multiple data configuration is most
general and complex. An example of this configuration is an
autonomous robot with several sensors. All possible config-
urations considering three variables are enumerated in the
table shown in Figure 1. The first four rows in the table
iavolve only a single sensor, and are given here for the sake
of completeness, but those cases will not be discussed in this
paper.

There are several different methods for combining multi-
ple data sources. Some of them are deciding, guiding, aver-
aging, Bayesian siatistics, and infegration. Deciding is the
use of one of the data sources during a certain time of the
fusion process. Usually the decision as to which source to

‘use is based upon some confidence measures or the use of

the most dominant or more certain data. Averaging is the
combination of several data sources, possibly in a weighted
manner. The weights can be assigned based upon confidence
values. This type of fusion ensures that all sensors play a
role in the fusion process, but not all to the same degree.
Guiding is the use of one or more sensors to focus the atten-
tion of another sensor on some part of the scene. An example
of guiding is the use of intensity data to locate objects in a
e, and the use of a t. r to explore some of
the objects in more detail. Integrat.lon is the delegat:on of
vartous sensors to particular tasks. For instance, the inten-
sity image may be used to find objects, the range image can
then be used to find close objects, and then a tactile sensor
can be used to help locate and pick up the ¢lose objects for
further inspection. In this case, the data is not fused but is
used in succession to complete a task. Therefore, there in
ne redundancy in sensor measurements.

Approaches to sensor fusion ¢an be put into one general
framework as shown in Figure 2. In this Figure, the sen-
sors are shown by circles, and their outputs are denoted by
X1, X32,...,Xn. Corresponding to each sensor i, there is an
input transformation denoted by f;, which is shown by the
oval shape. The input transformation could be the ident.it.y
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input and output are the same. On the other hand, it could
be a simple operation like edge detection, or 2 more com-
plex task like object recognition, which will output a list
of possible interpretations of objects present in the scene.
‘The fusion is performed in the large rectangular block. We
have listed a number of possible fusion strategies which can
be used. The most simple fusion strategy will be the one
in which raw sensor measurements of the same property ob-
tained by multiple sensors are combined. For instance, focus
and stereo range data can be combined using Bayes’ rule. In
ancther case, the sonar and infra-red depth measurements
can be combined using simple if-then rules, or the range
and intensity edge maps can be fused by using the logical
and operation. On the other hand, a more complex fusion

gtnatamrr wicht 11co0 waiohtsd lasct_cntiarae fit 4 dotazmina
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an object’s location and orientation using maltiple sensor
measurements.
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Sensor | Property | Data Example ]
single single single single visual image
single single multiple | sequence of visual images
single multiple single multispectral image (color, etc.)
single multiple mmultiple | color image sequence
multiple | single single focus and stereo ranging
: {[Krotkov and Kories 1986])
multiple | single multiple | sonar and stereo data sequence
([Matthies and Elfes 1088])
, multiple | multiple single thermal and vision -
. {[Nandhakumar and Aggarwal 1987])
multiple | multiple multiple | range, vision, sonar, tactile sequences
([Giralt et al. 1985])
({[Ruokangas et al. 1986])

Figure 1: Multi-sensor configurations
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Figure 2: A Block diagram of Mullisensor Fusion

Guiding
Global Consistency
Verilication

Tigure 3: A Block diagram of Multisensor Integration

A general block diagram for multi-sensor integration is
shown in Figure 3. Multi-sensor integration is the use of
several sensors in a sequential manner to achieve a partic-
ular task. With integration, a particular sensor performs a
subtask or provides a patticular piece of information. The
next sensor may proceed by using any previous information
to perform its own tasks. In this way, each sensor is used
as an expert in its modality, but an overall consensus of all
of the sensors is not achieved. Therefore, there is no re-
dundancy in sensor measurements. For integration to work
properly, there must be some type of control which organizes
the flow of data from one sensor to the other. Integration is
a much simpler process than fusion since the controller uses
the data from only one sensor to guide the actions of the
other sensors. With fusion however, the data from different

must be some method to relate data points from one sensor
with corresponding data poinis from the other sensors in
the system. The registered data points will easily allow for
gathering of sensor information about one particular point
in the scene. The registration can be done rather casily
between some sensors, for instance intensity and range data
can be registered by using known fields of view, tilt, and pan
angles of the sensors. In case of different fields of view, image
data for one sensor may not have corresponding data for the
other sensor. The main problem we face in multi-sensor
systems, and the one we want to solve through registration,
is that sensors might provide data from different physical
parts of an object. For instance, consider using a taclile

sensors must usually be put into equivalent forms to allow
the fusion Lo occur. The benefit of fusion occurs because the
output is achieved by the consent of all of the sensors.

In order for data from multiple sensors to be fused, there

sensor and an intensity camera. A typical tactile sensor has
about 10 sensor elements per square inch. A video camera
has much higher resolution (though a lens may still reduce
the spatial resolution). The tactile sensor is also usually
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small in nature (perhaps 3 in. by 3in.). The camera can give
information about a much latger area. Thus the registration
of the two sensors is very limited because only a few points
have information from both sensors. Thus an obvious thing

to do is to use the intensity camera as an overall data source

and use the tactile sensor for detailed data.

3 Sensors

A sensor is a device that is used to retrieve information

about a particular property of the environment. There are
nearly as many kinds of sensors as there are properties. Ex-
isting sensors include a video camera, range finder, tactile
sensor, sonar, infra-red, etc.

The video camera gathers intensity valwes which corre-
spend to the light (of wavelength 400-700 nin) reflected from
a position in the scene being sensed. The intensity value isa
combination of many properties. The illumination, surface
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value being sensed. Thus, shadows, surface texture, or un-
even lighting can all affect very significantly the accuracy of
the image. The resolution of a video camera typically ranges
from 128 X 128 to 512 % 512 pixels. Since a video camera is
measuring the intensily of scene points, we use the following
terms interchangeably: video camera, vision, and intensity.

The laser range finder emits laser light of a certain fre-
quency and records the returned light. The light that is re-
turned is processed by a phase shifting calculation module.
The difference in phase shift between the retrieved and the
emitted light is proportional to the distance that the light
has traveled, However when the light travels longer than the
time for one wavelength, the results will be ambiguous since
the phase shift caleulator has no way to determine whether
ane or mote wavelengihs has passed. The range ambiguity
is dependent upon the type of laser being used. The value is
normally between 30 and 100 feet. Thus for objects farther
than 30 feet away, the distance found is incorrect. Many
laser range finders can also retrieve reflectance information
from the scene. This is simply found by measuring the am-
plitude of the light that is retrieved from the scene. The
reflectance information is similar to a video camera image
except that illumination and shadows do not play a role in
the image formation process. The laser range finder has the
advantage that it can be used in the dark. An example of an
existing laser range sensor is the Odetics 3-D mapper which
sends out light at a frequency of 820 nm, It can record a
resolution of 128 x 128 pixels with a minimuem distance mea-
surement of 1.5 ft and a maxinuem of 30.74 ft. The distance
is encoded in 8 bits to produce 256 different range values.
The ambiguity in distance occurs after 30.74 fi.

‘The tactile sensor is composed of an array of touch sen-
sots which measure the force applied to the individual lo-
cations when the sensor comes in contact with the object.
Many tactile sensors work by detecting changes in distance
between two plates of a capacitor as described in
[S.egel et al. 193{; Camcron el al. {988‘1 The change i Can
pacitance is proportional to the force applied to one plate of
the capacitor. If an array of force sensors is formed then a
force contact profile or image can be generated. The force

profile is useful in determining surface orientation and sut-
face characteristics such as holes. However, this sensor is
active, meaning that it must come in contact with the ob-
jects in the scene. Therefore, it is usually attached to a robot
arm which is programimed to make contact with an object.
The sonar sensor provides a single range value which indi-
cates the distance that an object lies from the sensor. Typi-
cally, a sonar sensor can provide a measuring span of from 1.0
ft. to 30.0 ft. with I inch resolution [Matthies and Elfes 193]
In the Polarcid sonar sensor {Flynn 1988), a sound ¢hirp of
1 ms duration of 56 pulses at four different frequencies is
transmitted. There are 8 pulses at 60 kHz, 8 pulses at 58
kHz, 16 puises at 52.5 kHz, and 24 puises at 49.1 kHz. The
tine of flight measurement begins with the rising edge of the
first pulse transmitted and ends with the detection of the
first echo. The sonar sensot has many disadvantages how.-
ever. Typically, the sonar sensor has a 40 degree beamwidth
angle which makes precise positioning very difficult. The
sensor also has the tendency to smooth out the surfaces of
ahiects. It nrovides the distanra of the stronsact reflostive

chjects. It provides the distance of the strongest reflective
ohject in the field of view.

The thermal sensor is similar to a video camera but in.
stead of measuring reflected visible light it measures infra.
red light. This sensor also has the advantage that it can be
used in the dark, but it normally depends on some type of
heat source such as the sun since the sensor measures heat
lost from the surface of objects. Thus this sénsor is not
very effective for indoor scenes, One type of infra-red sensor
is discussed in [Nandhakumar and Aggarwal 1987]. Ther.
mal sensors are sensitive to the thermal spectrum (Ipm to
t4um). However, most infra-red sensors concentrate on only
a small portion of that spectrum, (i.e., 3um to 5pm, for in-
stance}.

The infra-red distance sensor sends out an infra-red pulse

H Tooon podloobad Lol oo P .
which when veflectad back can be used to approximate the

distance. This is possible since the distance will be propor-
tional to the amplitude of the energy returned. However, it
can only detect distances from 10 to 15 ft, and some sur-
faces will absorb the signal which will distort the distance
readings.

