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Motion Trajectories

Mubarak Shah, Krishnan Rangarajan and Ping-Sing Tsai

Abstract—A simple algorithm for selecting and Vinking interesting flow
vectors across a sequence of frames for computing motion trajectories is
presented. Tokens are tracked that bave both interesting pixel gray values
in the spatial domain end in the optical flow field in the temporal domain,
This and operation effectively remove some redundant trajectories. Due
to errors introduced during the computation of optical flow, and the
linking of such flow vectors across a sequence of frames, the resultant
trajectories are aot always smooth. A Kalman filtering based ‘approach
is discussed for smoothing the trajectories. Isolating the trajectories into
sets belonging to individual objects is an important first step that should
be taken befere any type of shape or motion interpretation can be done.
Therefore, a simple algorithm for segmenting motion trajectories is also
discussed. When motion trajectories belonging to a single translating
object are extended, they intersect at a single point called the focus of
expansion (FOE). If the motions of objects are assumed to be independent,
each FOE represents one object. Therefore, FOE can be tsed to segment
trajectories belonging to individual objects. A simple but highly robust
algorithm for partitioning motion trajectories is presented that dees not
require the exact location of FOE, but uses some useful properties of FOE.
The authors have applied their methed for computing and- segmenting
mation trajectories to'a number of real sequences, and have obtained
very entouraging resalts.

1. INTRODUCTION

Recently, there has been a growing interest in the use of extended
image sequences for recovering motion and structure, Previous ex-
perience with approaches using two or three frames has revealed
that these methods become very complex when extended to multiple
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frames, Multiple frames are often used to introduce multiple con-
straints on the solution, resulting in an over-constrained system. The
problem of occlusion.can also be dealt with naturaily, because in most
cases the object, once occluded, will reappear in next few frames.
Interesting theoretical work related to the number of points required
for a solution, the uniqueness of such a solution, and the effect of
noise on the solution has been studied. While it is important to work
on these theoretical problems, it is also important to use theory to -
recover structure and motion information from real scenes, and to be
able to apply such 3D information in practical visual tasks. In a recent
survey of related work on multi-frame feature based motion analysis,
Price [97 has noted that only one fourth of the papers actually report
results on sequences of real scenes. The common assumption in all
these approaches is that correspondence between points in a sequence
of frames—2-D motion trajectories—is known, which has proven to
be a difficult problem.

Computation of motion trajectories involves two main steps: de-
tection of feature points in each frame, and comespondence of those
feature points among frames. Comers, interest points, edges, straight
lines, and intersections of straight lines have been used as tokens.

- Comers are suitable for man-made objects, polybedra, and for scenes

containing buildings. Edges and the intersection of lines gre useful
for domains with lines as the dominating structure. None of these
token detectors perform well for general scenes without the tuning of
various parameters. Either too many or too few features are detected.!
The computation of motion trajectories is further compounded due to
the combinatorial nature of the correspondence problem; that is, one
has to select a single set of trajectorles among the many p0551blc
{12, [10}.

An alternate method for measuring 2-D motion is optical flow. Un-
like motion comrespondence, aptical flow does not require any tokens,
and operates difectly on gray level images. Significant progress has
been made in optical flow methods, and a number of approaches exist
that do areasonably good job in computing optical flow for sequences
of real scenes with natural motion (e.g. see [2], [6]). Recently,
Barron, Fleet and Beauchemin [4], have implemented nine existing
optical flow techniques and haveé presented a very good performance
evaluation. Even though methods for recovering motion and structure
from optical flow using second and third order derivatives have been
reported, our aim in this paper is to use optical flow for computing
motion trajectories, and subsequently use motion trajectories for
recovering motion and structure. Since optical flow is dense in nature,
we present a method for selecting some interesting flow vectors using
the interest operator in both the spatial and temporal domains. These
vectors are obtained in multiple frames and are linked to compute
motion trajectories. Due to errors intraduced during the computation .
of optical flow, and the linking of such fiow vectors across a sequence
of frames, the resultant trajectories are not always smooth. We discuss
a Kalman filtering based approach for smoothing the trajectories.