=* [Orrock et al. 1983] present a new sensor which incorpo-
rates hoth vision and Tange sensors in one module, The vi-
sion sensor is a standard camera with a fixed focus lens that
is mounted inside the box. The range sensor, called ‘through
the camera lens” (YCL) sensor, is a multiple point sensor
that is similar to a fotusing mechanism of an SLR camera.
The scene light enters the box and is diverted to each of the
sensors by way of mirrors. The TCL consists of 24 pairs of
sensors which in a SLR camera will provide displaced mea-
surements when the camera is out of focus. However, since
the camera is provided with a fixed focus lens, the displaced
measurements wili provide range information, similar to dis-
patity in stereo algorithms. A shift caleulation algorithm is
used to convert displacement to actual range distance. Use-
ful range measurements can be obtaimed from 10 to 100 cm
with at worst a 3% error. This type of seusor is very useful
since both data sources ate in registzation with ane another.
This, however, sensor has one major drawback. The range
data suffers from the same problems as does the intensity
data, (i.e., it also suffers from tllumination problems such as
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shadows).

[Shekhar et al. 1986] present a centroid sensor which is
a 2:D contact scnsor. [ computes the conter of pressure
that oceurs on the sensor’s surface. The sensor consists of a
rubber pressure conductive layer that is sandwiched between
two layers of conductive ilm. The layer of Tabber provides
a resistance that varies based upon the pressure of force
exerted on the sensor. Therefore, current is induced in those
parts of the sensor where contact is made. The current can
be measured so that first order moments can be computed.
From the first order moments, center of pressure equations
are derived.

[Krotkov and Kories 1986] present two additional ways
that range data can be retrieved telatively cheaply. These
are by focus ranging and stereo ranging. Focus ranging is ac-
complished as follows: set the focal length of a vision camera
to its maximum, select a window in the image, focus the lens
on the window, determine the sharpness of focus by com-
puting the gradient magnitude of the image window, then
compute the distance by using the Gaussjan lens law, which
relates depth to focal length and depth of field of the lens,
and the focus movement. This type of ranging is accurate
1o between 1 and 3 meters. Stereo ranging 1s performed as
follows: set the focal lengths of two cameras to their min-
imum, capture both images, find interesting lines or points
in both images, compute disparity for the image pair, and
compute the distance by using triangulation. The disparity
is computed by nsing a predict and test algorithm. Thus the
ortginal prediction can be revised. But it docs makes corre-
spondence errors occasionally, This methed is also accurate
to within 1 to 3 meters. Both of these ranging methods
are passive, while the laser range finder is active and costs
much more. The focus ranging method, however, will not
return an instantaneous range value since each camera must
be focused while retrieving the value. Also both range data
sources provide very sparse data.

So far we have been talking about physical sensors. How-
ever, in our discussion not every sensor is a physical device.
Our concept of sensors is more general, and is similar to
the logical sensor used by [Henderson and Shilcrat 1984]. A
video camera is a physical device which can be used to cap-
ture a sequence of images in a given time. Using this se-
quence, optical flow can be computed. Now, we can talk
about an optlical flow sensor whose output is a displacement
vector at each pixel, where the displacement vectors are com-
puted using 2 sequence of frames.

4 Fusion Strategies

Each {usion approach is unique to some extent, however,
certain key fusion methods and their variations have been
employed by many authors, In this section, we will sumnia-
rize some commonly used {usion strategies. In section six,
we discuss current research that uscs these strategies. Fu-
sion methods can be classified broadly into two categories:
direct and indirect fusion. In methods related to direct (u-
sion, the raw sensor measurements are combined, while in
inditect methods a transformation of the sensor measure-
ments is fused. Before the sensor measurements can be

fused, whether directly or indirectly, their consistency has
to be checked, (discussed in section 5}. Baycsian theory has
traditionally been used to model uncertainty in many dis-
ciplines for some time, thus there exists a well developed
body of literature in this area. Therefore, a great number
of approaches surveyed use Bayesian statistics as a fusion
strategy. This will be discussed in subsection 4.1, Shafer-
Dempster theory is another formalism that is used to model
uncertainty. It has certain advaniages over Bayesian ap-
proaches. A few authors have also used the Shafer-Dempster
approach for fusion. We will summarize this method in sub-
section 4.2.

4.1 Bayesian Approaches

Bayestan statistics is very useful in combiring multiple

. sensor values singe sensor wicertainty can casily be incor-

porated. The state of the eavironment is decided based
upon sensor measurements, knowledge about the types of
states expected, as well as sensor uncertainty. New mea-
surements can change the probability of a state occurring.
A number of approaches surveyed in this paper make use of
maximum likelikood, a well known Bayesian approach, as a
fusion strategy. In this scction we will review some of the
basic concepts related to Bayesian approaches.

4.1.1 Direct Methods

The simpler forms of fusion employ raw sensor nteasure-
ments divectly. In this section, we will describe the max-
imum likelihood and Bayes’ law for direct fusion. Assume
that the sensor output is denoted by the vector X = {x;, za,
-..&n), and the object property (e.g., position, orientation,
etc.) being estimated is denoted by @. We will be using
two conditional probabilities: p(X[@) and p(©|X). p(X|9)
is the probability of sensor cutput being X given that the
object property is ©, and p(©|X) is the probability of ob-
ject property being © given that the sensor output is X. In
our case, p(X|9) can be computed from the sensor model,
while p{©]X) is the a posteriori probability which we want
to determine. These two probabilities are related by Bayes’
Law, which states:

_ pX1om(e)
pO1X} = %) (n

where p(X) and p(®) are the unconditional probabilities
of the sensor output ahd object property heing X and ©
tespectively.

Assume that in our system there are k sensors, which
give the following readings: ¥ = (X!, X%, X*). We
would dike to develop the hest estimate of the object prop-
eity © using these £ sensors readings. This can achieved by
using the likelihood estimate. In the likelihood estimate we
compute © suech that the following is maximized:

k
#xje) = T p(x"19) (2)

=1

It is usually easier to deal with the logarithm of the like-
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likood than the likelihood itself, because the product can be
changed to the sum, and the terms involving exponents can
be simplified. Let L{©) be the log-likelihood function:

k
L(®) = logp(X[®)=3 legp(X'10)  (3)

i=1

Assume that the readings from the sensors follow Gaus-
sian density functions. Then p(X!/©) is given by:
1
X8y = —p—p )
(2=)" "|CH™
1
sexp(-5 (X' - O G (X1 - @)

where € is the variance-covariance matrix, ¢ denotes the

transpose, and || denotes the determinant. Now, the ex-

pression for likelihood (equation 3) becomes:

1) = 3 lozplX'1®) ®)
=1

= 3 (~3leslemyic] ®)
i=1

-%(x‘ —e) X! -9)

* The best estimate & of © can be found by differentiat-
ing L with respect to ©, equating the result to zero, and
computing the value of &, as follows:

P
T ortx

F -

Tt

There are variations of equration 5 which have been used
in the literature, for instance [Luo et al. 1988} maximize:

6= (7

13
3 p(O1X") p(X") (8)
i=1

Since p(B|XNP(X") = p(X'|©) p(O), the difference be-
tween this and equation 5 is that the logarithm is not used,
and p(©) has been deleted. This results in more compli-
cated expression involving a transcendental equation which
is solved by an iterative scheme.

In the case when there are only two sensors in the system,
and ¢ach sensor measurement, X;, is a scalar, then the best
estimate from equation 7 will be:

5 (o) + (e D)2?
{o1%) + (027}

This equation shows the weighted average of two sensor
readings; the weight is inversely proportional to the stan-
dard deviation of each sensor. In some cases, Bayes’ law can
be used directly to fuse the data coming from one sensor at
multiple time instances, or the data from multiple sensors at
one time instance. [Matthies and Elfes 1988] use Qccupancy
grids to represent the space around a robot that is oceupied
by objecis so thai obstacie avoidance may oecur. The oc-
cupancy grid is a 2D array of cells that contains probability
values which denote the chance of the cell containing an ob-

ject or part of an object. The probability of a ¢ell being
occupied p{OCCIR), given sensor reading R, using Bayes
law is given by: .

POCCIR) = ©
P(RIOCC) p(OCC)
P(RIOCC) p(OCC) + p(RIEM P)p(EMP)
where p(OCC) and p(EM P) are g priori probabilities of 2

cell being occupied, and empty, respectively. This is modi-
fied for sequential updating based on multiple readings as:

POCC)Ry 1) = (10

PRx41|06GCYIP*(OCC)
F(Rx31|10CC) p*(OCCY+ p(Raya1 | EM P) P*(EMP)

whete p(OCC[Rry,) is the cell being occupied given & + 1
readings, p*{0CC), p*{EM P) are unconditional probabili-
ties of a cell being occupied, and empty respectively, based
on k readings.

4.1.2 Indirect Methods

The previous section dealt with the direct fusion of raw sen-
sor measurements for the multiple sensor, single property
configuration. In some cases, one sensor measurement can
be related to other sensor measurements by some known
transformation. This can happen in the multiple sensor,
multiple properties configuration. In these cases sensor mea-
surements can be fused indirectly. The work of

[Heeger and Hager 1988] is an example of indirect fusion.
They fuse optical fiow data and camera motion parameters
in order to obtain consistent object motion and depth in-
formation, and use it for segmenting the scene into mov-
ing and stationary objects. They develop a linear equa-
tion that relates image velocity (optical flow) to camera
motion. They consider the camera motion to be a vec-
tor D = (T2, Ty, T:, R, Sy, .}, and the optical flow to be
6= (u,v) where Ty, Ty, T are translations, and , 0y,
. are rotations. They can be related as follows:

[ ;‘ ] = A(z)B(2)D (11)

whete A(z) = % [g ; :Z ] '

-1 0 o ¢ -z ¥
B)=| 0 -1 ¢ 2 0 =E |,
—vZ £Z
0 0 -1 == & ¢
and (z,y,2) are image coordinates, Z is the depth. Let
p = 1/z, C(p) = A(1/p)B(1/p). Now, optical flow can be
expressed as: .
6 = A(1/p}B(1/P)D (12)

The joint likelihood for optical flow ©, and depth D as-
suming Gaussian distributions becomes:

logl(B,p) = 3(b-D)c3'(D-D) (13)
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+3(6-8)'¢5'(8 - &)
- %(b _B)cgi(b - b (14)
+%(é —cmB)'c3'® - cpb)

where Cg', and Cp! are variance-covariance matrices. They
solve the above expression for [ with some fixed p, then they
compute the Mahaianobis distance, which is used for consis-
tency checking. The actual vaiue of p is found by numerically
minimizing the Mahalanobis distance.

In the model based system where the object model (in
terms of 3-D vectors) and the sensor locations are known,
unknown translation and rotation parameters of the object
with respect to ihe sensors can be computed by fusing the
sensor readings. [Shekhar et al. 1988][Shekhar et al. 1986)
use a weighted least squares fit to fuse various sensor read-
ings. Assume that the kth object point is denoted by vector
pr in the object coordinate system. If the object can 1otate
and translate, then its coordinates Py in the sensor coordi-
nate system are given by:

Pr=Rp+h

where R is the rotation mattix, and h is the translation
vector. Our aim is to find R and h which are consistent
with several sensor readings. Shekhar ef ol. treat translation
and rotation separately. For instance, for computing & they
consider the following. For any distance measurement D;
along a direction n;, there is a distance d; in the model
computed along n;. These two measurements are related as
follows:

Di = di + nfh (15)
nth = D;—d; (16)

For multiple measurements the above equation becomes;
Ch=d

where C = [ny,n2,...,1,)°, d = [d1,dz, ..., da)". Now, in-
troducing the weights we get:

wpCh = wpd

where the weights w, are the 8d? (expected errors in dis-
tance}. This equation is solved using the standard least
squares fit with psendo inverse method,

{Durrant-Whyte 1986}[Durtant-Whyte 1988} considers the
problem of consistent updating and propagation in a mul-
tiple sensor environment. Each object in a system is rep-
resented by a six dimensional description, vector, consisting
of information about the location and orientation of the ob-
Jject. Using description vectors, the equivalent homogeneous
transformation relating the description vector of one object
to that of another object is computed. For instance, in the
case of three objects, let T} relate the coordinate frame of
object-1 with object-2, T relates the coordinate frame of
object-2 with object-3, and T3 relates the coordinate frame

of object-3 with object-1. If all object measurements are con-
sistent then 17375 = I, where [ is the identity transforma-
tion. Let us assume that in the beginning the measurements
are consistent, that is 75Ty = I. Assume that a new mea-
surement is made about object-1, which affects a change in
T, so that T] = T} + 6T Now, Ti'T2T3 # I. Therefore, we
need to find new T3, TY to achjeve T{T4T; = I. In general,
this problem involves a set of non-linear matrix equations.
Durrant-Whyte uses-differential transforms to approximate
the consistency conditions by a set of linear matrix equa-
tions. He finds F, the vector of diagonal change-matrices,
resulting from clhianges due to an update, of transform 7} by
minimizing the quadratic objective function I = § ETQ"' E,
where §2 is a diagonal matrix of the variance-covariance ma-
trices representing the uncertainty in each relation in the
world model.

4.2 Dempster-Shafer Approaches

In Dempster theory the probabiiity is assigned to propo-
sitions, (i.e., to subsets of a frame of discernment ©). This
is a major departure from the Bayesian formalism in which
probability masses can be assigned to only singleton subsets.
When a source of evidence assigns probability masses to the
propositions represented by subsets of ©, the resulting func-
tion is called a basic probability assignment (bpa). Formally,
a bpa is a function m : 2% == [0, 1] where 0.0 € m < 1.0,
m(®) =0, 3, .o m(X) = 1. Dempster’s rule of combining
states that two bpa’s, m; and ma, corresponding to two in-
dependent sources of evidence, may be combined to yield a
new bpa m:

m{(X)=K Z m (X hma{Xs) {17
XinXz=Xx
where
K'=1- Z m (X )ma(Xa). (18}
X Xa=d

This combination is termed the orthogonal sum. For each
sensor, a mass distribution is formed which divides the input
data into portions that provide belief for different proposi-
tions. Thus the sum of all masses which contribute to the
belief for a proposition X will be denoted by m(X). If each
mass function from a sensor is thought of as a 1-D line,
then two mass functions will become a 2-D box. Thus we
can compute the orthogenal sum by an intersection of the
components of the mass functions to find the total belief
attributed to a proposition by both sensors. With three
sensors, another dimension is added to the box to form a
cube.

The Shafer theory is based upon an interval of uncer-
tainty, [5(A),p(A)]. Here s(A) denotes the support for a propo-
sttion A being true and p(A) is the plausibility of proposition
A. The interval between p(A) and s(A) denotes the uncer-
tainty about proposition A. H the uncertainty is zero then
we simply have a Bayesian approach since the support for
the proposition A is equal to the maximum likelihood. Sup-
port may be interpreted as the total positive effect a body of
evidence has on a proposition, while plausibility represents
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the total extent to which a body of evidence fails to refute
the proposition. Suppori for a proposttion A is the total
mass ascribed to A and to its subsets, the plausibility of A
is one minus the sum of the mass assigned to =4 , the uncer-
tainty of A is equal to the mass remaining. More formally,
S(A) = 34, ca ), P(A)=1-S(-4).

The Dempster-Shafer method is different from Bayesian
approaches since an interval of unceriainty is used, while a
Bayesian approach uses only one value which represents the
probability of a proposition being true. The Bayesian ap-
proach also has difficulty in maintaining consistency when
propositions are related. This is the case since many Bayesian
approaches require independent measurements about the en-
vironment. Bayesian methods zlso require more complete
information since a single point value must he computed.
While the Dempster-Shafer method allows only an interval
based upon the uncertainty to be computed.

However, the Dempster-Shafer appreach cannot be used
directly if measurcments from different sensors are not in-
dependent. Thus a new framewark can be developed which

uses the intersection of the two measurements, Xy and X,.

m(Xy=K 3, INT(QX N Xy (X)) ma(Xs)
XinXa=X

and

MAX, AMIN{m (X, (X3)))
where INT{X; N X2) = gy ,[\.11:1[.\ (.:s,((ma,() M]A':’(m:(A:))]

4.3 Consistency Check

Before sensor measurements can be combined, we have to
make sure that the measurements represent the same physi-
cal entity. Therefore, we need to check consistency of sensor
measurements. The Makalanobis distance, T, is very useful
for determining which data shoul@ be fused. It is defined as:

= -(x1 X2)'C7Y Xy - Xa) {19)

where X, and X are two sensor measurements, and C is
the sum of variance-covatiance matrices related to the two
sensors. The minimal ‘distance’ will indicate a consistency
Belween the twe measurements. The Mahalanobis distance
will be larger when two measuremnents are very inconsistent
and it will decrease when uncertainty becomes less.

[Krotkov and Kories 1986] use Mahalanobis distance as
2 consistency test for a system with two sensors; the reading
from each sensor is a scalar denoted by 2!, z2. The above
equation (cquation 17) simptifies to:

(2! — 2%y

T= =
Vot 4+ oa*

(20)

where o) and o are the standard deviations of sensor mea-
cnrnmonte =] and w2 TET 2 T auhoace T e gamna shoactiald
SUCEHICHS £ A 7. & X 2o, WGETE .Lo, is some LOTesnGIa,
then the sensor measurements are consistent.

[Luo et al. 1988) use probability distances d;;, and dy; as

the consistency check between sensors ¢ and j.

di = | j ™ Pi(ales) P(zi)dz| (2n
di=t [ Pitelen)Pites)i (22)

where P;, and P; are a priori probabilities related to sen-
sors # and j, and Pi{z|x;), and Pj(ziz;), are the conditional
probabilities.

5 Survey of Existing Methods

This section surveys papers dealing with multi-sensor fu-
sion and other related topics. We have attempted to classify
the papers into six broad categories: segmentation, repre-
sentation, 3-I) shape, sensor modeling, avtonomous robots,
and recognition. This classification, however, is not striet;
there might be some papers which belong to more than one
category. For each group of papers, we have included a sum-
mary table listing the authors, sensors used, and fusion type
cmployed in each paper in that pariicular category. The
largest group of papers deals with segmentation, and the
smallest group of papers discusses object recognition. Due
to the fact that segmentation is the earliest perception task,
and involves lower level processing, fusion at that level is
simpler, in general. Object recognition is the most sophisti-
cated task, and involves fusion at the feature level.

5.1 Segmentation

Segmentation is one of the most basic low-level processes
in computer vision. There are two types of segmentation:
region-based and edge-based. In the region based segmenta-
tion, an attempt is made to group pixels in an image based
on their similarity to one another. The stmilarily is usuaily
based on the raw pixel values. In edge-based segmentation,
the boundaries of objects are tdentified by locating pixels
where the change in pixel values is high. If segmentation’is
done accurately then each region should correspond to one
object or one area of interest in the image. The segmented
image cin then be used for object recognition or other vision
processes. Several multi-sensor fusion approaches which re-
sult in segmentation will be discussed. The majority of the
papers deal with segmentation using range and intensity im-
ages. This is due to the fact that range and intensily im-
ages are readily available in a registered form from a laser
range finder or a structured light sensor. Fusion is performed
mestly at a lower level using pixel values and their distribu-
tions. Heuristics like deciding, guiding, and filling in are
used. The use of other sensors like thermal with vision has
been limited, since a thermal sensor would mostly be useful
for scenes coniaining objects with large temperature varia-
tions. Also, a thermal sensor does not provide direct 3-D
inforimation like a range sensor does. Moreover, modeling of
thermal images is more complex than it is with range images.
The combination of contact sensors like tactile with vision at

the lower leval far sermentation nurnoses ic not nractical ow-
the iower level lor sagmentation purposes is not practical ow

ing to large resolution differences. Segmentation or labeling
has also been done at the feature level using intensity and
light striping sensors, and surface orientation estimates ob-
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[_Anthors | Sensor Data | Fusion Type
Duda ¢t al. 1979] range - vision selection
IMackett and Shah 1958, llackett and Shah 1989] | range - vision deciding
Wong and Hayrapetian 1082] range - vision registration
Zuk et al. 1985] range - vision rejection of data
Gil ct al. 1983] range - vision and
Nandhakumar and Aggarwal 1987 thermal - vision heat flux - surface orientation
Mitiche 1984] stereo range - motion | righd body theorem
Hu and Stockman 1987] light slripes - vision rules
Moerdler and Kender 1987] shape from texture Hough transform
Liuncan ¢t al. 1987 - dectding

Figure 4: Approaches Lo segmentation

tained by multiple shape from texture algorithms. The first
of such papers [Moerdler and Kender 1987] uses preduction
rules for combining Lo sensol outputs, and Lie second uses
a Hough-like transformation to consolidate various orienta-
tion constraints.