It is rare to find scenes with a single moving object. In real scenes,
one observes multiple moving objects with a variety of motions
in assorted directions. In order to utilize the structure from motion
methods developed for a single isolated object in a realistic situation,
one needs to segment the scene. Segmentation can be attempted
in each frame using spatial information, but this has proven to be

1%We believe that a single constraint that tokens should be inreresting in
the pixel gray levels is not enough. Quite 3 few of these tokens, which are
irrelevant, can be filtered out by impoesing a second constraint; a token should
be interesting in the optical flow values as well, That is the approach followed
in this paper.

G018-9472/93303.00 © 1993 IEEE
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% non-trivial problem. Segmentation can also be performed using
optical flow. For example, Adiv [1] considers the surface of an object
to be composed of many piecewise planar patches, and presents a
method for segmenting the optical flow field into connected sets of
flow vectors where, each set is consistent with 2 rigid motion of a
roughly planar patch. This method is based on the ¥ transform, which
involves the generalized Hough transform technique for grouping
flow vectors satisfying the same set of parameters. The disadvantage
of this methed, however, is that the resulting mosaic of many pieces
must then be grouped or fused, on the basis of-similar motion and
structure, into larger surfaces using a multipass Hough transform
technique. Therefore, it needs huge memory space, and computation
time. Moreover, Adiv’s method uses only two frames. We believe

_ that segmentation using a large number of frames would be simpler

and more reliable. In particular, we are interested in segmentation
using extended motion trajectories, instead of optical flow. In fact,
when motion trajectories belonging to a single translating object are
extended, they intersect at a single point, called the focus of expansion
(FOE). If the moticns of objects are assumed to be independent, each
FOE represents one object. Therefore, FOE can be used to segment
trajectories belonging to individual objects. We present a simple but
highly robust algorithm for partitioning moticn trajectories, which
does not require the exact location of FOE, but uses some useful
properties of FOE.

In short, given a sequence of real scemes, ocur aim is to use
methods developed for recovering motion and structure of objects
automatically, using possibly fewer parameters. We assume (and
use Anandan’s [2] aigorithm) that there exists a good optical flow
algorithm that gives reasonable results for real scenes. In this paper,

‘we present a simple algorithm for selecting and linking interesting

fiow vectors across a sequence of frames for computing motien
trajectories. Further, we outline an algorithm for segmenting such
motion trajectories into groups belonging to individual moving ob-
jects. Finally, we assume that those motion trajectories can be used
in methods for recovering motion and structure, Qur emphasis in
this work is on the modulatity of the system. We envision three main

modules for recovering motion and structure: the optical flow module,-

the trajectory generation and segmentation modute, and the structure
and motion computation module. We believe that optical flow, and
structure and motion computation modules are fairly well established;
in this paper we provide a missing link: a trajectory generation and
segmentation module,

II. COMPUTING MOTION TRAJECTORIES

Optical flow is a displacement vector field in the image plane
induced by the motion of objects, the observer, o both. In principle,
the flow vectors in successive frames can be linked across a sequence
of frames into motion trajectories. Since the optical flow is dense in
nature, there wili be too many such trajectories. Therefore, a few
selected points obtained by Moravec’s [8] interest gperator, or any
comer detector, ¢can be tracked. Such tokens might represent some
portions of the image that remain stationary throughout the sequence.
Some of these tokens can be filtered out by introducing an optical
flow constraint—tokens should be interesting in the optical flow field
as well.

For a token to be interesting, its optical flow should differ from
the mean optical flow around a small neighborhood by some amount
proportional to its standard deviation. Since optical flow is a vector
quantity, we will compute the mean and standard deviation for its
speed and direction separately in 2 small neighborhood. This is a very
general criteria, which does not depend on many arbitrary thresholds.
This criteria is also very close to our intuitive notion of similanty,
that is, a token is similar to its neighbors if its value is close to the

e

Fig. 1. The points labeled A are the correct locations dbtained by manually
tracking the point on the Soccer ball. The trajectory is shown by the continuous
curve. Trajectory B, shown with broken curve and +°s, is obtained by Linking
flow vectors with the correction step. Trajectory C, shown by a broken curve

" and unfilled squares, is obtained without the correction step.

mean of their distributions. This criteria for identifying interest points
in the optical flow field may appear to be sensitive {o the outliers in
the optical flow. Since the interest point is defined to be differens
from its neighbors, the outlier is always different from its neighbors.