[Duda et al. 1979] perforin segmentation by locating pla-
nar surfaces with the use of registered refleclance and range
data. The major horizontal and vertical surfaces are found
by using the range data. A histogram scheme is used to find
the horizental surfaces and 2 Hough transform iz nsed to
find the vertical surfaces. Any remaining surfaces are found
by using histograms of intensity that contain data only from
the, as yet, unassigned pixels. This method of segmentation
has problems when curved surfaces are added to the scene,
since the Hough transform method used is sensitive only to
vertical planar surfaces and the histogram scheme used is
sensitive only to horizontal surfaces. This method uses the
range data extensively, but uses the reflectance data only to
find non-vertical and non-horizontal planar surfaces.

{Hackett and Shah 1988][Hackett and Shah 1989] use reg-
istered range and intensity data in order to segment a scene.
A histogram for cach data source is found and the most sig-
nificant peak from all of the histograms is extracted. The
valley points of the peak are used to segment the scene. The
process will repoat after new histograms are ¢ale il
no stgmﬁcant peaks are found. In this way a global segmen-
tation is achteved. The segmented image is then passed to
2 local region merging, process where tegions are merged i€
the boundary between two regions is weak. In the intensity
images, weakness is defined by the sum of the gradient of
pixels along the boundary. In the range image, weakness is
the quantitative measure of jump boundary between two re-
gions. The merging continues until ail boundaries are strong.
This method can be used with other sensors as long as meth-
ods exist that allow the extraction of boundary strength.

[Wong and Hayrapetian 1982] use range data to guide
the extraction of objects in the intensity image. A method
of transforming sensor location to location in 3-D space is
also presented. The method may be applicable to registering
two images from different sencors. A 3-D array fz, y,z) =+
is formed where (z, y) are intensity image coordinates, z is
the distance found in the registered range image, and i is the
intensity at {x,y}. A histogram of the range data is used to
select n thresholds. For each threshold, the array f{z,y,z)

lated nr

is partitioned into n arrays, Thus, in essence, the range data
is used to partition the array based upon the distance of ob-
Jects (feaiures) in ihe original data. It is then unciear how
segmentation proceeds. It is possible that each of the » par-
titions can be segmented by normal intensity segmentation
methods. However the purpose of such a segmentation is
unclear since no results are shown,

[Zuk et al. 1985] use a range and reflectance sensor to
segment the road from non-road regions, so that navigation
can oceur. The fact that roads tend to have asmoother tex-
ture than the surrounding environment does is used. Range
pixels are rejected where the corresponding reflectance value
is very small. Small reflectance values usually indicate that
the range data cannot be trusted. There is no real sensor fu-
sion occurring, but the reflectance information is used only
to neglect inaccurate range pixels. The texture is then mea-
sured on each scan line of the revised range image, Thresh-
olds aré cliosen wihich separate weak texiures, medium iex-
tures, and strong textures from one another. Another algo-
rithm is used to produce a new image that has connected
edges between smooth and rough areas in the image. These
edge points define areas where accessible paths exist in the
seene.

[Gil et al. 1983] use vision and range sensors to segment
a scene. Fach image is converted into an edge map rep-
resentation. For finding edges in the intensity image, the
Kirsch edge operator with non-maximal suppression is used.
Edges in the range image are found by computing the engle
of curvature and marking areas of large curvature as range
edges. The edge maps for the two images may not be regis-
tered even though the original images were registered. This
is true since each image needs different edge finding algo-
rithms which cause the edge pixel to occur on either side of
the actual edge. The two edge maps are fused as follows:
each pixel in the intensity image is AN DVed with a2 k by
k neighborhood of the corresponding pixel in the range im-
age. This method is considered a local AN D operation. The
problem with this type of segmentation is that a small gap
in the edge boundary will cause two regions to flow or meit
together.

[Nandhakumar and Aggarwal 1987) use thermal (infra-
red) and intensity data to estimate surface heat fluxes which
can be used in segmentation of outdoor scenes. The infra-red
value ¢gbtained at the sensor is dependent upon an object’s
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surface femperature as well as the surface emissivity which
‘is shown to be fairly constant for outdoor scene objects.
Other small contributions to the infra-red value are from
solar radiation and from infra-red reflections from other ob-
jects. Objecis thal are present in normaij outdoor scenes
are examined for conductive heal flures that emanate from
their surfaces, These heat fluxes are estimates of average
heat flux for a type of object. The intensity image is used
to compute the solar absorptivity and the difference in angle
between the projection of the surface normal to the heat or
light source. A calibration is performed on the camera to
yield the surface norinal angle for cach region (pixel) in the
intensity image. It is assumed that the surface orientation
for each pixel is known. This is 2 major restriction unless
sotne way to compute or determine orieniation is known.
The solar absorptivity and surface normal angles are used
to compute the amount of heat absorbed by the surface of
an object. The ratio of heat conducted from the surface into
the object to the heat absorbed by the surface is computed
for each pixel. It is shown that this value varies widely for
cbjects in outdoor scenes. This ratio is used to directly seg-
meni the scene. However, this value is incalculable for areas
where shadows occur in the scene. In other words, without a
significant toss of heat from a surface the segmentation will
not work. For areas of the scene where there are errors, an
alternate segmentation method must be used.

[Mitiche 1984] combines stereo range data and optical
flow to determine three dimensional motion, and segments
the objects based on their motion. The fusion is accom-
plished by constraining the problem to rigid body objects.
The 3-D motion of scene points is determined from 2-D
optical flow, correspondence (registration) parameters, and
depth information. This takes the form of relating velocity
of two points in separate binccular images. If the corre-
spondence between these points and all camera parametets
are known then the depth information can be directly ob-
tained. The rigid body theorem, which directly relates opti-
cal flow and depth information, is used as a test for rigidity.
The locations where the theorem is not satisfied signify the
boundary between objects with different motions. Hence,
this simple technique is used to segment the scene. By ex-

faw b Aldod
ample, it is shown that this method is better at obtai

£
depth information and segmentation than by using binocular
vision only.

[Hu and Stockman 1987) fuse intensity data with sparse
3-D information obtained from a light steiping sensor. The
intensity image is found by turning off the light striping pro-
jector, thus the two data sources are in registration with each
other. Since the 3-D data is sparse, the inteunsity informa-
tion is used to fill in where 3-I) information is unavailable.
They used-rules based upon the stripe pattern and contour
type found. These rules return the type of surface present
at the contour and label for the contour. The surfaces can
be convex, concave. saddle, etc. and the contour types are

"defined as extremrum, blade, fold, shadow, and mark. The
image contour is found by performing edge detection on the

. The triggering of rules is simply a segmenta-

tton or labclmg process. For instance one of the rules used
is: If two regions meet at a contour and the stripes contin-
uously cross the contour (stripes are end-to-end connected

at, the contour) but the normals are discontinuous, then the
contour is a fold. Tt is possible that a contour label can-
not be determined uniquely, (i.e., an ambiguity exists). For
example, an ambiguity exists in determining whether a con-
tour is a jump (blade} boundary or a roof {fold) boundary.
To resolve ambiguity, a relaxation procedure can be uvsed.
Both 3-D and intensity data have been used here to reduce
the ambiguity that exists so that less complex relaxation
labeling is needed.

[Moecrdler and Kender 1987] describe a method for in-
tegrating surface orientations derived from various shape-
from-texture algorithms and use it for surface separation.
The fusion process is not one of fusing data from different
sources but fusion of output from different algorithms work-
ing on the same image. Many of the shape from texture
algorithms provide inconsistent or incorrect orientation in-
formation because of noisy input images or bad algorithms.
Each shape from texture output is a texel patch with a list
of orientation constraints and the expected aceuracy of the
constraints on the patches. The expected accuracy is depen-
dent on the algorithm that returned the texel patch. The
orientation constraints are mapped to points on a Gaussian
sphere. Each constraint is assigned a circle on the surface
of the sphete. Each of two consiraints constructs two cir-
cles that overlap to produce two intersection points. One
of which is the orientation of the visible surface patch, and
the other intersection is the invisible patch and is not used.
All orientation constraints for each texel are consolidated in
the single most likely orientation by a Hough like transfor-
mation. This methad has problems with shadows, mostly
because the shape from texture algorithms are unable to
correctly discern the shadows from image objects.

[Dunean et al. 1987) use the sensor that provides the best
data for segmenting a particular part of the image. A learn-
ing aulomaia is presented that allows for rewarding and pe-

‘nalizing of the use of certain sensors. If the segmentation

is proceeding well with a particular sensor then then seg-
mentation is allowed to continue, Otherwise, the sensor is
penalized and will most likely relinquish control to another
sensor. Since it is assumed that the images are registered,
there is no need to reorganize the segimentation when sensors
are switched.

5.2 Representation

A number of papers deal with the building of representa-
tions of objects and space by using multiple sensors. Repre-
sentation techniques include octree, occupancy grid, spheri-
cal octree, 3-D position and orientation vectors, tactile and
other visual features. An octree is a hierarchical representa-
tion of space, in which a cube of space is decomposed into
eight equal volumes. Each volume (octant) may be split if
it is not homogeneous, giving rise to a tree representing the
wotkspace. Homtogeneous nodes in the tree, called leaves,
may represent empty space, where it is known that no ob-
Jject exists. The spatial representation is useful in computing
free paths for trarprrnrv ana!\.S!s and for ansuenng ques-
tions about the ndenhtlﬁ of objects or the features in given
locations. A spherical octree structure is a generalization
of the rectangular octree structure, This data structure di-
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Authors | Sensor Data

Fusion Type

Kent et al. 1986)

multiple visnal views | least squares

Shekhar et al, 1986] tactile - centroid weighted least squares
Matthies and Elfes 1988] | sonar - stereo range Bayes law

Stansheld 1988}

stereo - tactile guiding

Crowley 1986]

multiple range sensors | abstract

Chen 1987)

multiple visual views spherical oclree

Figure 5: Representation methods

vides a solid sector or the whole spherical shell in the world
space into eight octants, There is the initial radial distance
from the viewing position which limits the universe to a solid
sector or the whole spherical shell, This representation is ro-
tation invariant. The occupancy grid is a 2-D array of cells
that contains ptobability values which denote the chance of
the cell containing an object or part of an object. If a value
in the grid is high then an object is probably occupying that
space.

A simple method for fusion of representations obtained
from multiple sensors is to use Bayes law directly, as is
done by (Matthies and Elfes 1988). Two papers use the least
squares [Kent el al, 1930), and weighted Yeast square tech-
niques [Shekhar et al. 1988 for fusion. Transformations are
defined by relating the sensor outputs with object models,
and the least squares fit is used to estimate the unknown
paranteters,

[Kent et al. 1986] build a representation from fusion of
multiple views. They consider a robot operating in a con-
strained environment (e.g., a metal working factory cell). An
outside knowledge base supplies CAD descriptions of objects
to be expected in the world. The system uses this informa-
tion to build an internal representation which consists of an
octree to hold information about the environiment’s volume
and a fealure based representation to hold recognition in-
formation about the volumes. Each octree volume contains
2 link to feature based information about that particular
volume. In the operational mode, the system attempts to
register the internal representation with the world. This is
done by predicting features from the internal representation
which are expected to be present in the scene. The predicted
features are matched with the actual features present in the
image. This information is used in a least squares technique
to register models with features found in the scene, resulting
in updated position and orientation information about each
object. This information is then used to update the octyee
representation. The final octree can then be used to allow
for robot path planning and for computing exact object lo-
cation in 3-D space. The systern s also able to deal with the
unexpected objects. The 3-D information related to these
objects is obtained from multiple views of the same object
by sensor motion.

[Chen 1987} presents a spherical octree model that allows
sensor data to be added to the octree over time. The octree
contains information about landmarks and obstacles in the
environment. As a new viewing position occurs, a new po-
sition in the octree is modified, thus fusion is accomplished.
As more data is fused a better path can be found. The spher-

ical octree is very useful for looking at a 360 degree field of
view around the moving robot. A good path of navigation
can be found by intersecting a cone of base diameter equal
to the diameter of the robot with a portion of the spherical
octree, H no objects are present in the intersection then a
obstacle-free path exists.

[Shekhar et al. 1986, Shekhar et al. 1988] present a
method for matching the orientation and position of objects
in the scene with objects in a database using multiple sen-
sors. There are six degrees of frecdom (rotations and transta-
tions in three dimensions) between the object model and the
scene object that need to be determined. Each sensor pro-
vides a measurement and an etror tolerance that determines
the possible error present. An estimate of orientation is ob-
tained by taking several sensor measurements of ver
by computing an error vector. The magnitudes of the error
vector are used as the weights of a weighted least squares
method. The position error is also solved by a weighted
least squares method by considering distance measurements
taken from the sensors. Fusion occurs in the weighted least
squares method. Since all sensor measurentents are used
to constrain the orientation and position parameters, sen-
sor measurements thai are more reliable will be assigned
a higher weight. The authors chose to use a tactile array
and two centroid sensors in their experiments, All sensors
arc mounted to a robot gripper, where the position of the
sensors is known, However, the anthors state that exae! lo-
cation of objects that come in contact with the sensors is not
possible since ntechanical errors are present and errors occur
when commanding the gripper. The tactile sensar pravides
endpoints of tactile contact edges and two centroid sensors
provide two vertex points each.

[Matthies and Elfes 1988] use occupancy grids to repre-
sent the space around a robot that is occupied by objects so
that obstacle avoidance may occur. The occupancy grid is
a 2D array of cells that contains probability values which
denote the chance of the cell containing an object or part
of an object. H a value in the grid is high then an object
is probably occupying that space. In the current implemen-
tation sonar and stereo sensors are used. For each sensor,
a separate occupancy grid is used; the two grids are com-
obined to form an overall world grid. When new information
is gathered, each cell in the grid is updated by combining
the new value with previous values using Bayes law. Note

map is built by wsing the occupancy grid of cell size from
0.5 ft. to 1.0 ft. depending on the expected world size. Two
sterco cameras are also used to provide sparse range data.
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‘The cameras are nearly in registration with the sonar sen-
sors. Stereo correspondence is achieved by using the Ohta-
Kanade dynamic programming stereo algorithm. The two
occupancy grids are are fused by using the same Bayesian
approach.

{Stansfield 1988] uses a vision and # tactile sensor in or-
der to generate object models. The vision sensor first pro-
vides orientation and position information, and the tactile
sensor provides feedback as to the manipulatior aspects of
the objects. The visual system is composed of two binog
ular cameras. The edges are found in both images and a
simple scan-line pixel matching algorithm is used for corre-
spondence in order to determine sparse 3-D data. At the
same time a 2-D region-based segmentation is performed
which uses similar gray seales to group pixels. The mforma-
tion obtained from both the 2-D segmentation and 3-D edge
information is used to eliminate edges which are not part
of the region edges. This reduces the error and effects of
noise. An extensive set of tactile features are then extracted
by using specia]ly coded robot a]gorithms These features
are rouym&ss. e;a.sucuy, &ontours, eugw and corners and
are determined by algorithm experts. For example, compli-
ance is the amount of movement of a surface when a force
is applied to it. The algorithm expert works by exerting a
force F on the surface and by recording the initial position
of the sensor. The robot then exerts a force 2F and again
records the position. The linear distance between the two
measurements is termed the compliance. The author uses
the visual information to gather rough orientation and posi-
tion parameters about the objects so that the tactile sensor
can be guided to that location. The visual data can provide
information as to how the tactlle sensor should explore the
surfaces so as to gather the most knowledge. For instance, a
series of algorithm experts determine the rouglh shape prop-
erties and the tactile experts can deterimine surface proper-
ties and more precise shape descriptions. The final cutput
of this system is a hierarchical shape representation of the
object which can also include other features such as elastic-
ity, roughness, etc. These extra features may aid in object
recognition. The tactile sensor can only determine features
for the points on the surface which are visible to the camera
since vision must guide the tactile sensor. Perhaps this can
be remedied by using a second camera at ancther viewpoint,
but this has not been explored by the author.

[Crowley 1986] uses several range sensors in order to con-
struct a 3-D-surface model of the objects encountered. The
models are defined by 3-D generalized surface patches and
generalized contours. The generalized surface patch is de-
fined by position, surface normal, size, velocity of patch, and
a list of bounding contours. The uncertainty in surface nor-
mal and confidence in the patch is also inciuded. When two
patches intersect, a generalized contour (boundary line) is
found. A confidence is defined as the ratio of the number of
supporting votes to the total number of votes about a patch.
This confidence can be updated by considering the possible
errors in the boundary line between patches, Fhe bound-
ary line includes a cylinder of uncertainty around it which
is based upon the error in intersection of the patches that
form the contour. The patches and contours and their asso-
ciated uncertainties are updated by using new sensor data.

First, the patches and contours are computed, then the un-
certainties are refined by using the new data that is shown
to be consistent. Data whicl is contradictory is used to in-
crease the uncertainty in the existing patches. Any patches
or contours whose uncertainty is very high will be temoved.

5.3 3-D Shape

The papers in this category deal with methods for com-
puting the depth information by using multiple sensors.
{Krotkov and Kories 1986] fuse focus and stereo ranging at
the lowest level using a Bayesian approach, Thelr method
is composed of explicit steps of consistency checking and
verification of one sensor output with the other one. In
the remaining papers the data is fused at the intermediate’
level. . For instance, [Heeger and Hager 1988] combine opti-
cal flow and camera motion parameters to compule depth
using maximum likelihood, While [Shaw et al. 1988] fuse
microwave radar data and surface orientation obtained from
a visual image, and [Wang and Aggarwal 1987} combine sur-
face information obtained from QCl‘.Juuu‘lg contour and Eiguu
striping data.

[Heeger and Hager 1988] fuse optical flow data and cam-
era motion parameters in order to obtaib consistent object
metion and depth information. They develop a linear equa-
tion that relates image velocity (optical flow) to camera mo-
tion., Thus the optical Bow for a pixel is given by a single
point and the ecamera motion provides a line in the opti-
cal flow space. The slope of the line will provide distance
information for that measurement. If the point is on the
line then consistency is achieved. However, this is rarely the
case because of moving objects in the scene. Both sensors
are modcled by contaminated Gaussitan noise distributions,
which assumes Lhat noise corrupts the measurements. The

meztmum likelihood method is thenr used to fuse both sen-
1

anr measuraments. From the camera narameters the ont
sor measurements. rrom LNe camera parameters, Lhe opt

flow estimate can be derived and thus the motion distance
is computed. The Mahalanobis distance between measure-
ments 15 often used to decide if the fused value is consistent
with other measurements. In this case, the Mahalanobis
distance is minimized in order to determine the most likely
estimate.

[Henserson et al. 1988] apply a logical sensor system (see
Sensor Modeling subsection) along with specialized algo-
rithms to locate 3-D structure in the scene. The experiments
are performed by using several views of a vision camera. The
authors assume that the ¢combination of several views from
the same sensor is a form of multi-sensor fusion. They dis-
cuss several ways to determine 3-D structure, For example,
if two lines are known to be perpendicular, as is the case
with many cosners, ihen oniy one camera view with three
perpendicular lines and one other line is necessary to directly
solve for 3-D structure. However, for more complicated cases
such as nob-perpendicular lines, up to three views of lines
are necessary to provide encugh information to solve for 3-
D structure. It is assumed that angular invariance holds,
(i.e., angles between 3-I lines (edges) of rigid objects do not
change]. The interpretation of 3-D data is encoded, as al-
gorithms, into specialized structures (logical sensors) which
can bLe fired depending upon the required actions. These
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Authors Scnsor Data Fusion Type ]
M Heeger and Hager 1988] camera motion - optical flow maximum likelihood

Henderson and Shilerat 1984] | multiple visual views anguiar invariance

Henderson and Iansen $986)

Shaw et al. 128§] microwave radar - vision guiding, minimization

Krotkov and Kories 1986] focus ranging - sterec ranging verificatton

Wang and Aggarwal 1987 light striping - occluding contours | rules

Figure 6: Methods for determining 3D shape information

structures use lincar equations to solve several simultane.
ous equations; each of which provides one unknown. The
method of propagation is also used. This allows the use of
known line and feature configurations for use in determin-
ing orientation for other lines in the images. For instance, if
there are two lines in the scene and the orientation of one of
them is known, then three views ate necessary to determine
the orientation of the other line.

[Shaw et ab. 1988] use a microwave radar system which
finds range and Radar Cross Sections {RCS) and a vision
sensor for robots in space. The visual data helps to convert
the RCS information into spatial data. Thus fusion is used
to guide the conversion of RCS data into a complete sur-
face model. For the visual images, the occluding contours
are extracted from a thresholded image and sparse surface
normals ate extracted by using photometric stereo or shape
from shading. For the microwave image, a range estimate
and polarized radar scattering cross sections are found. A
minimization procedure is then used to minimize the error
between the predicted and sensed RCS’s. The output ex-
pected is a more accurate shape deseription.

[Krotkov and Kories 1986} use focus and sterco ranging
to find the distance of objects in the workspace. An uncer-
tainty measure is derived for each sensor which is a function
of the actual range ¥alue. Both of these ranging methods
have greater errors for large distances. A maximum like-
lihood method is used to determine the proper range value
by using two independently computed range values and their
variances. Generally, since focus ranging has a higher accu-
racy, a higher weight is applied for all focus ranging data.
After the stereo data is retrieved, the focus ranger attempts
to verify the range value returned by the stereo. A similar
procedure is applied to verify the focus ranging values. If
the two measurements prove to be inconsistent then they -
are not used in the fusion stage. Consistency is defined as:
|%I < T where Z, and Z; are the two range mea-
surements, oy and oz are the standard deviations of the
measurements and T is some consistency threshold. This
method will probably not work in “real-time” since each
camera must be focused while the range value is retrieved.
Also both range data sources provide very sparse data which
may not be acceptable for very detailed analysis, However,
for verification of sensor data, registration may not be nec-
essary since both sensors are only able to extraci very broad
feature range values.

[Wang and Aggarwal 1987] determine surface descriptions
by using occluding contours and a structured light approach.
A transparent regular grid is placed in front of the light

source so that the grid is cast upon the scene. This grid can
be used to determine sparse 3-D information about the scene
objects. Multiple views are taken in otder to get complete
3-D data about the objects. Back projection - calculation of
camera parameters and viewpoint {rom known scene points
and information - is used to construct bounding volumes
from intersecting views. The 3-D structures obtained from
occluding contours and striped coded images are fused us-
ing the following qualitative rules: {1) H the stripe coded
image is uravailable in a particular direction then the struc-
ture predicted by the occluding contour is used, {2) If only
one partial surface structure (striped light) and one or more
contour generating lines are intersected in the same direc-
tion then structure predicted by the the stripe coded in-
age is chosen, (3) If more than one partial surface structures
(striped light) is intersected by the radial sampling line, then
the average of partial surface structure is used.

5.4 Sensor Modeling

Modeling of sensor characteristics is very important for
a multi-sensor fusion system. Sensor measurements in gen-
eral are imprecise and contain errots and uncertainties, The
measurement etror can be approximated by a probability
distribution. The Gaussian distribution is commonly used.
The estimate of various distribution parameters like mean
and variance-covariance matrices is needed in a sensor fu-
sion systemr. [Durrant-Whyte 1988} employs the summation
of two Gaussians to medel uncertainly in the sensor mea-
surements, [Porrill 1988] discusses a mcthod for updating
the variance-covariance matrix. A shnulation module which
allows 2 multi-sensor system to be modeled and tested before
construction is very useful. [Henderson and Shilerat 1984,
Henserson et al. 1987, Henderson and Hansen 1986), in a se-
ries of reports, have advocated the use of a logical sensor
system to simplify simulation. Another inportant step in a
multi-sensor-mulii-data configuration is the problem of cor-
respondence or regisiration; [Fernandez 1985] discusses sev-
eral algorithms to solve this problem.

[Henderson and Shilcrat 1984] and
(Henderson and Hansen 1986] propose logical sensor systems
1o standardize the use of sensors. A logical sensor is defined
by four components: the name of the sensor, the number
and type(s) of output {eg. real numbers, integers), a selec-
tor which is uscd to allow the sensor to be used, and a list
of other methods and sensors which may be used to create
the same output as this sensor, in c¢ase of failure. When
a logical scnsor system is found to be faulty, an alternate
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i Authors Sensor Data Fusion Type 1
Henserson et al. 198§) abstract logical sensors
Tuo et al. 1938) abstract maximum likelihood
Porrill 1988] stereo update covariance matrix
Durrant-Whyte 1988] geometric sensors | maximum likelihood
Fernandez 1985] abstract maximum likelihood
Harmon et al, 1986) abstract guiding, deciding, averaging
Huntsburger and Jayaramamurthy 1987] | 4 visual views Shafer-Dempster

Figure 7: Approaches to sensor modeling

strategy is invoked which can retrieve the same information
with comparable accuracy. An acceptance test is used to
determine if the new information is acceptable, If not, then
another strategy is used. If none is found then an error is
returned. A simulation module is designed that will aliow
a multi-sensor system to be modeled and tested before cou-
struction. A sample simulation is presented that tries to
recognize and inspect parts. A CAD based representation
15 used to model the objects. The Multi-sensor Knowledge
System is trained by the CAGD system which provides var-
ious views of eack object. From the multiple views, features
are extracted. Once the features are found, a part detection
algorithm for that object is made by the system. The algo-
rithm determines which sensors will be used and how they
will be used.

[Luo et al. 1988] use » Gaussian probability density func-
tion to model errors in measurement of sensors. The sensor
distributions (as computed by sensor noise models) are cont-
pared by computing the “distance” between the probability
distribution functions, The distance js considered to be a
consistency check between two sensor measurements. If the
difference is very large then data from one of the sensors is
constdered to be inconsistent with the cther sensors and thus
is not used for fusion. Next, the distance matrix is formed
by taking all possible sensors and computing the difference
in probability distribution functions for all possible fusions.
The matrix is sinaply an ordeved sot of distances between
two probability distribution functions. A relgtion malrizis
formed by taking a binary threshold of the difference ma-
trix. If the resulting matrix contains a 1 in the £, § position
then there is supporting evidence that sensor i contains ac-
curate data, The supporting evidence was found by sensor ;.
The matrix is considered to be & graph where 1% are nodes
and =dges are placed where 1’s are adjacent. The largest
connected subgraph (clique) will correspond to a group of
sensors that provide the most aceurate representation of the
environment and the data that those sensors provide will
be used in fusion. This method considers two levels of fu-
sion. The first is a consistency that is applied between all of
the sensors. If a sensor supports and is supported by other
sensors then it will be used for fusion. The second is the ac-
tual fusion of data which is a performed by using a mazimum
likelihood method and some modilied form of maximum Jike-
lihood. The authors do not state which method provides the
best fused value, but it is assumed that either one will work
well.

[Porrill 1938] deals with determining the exact value for

a sensor measurement by considering errors involved with
sensor calibration, actual feature location, and the actual
sensor measurement of that feature. Typically the combi-
nation of these three parameters constructs a closed (con-
strained) system. Thus if one parameter contributes some
error to the system then the other parameters wouid need
to be adjusted in order to maintain consistency. If one pa-
rameter has errors then there is no way to determine the
correct constrained parameters unless some other informa-
tion is available, namely the covariance matrix and expected
values of the measurements. In an iterative method, a bet-
ter estimate for the parameters is obtained. At the same
time the covariance matrix is updated to reflect the new pa-
rameters. The iteration continues until the mean squared
error s minimized. Thus if the initial covariance ntatrix can
be computed for the particular geometric sensor data then
muiti-sensor fusion can be obtained. The author works with
two stereo images for which the covariance matrix is com-
puted by considering camera projection errors and disparity
errors.

[Durrant-1Whyte 1986)[Durrant-Whyte 1988} uses a sumn-
mation of two Gaussian distributions to model uncertainty
in sensors that provide geometric data such as lines, sur-
face orientation, ceniroid, etc. For each observation made
of the environment, & description vector, which contains in-
formation about the posifions and orientations of objects, is
added to the system. One of the Gaussians is found- from
the sensor noise and accuracy characteristics and the other
is not known exactly. This is called a contaminated Gaus-
stan distribution. A mean of the measurements is calculated
and any measurement that deviates very far away is dis-
carded and not used for fusion. The new measurements now
belong to a pure Gaussian distribution. The fusion of the
new measurement set s performed by a mazimum likelihood
method. Consistency checking is perfornied by using a dif-
ferential matrix, The entire world (scene) is thought to be a
closed system in the sense that the combination of measure-
ments must produce & fixed interpretation. Thus if we have
two measurements and we determine that one has changed,
then we must change the other by an appropriate amount.
However, this becomes a litile more difficult when a large
number of measurements have been taken. The problem is
then reduced to solving a linear svstemn which results in a
minimization of a coustrained objective function whicl pro-
vides a solution to the consistency problem,

[Fernandez 1985) considers a multiple sensor, single prop-
erty, multiple data configuration and addresses the problem
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of data association or registration. It is assumed that noise
in data from the sensors follows a Gaussian distribution.
Several algorithms are presented that will match data points
from one sensor with data points of other sensors. One al-
gotithm is a mazimum likelihood estimate that measures the
similarity among data vectors of different sensors. The Ma-
halanobis distance, as discussed earlier, is used to determine
the amount of difference that occurs between two measure-
ments. This algorithm is not good because it assumes a
cne-to-one match between data vectors. If two sensors pro-
vide different information or missing information, shen one-
to-none matches are not possible. Another method is called
Sensor to Universe mapping. This involves creating a ma-
trix which contains a union of data observation vectors. This
is accomplished by forming a matrix for each sensor where
the column vectors are the data observations and by placing
the matrices side by side to form a super-matrix, The super-
matrix is then multiplied by orthogonal transformations to
produce independent and dependent columns. It is known

~that the column vectors of each sensor should be close to

being linearly dependent if they are data observations of the
same scene. The theoretical research has been discussed but
no real world results of these methods are presented.
[Harmon et al. 1986 use a distributed blackboard to fuse
data where the environment is modeled as a set of objects
in which each object has a set of properties. Fach prop-
erty contains a single data value which has an associated
confidence, error, and time measurement. The confidence
measure indicates how accurate or correct the measurement
is thought to be by the sensor. If the confidence is very high
for a measurement then the system can constder using it in
making decisions about the environment, The time measure-
ment denotes the time at which a sensor reading was taken.
If each sensor contributes independent information then the
data may easily be added to the system blackboard with
no conflicts. However, when sensor observations are of the
same property value (i.e., not independent), then merging
of data must occur in the blackboard. They propose to use
avcmgmg, guiding, and deciding for fusion. The blackboard
is d%lgned into a shared system memory It holds all of the
objects, properiies, and confidence values. The fusion takes
place when new data is added from the sensor systems.
{Huntsburger and Jayaramamurthy 1987) integrate sen-
sor data to provide shape information. Edge maps and seg-
mentation are performed on a sequence of four frames of
each registered sensor image. Preliminary shape and mo-

tion characteristics of objects in the images are computed.

The preliminary information is then improved by using the
multiple sensor information. Dempster-Shafer theory is used
to allow each sensor to provide an expert opinion about the
objects that are present. This allows data to be intersected.

5.5 Autonomous Robots and Navigation

The paper by [Ruokangas et al. 1986] is a good example
of sensor integration for an autonomous robot. Integration
is used in the Automation Sciences Testbed (ASTB). They
use vision, acoustic ranging, and force torque sensors in a
controlled robot workeell. They consider a task of acquiring
bolts from known positions und inserting them into holes in

an arbitrarily shaped object placed at arbitrary locations in
the field of view of the camera. The authors demonstrate
one and two sensor configurations for this task and outline
the possible problems. For instance, if vision alone is used to
locate objects without any height information, the acquired
images might be cut of focus, and the location information
will be only 2-D. Therefore, adding the second sensor, an
acoustic ranger, in the configuration can provide the distance
from the camera to the objects and can be used to correctly
position the camera. While the vision system provides scene
gavging and object location, the acoustic ranger provides
the data to determme the camera’s correct focal distance,
and hence, the vision system’s gange seale. The system is
further augmented by incorporating a third sensor, a force-
torque sensor, to provide real-time modification of a globally
determined hole position. The force-torque sensor which is
mounted on the robot arm sends three orthogonal forces and
torques to the real-time trajectory modification software.

[Barnes et al. 1983] describe a system which integrates
multiple sensors for an autonomous robot, They use vision,
tactile, and proximity sensors, and consider simple tasks like
pick and place, in which an Objecta is moved from Poinia to
Pointh. The steps in this task include getting the location
of object A by using far vision {overhead camera), moving
above object A using a capacitative prox:mtty sensor, fine-
Lunmg the location of object A b oy unins near vision \a.u on
gripper camera), and then the opening jaws of the gripper.
The theme of this paper is a design of 2 imow]edge based
systemn for monitoring robot tasks by checking various expec-
tations against what is actually being perceived. The system
is composed of three parts: the task knowledge which 1s rep-
sesented in Minsky’s frames, the agenda and the history
stack. fach frame has many slots which are filled as new
sensor data arrives. Within the task knowledge are action
frames, instruction frames, perception frames, sensor frames,
and object frames. Action frames hold all actions that need
to be performed. Instruction frames hold all programming
instructions that the robot controller should execute. The
perception {rames deal with perceiving errors that occur dy-
namically. The sensor frames deal with sensor limits and
accuracies. Object frames hold informasion about objects
that are manipulated during the task. The agenda handles
placing the fraine that will perform the next subtask onto
a list. Once the correct frames are selected, a sensor frame
is initiated that will use the correct sensor to gather more
data. As frames are acted upon and results are validated,
the frames are written to a history stack. The system can
be sensor driven if desired. New sensors can be added easily
with only a ¢hange in programming.

{Flynn 1988) uses both a sonar and an infra-red distance
sensor in order to build 2 map of the surrounding environ-
ment. Each sensor is modeled based upon its operating
characteristics and data is collected by scanning the scene
and converting the cylindrical data coordinates into carte-
sian coordinates. Several rules are supplled whlch delete or
modily the data when certain distance values or depth dis-
continuities are present. These rules are: (1) If the infra-red
sensor detects a very large distance discontinuity and the
sonar reading is less than 10 feet, then accept the fact that
a discontinuity is indeed present. (2) If the sonar reading
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[ Authors Sensor Data Fusion Type |
Ruokangas et al. 1986] | vision - range - force ghiding
| [Barnes et al. 1983 vision - tactile - proximity | guiding
Flynn 1988} sonar - IR, distance rules
Luo et al. 1938} sonar - vision guiding
Shafer et al. 1986 sonar - stereo - range guiding
Giralt et al. 1985 SOMar - vision - range guiding
Tutk et al. 1937] color - range guiding

Figure §: Approaches to Autonomous robots and navigation

is larger than the infra-red sensor’s maximum range, then
use only the sonar reading. (3) I the sonar reading is at
its maximum, then expect the actual distance to be larger
than the sonar indicates. The rules allow both sources of
data to provide a better estimate of the actual scene edges.
The combined information is transformed to an intermediate
tepresentation called the curvature primal sketch, and then
is converted into a polygonal representation of the world
suitable for path planning.

[Luo et al. 1988 use a visual and an ultrasonic sensor
for grasping objects with a robot arm. The robot workspace
consists of a variable speed conveyor belt which serves as
the manufacturing cell. Thus, the systern must be able to
track objects as they move down the conveyor. The vision
sensor is used to describe the conveyor belt objects, while an
ultrasonic sensor is used to find the distance from the cam-
era to the objects. This distance is used to convert image
coordinates into true distance quantities in inches. Integra-
tion is being performed because the ultrasonic sensor is used
only for depth information in order for the vision system to
determine size characteristics. The objects on the conveyor
are assumed to vary only by a translation from one object to
the next. Thus the velocity of the objects and the conveyor
can be determined solely from a pair of intensity images by
a simple optical flow computation. Once motion is detected
on the conveyor, the end-effector may begin to move toward
the object and calenlate a trajectory in order to intercept
the object.

{Shafer et al. 1986] use a stereo camera system, a laser
range sensor, and sonar sensors to control the navigation of
a truck. An estimate of the position of the truck is main-
tained over time. A local map database controller is used to
¢oordinate the various subroutines that are used by the sen-
sor modules, In this way, each subroutine can be executed
in patallel. Two-dimensional information is used to locate
edges of the roads; then 3-D sensors are used {o scan the
area between the edges of the roads to find any obstacles.
‘This is integration and is occurring at a low level. Integra-
ion 15 also used when 2-D sensors are used to capture data
about far away objects when the range sensor is not usable
or is inaccurate.

[Giralt et al. 1985} usé fourteen ultrasonic sensors, a video
camera, and a range sensor to detect obstactes for robot nav-
igation.  The space in which the robot works is represented
in two levels: the topological level and the geometrical level.
The topological level is represented by assigning places (ob-
Jects) to nodes and arcs represent connections of places. The

geometric level adds lengths to the ares which represent dis-
tances between places. In order to move from one place to
another, the robot follows a path on the connectivity graph.
A graph search may be used to find the shortest distance
or smallest cost path. The laser range finder is used first
to get an initial outline of the perceived space. Then the
robot moves to areas where no information is available to
gain more knowledge to add to the graph. All objects in the
space are considered to be obstacles, thus the video cam-
era locks for obstacles, then the range finder gathers surface
orientations and positions in order to construct the connec-
tivity graph. The ultrasonic sensors are used to detect very
close obstacles which are less than two meters away so that
close information can be added to the graph. If the robot
determines that an object is movable, then it does not have
to be inserted in the graph since the ultrasonic sensors can
detect it upon encountering the object. As can be seen this
is classified as an integration method.

[Tutk et al. 1987] use both color camera and laser range
sensors to build a deseription of the environment. A reason-
ing system coimpuies an obstacle-free path to follow on the
road. The reasoning system converts sensor data into world
coordinates by using time information associated with the
data measurement and simple edges for the road, and it pre-
dicts the location of the road in future images. A nravigelion
system plans the trajectory and the pilof system executes
the trajectory. The images are segmented into road and
nen-road regions by using a line of a given slope to sep-
arate road from non-road in a red and blue feature color
space. The slope can be pre-determined by considering sea-
sonal or environmental changes. Road regions are separated
from the background by computing a threshold by sampling
certain pixels where the road was predicted to be in the
images (normally the lower portion). This type of segmen-
tation amounts to a red minus blue segmentation. The edges
of the road are then found by using boundary tracing and
then once both sides of the road are found 2 scene model is
constructed by using small portions of the edges. Three di-
mensional information, from the laser range sensors, about
the road is used to form a trajectory for path following.

5.6 Recognition

One of the important goals of a multi-sensor system is to
be able to recognize objects from its sensory inputs. Object
recognition is a well developed area of research in computer
vision, and there are a number of approaches for recognizing
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[ Authors

Sensor Data

{ Fusion Type |

Rodger and Browse 1987] | vision - tactile consistency
Bajesy and Allen 1985) vision - tactile guiding/filling in
Luo and Tsai 1986] vision - tactile hierarchical
Magee et al. 1985] vision - range guiding

Garvey et al. 1983)

frequency - pulse width | Shafer-Dempster

Figure 9: Methods for recognition

objects using vision [Lowe 1985, range

[Reeves and Taylor 1989], and tactile [Hillis 1982} sensors.
The aim of using multiple sensors for object recognition is
to decrease feature ambiguity and to reduce the search space
during matching. We have been able to find only four pa-
pers dealing with object recognition using muitiple sensors.
Three of these papers demonstrate methods by using real
scenes. fRodger and Browse 1987) use visual and tactile fea-
tures to recognize cbiects in the synthetic scenes, however,
they do not distingnish among features from different sen-
sors. They use positional and placement constraints to re-
dute the number of possible interpretations.

[Luec and Tsai 1986] use a straightforward two stage methed
for recognizing objects. First visual features are used to dis-
criminate objects, then tactile features are employed, if nec-
essary. (Allen 1987]{Bajesy and Allen 1985} use siezeo vision
to guide a tactile sensor, and then the tactile sensor is used
to fill in 3-D data where the stereo has obtained informa-
tion. (Magee et al. 1985] use range and intensity data. All
of the above approaches consider sensor output which is a
two dimensional array. The paper by [Garvey et al. 1983)
uses Shafer-Dempster theory to recognize the emitter types
by using one dimensional signals of pulse width and RF fre-
quency.

{Rodger and Browse 1987] fuse visual and tactile data
to recognize and locate the positions of objects. Objects
are modeled as gravitationally stable polyhedra that are as-
sumed to rest on a plane. This allows the objecis’ posi-
tions to be referenced by a single rotation (around the z
axis) and two translations (on z and y axes). For vision,
the features are simply straight Hne segments. For tactile
sensing, the features are corner, edge, or flush contacts be-
tween the object and the sensor. Interpretations about the
object are made for each sensor feature and other features
are examined to allow the set of possible interpretations to
become smaller. A consistency procedute is applied after
each feature is examined to insure that 21) previous features
still lend themselves to the interpretation found. The use of
more than a few models will drastically slow the system since
many matches will be required. Thus, the search space must
be reduced if quicker searches are to be made. Another defi-
ciency is that if one sensor failed or gave incorrect data then
the system may be unable to form a correct interpretation
of an object smce consistency would be reduced.

In [Allen 1987][Bajcsy and Allen 1985] Bajcsy and Allen
penoh—u iﬁiegrauml Ul. VlSl()ﬂ ﬂl.'lcl tacLue qam 1wo <an-
eras are used in stereo to produce sparse depth information.
Three dimensional models of all objects are created and
stored as surface patches in the database. Each intensity

image is segmented and a stereo matcher is used to compute
sparse depth information for the scene. A tactile sensor is
used to provide information in places where the stereo depth
information is lacking. To integrate both vision and touch
information, very simple surface patches (first-order equa-
tions) are computed that approximate the surfaces in the
scene. The vision guides the tactile sensor to gather more
data points, usually on the interior of regions. The tactile
data is then used to compute higher order surface approxi-
mations with the help of the extra data. The surface patches
that are created are matched with the model database in an
attempt to recognize the objects in the scene.

[Luo and Tsai 1986] use tactile and visual information to
recognize objects. The intensity image is an overhead view
of the object to be recognized. If all objects ¢can be discrim-
inated from one another by using the intensity data then
no further processing is needed. Otherwise, as many tactile
images as needed to discriminate between all of the objects
are used. The visual features are perimeter, ecceniricity, and
moement of inertia. The tactile features are perimeter, cen-
troids, and direction of principal azes. A robot gripper holds
two tactile sensors; one on each side so that both faces of
the grasped object are in contact. A decision tree is used to
match 2-D object database features with actual 2.D image
features. The first stage in the tree will always use visual fea-
tures and all other levels will use tactile features. Thus the
intensity data is used only in the first step since it is a high
resolution sensor. Then tactile images taken from different

. orientations are used to gather other features. This type

of processing is seguential and can be called an integration
method. The use of moments in feature based recogmuuu is
not applicable to a robust recognition system sinice occlusion
will produce inaccurate calculations of moments.

[Magee et al. 1985} use orientation invariant features such
as cireles and intersection of lines for matching with the ob-
ject database. Range data is used only to capture 3-T data
about selected points on the cireular features that are found
in the intensity data. In a sense, the intensity data is guiding
the use of the range sensor. A graph is constructed where the
nodes in the graph represent features and the arcs represent
distances and orientations between the features. A match-
ing ratto is computed for each of the scene graphs versus the
model database graph. The ratio considers the number of
azcs that matceh in length and the total number of ares in
the graph. The largest ratio is chosen as the best matchin'a
greedy approach. The matching ratios of the best matches
for each object are added together and divided by the num-
ber of unknown matehes. The maximum of this guotient is
chosen as the correct match and that model object is chosen
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as the object in the scene. The authors have considered only
single pose object matching, (i.e., translation and rotation
of objects is not allowed). This is a major restriction. Also,
the use of range data is very limited since it is used only to
find 3-D information about selected points in the scene,
[Garvey et al. 1983] use Dempster-Shafer theory for in-
tegrating knowledge from disparate sources. They consider a
sitwation in which five emitters transmit one dimensional sig-
nals which are characterized by frequency and pulse width.
These sensory measurements contain uncertainties. Given
such a signal with frequency and pulse width characteristics,
the aim is to determine which emitter produced such a set
of signals. The first step is to convert sensory measurements
inte probability mass (belief) distributions, and then com-
bine the two by using Dempster’s orthogonal sum. Next, for

_each sensor the support and plausibility are computed from

their combined mass distributions.

6 Summary

We._ have examined papers which describe various ap-
proaches to multi-sensor fusion. The sensors which have
been employed in a multi-sensor environment include a video
camera, tactile sensor, range finder, sonar, infra-red sensor,
and torque sensor. The researchers have investigated the
use of multiple sensors for scenie segmentation, object recog-
mtion, autonomous robot navigation, building 3-D repre-
sentation, and simulation and modeling of multi-sensor sys-
tems. Strategies for combining sensot measurements include
Bayes law, maximum likelihood, Dempster-Shafer, logical
and, set intersection; weighted least squares, Hough trans-
form, guiding, integration, deciding, verification, and global
consistency. .

7 Future Work

It has become obvious from this survey that the current
state of the art in multi-sensor fusion is in its infancy. There
are, therefore, promising areas of future work in almost all
categories discussed in this paper, and other related topics to
multi-sensor fusion. One of the most important areas which
will have a significant impact on the research in multi-sensor
fusion is in sensor design. The majority of currently avail-
able sensors are slow, less robust, and expensive. Due to
high cost of sersors (e.g. range finder), very few laborato-
ries are equipped with more than two sensors. This scenario
is reminiscent of vision research ten years ago, when the
cameras and digitizing equipment were beyond the reach of
every institution. Now, inexpensive cameras and digitizer
boards for PC’s with high resoluticn monitors are avaijlable
at an affordable cost, which has made vision research a wide
spread activity. Therefore, it is expected that the situation
related to the availability of other sensors (range, infra-red,
ete.) will improve in the future, and more tesearch groups
will be involved in multi-sensor fusion research. Another re-
lated issue is the availability of registered sensor data, for
example registered intensity, thermal and range data, which
will be useful for fusion at the lower level to achieve scene

segmentation. In the future, with the availability of reg-
istered data we will experience an increase in the research
activity in the segmentation area.

Uncertainty management has been active in the past, and
will remain popular due to its mathematical elegance, The
validity of sensor uncertainty models need to be jusiified,
and robust methods for approximating the model parame-
ters (e.g. variance-covariance matrix) need to be explored.
In the past the effort in uncertainty management has mostly
been lirnited to fusion at the lower level (depth values, or
position and orientation vectors). In the future we will see
more work completed on fusion at the feature level. The
features in one sensor’s data need to be interrelated to the
features in another sensor’s data. This will also necessitate
a design of generalized representation techniques which can
be employed for multiple sensors.

Another important area where multi-sensor systems can
really make a difference is in object recognition. Suzpris-
ngly, very little work has been done on this topic. Multiple
sensors not only can provide multiple views of objects, but
they can also impose more constraints to reduce the search
space during matching, since each sensor is sensitive to dif-
ferent a modality. For certain features there will be a direct
correlation between sensors. A line segment in the visual
image, for instance, should match to an edge in the-tactile
image, assuming both sensors have similar view and ramge.
A feature supported by two sensors should have precedence
over a feature supported by only & single sensor.

Finally, the implementation of multi-sensor fusion sys-
tems in real time needs special architectures employing par-
allel processing. There are several promising areas fcr the ~
future work including the work on: mapping the current sen-
sor fusion algorithms to available parallel architectures, and
implementation of the fusion methods in specialized hard-
ware so that chips can be designed, and manufactured,
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