“Therefore, we have two conflicting conditions to be satisfied: the

point is not an outlier, and is interesting. One can defiste the point to
be interesting if its optical flow is similar to its neighbors. Howeves,
that criteria will result in large numbers of redundant points, which
we are attempting to reduce to start with. From our experimental

results we have noticed that our criteria performs guite well, There
was only one case, whete the outlier was selected as ap interest point,
that point was subsequently removed during the segmentation step of
our algorithm. .

One can only detect the interest points in the first frame, filter
some points by applying the optical flow constraint, and link the
flow vectors for the remaining frames. Due to the extra smoothing
step in Anandan’s method, the optical flow-is not always accurate;
hence, linking the flow vectors without verifying whether the tracked
point in successive frames indeed is an interest point may amplify
the erraor. Therefore, while tracking a point from the current frame 1o
the next frame, the small neighborhood around the predicted location
of the interest point will be searched, and the flow vector will be
linked to the interest point closest to the central point. In case no
interest point is observed in the neighborhood, the predicted location
is used. Fig. 1 demonstraies this correction step. The points labeled
A are the correct locations obtained by manually tracking the point
on the Soccer ball. The trajectory is shown by the continuous curve.
The trajectory B, shown with a broken curve and +’s, is obtained by
linking flow vectors with the correction step. Finally, trajectory C,
shown by a broken curve and unfilled squares, is obtained without
the correction step. The total point to pint Euclidean distance between
A and B is 26, and the total Euclidean distance between A and C
is 141. Therefore the corrected trajectory is much closer to the true
trajectory, even though visually the trajectory C appears closer to
the trajectory A. In all the experiments performed so far, we have
rarely encountered a case with more than two tokens in a small
neighborhood. In most cases a unigue token close to the central point
always exists. This is partly due to the optical flow constraint, which
is able to remove the tokens with similar flow vectors.

Another obvious possibility for introducing the optical flow con-
straint, which does not work, is to employ Moravec’s interest operator
to the optical flow field. Moravec’s interest operator involves two
steps: First, each pixel is assigned a minimum of its variance in gray
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Fig. 2. Results for the car sequence. (2) Frame 1. (b) Frame 3. (c) Frame 8. (d) Moravec interest points (total 14 points)

superimposed on Frame 1. {e) After including optical fiow information, only nine poimts were left. (f} Optical flow for the first

""" - r

two frames. (g) Trajeciories before including optical flow constraint. (h) Trajeciories afier including optical flow constraint. (i)

Trajectories afier smoothing.

levels computed in four directions (horizontal, vertical, diagonal, and
ant-diagonal). Second, the point is declared interesting if its minimum
variance is local maximum in a 12 x 12 window considering overlap-
ping neighborhoods. Due to this large window the tokens are delo-
calized in some cases. This delocalization is even more serious when
the gray level tokens are anded together with the optical flow tokens,

Our meihod for inking opticai fiow vectors inio motion irajeciories
is similar in spirit to the method proposed by Williams and Han-
son [14] for translating optical flow into token maiches; however,
it is different in many aspects. Williams and Hamson solve line
correspondence in a pair of frames using optical flow information.
First, they identify line segments in each frame using Boldt’s (5]
line extraction algorithm. Then they compute optical flow using
Anandan’s algorithm. Next, for each point corresponding 0 a line

in first frame, they fit a straight line (using least squares fit) to
the end points of the flow vectors, That straight line is considered
a predicted straight line. A rectangular area around the predicted
straight line is used as a search area for the correspondence. They
pose the correspondence problem as,the minimum cover of a bi-partite
graph. The nodes in such a graph are the straight lines in both frames.
The links between nodes conneci line segmenis from the first frame’s
token set, to all candidate matches retrieved from the second frame.
They also mention an extension of this method for muitiple frames by
running it repeatedly on successive frames, creating a directed acyclic
graph and representing the splitting and merging of line segments over
time. In another related paper by Sawhaney et al [11] the intersections
of straight lines (corner points) are tracked, and conic sections are
fitted to the trajectories for computing the rotation of the axis.
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direction, it is similar to its neighbors. Therefore, it was not selected by the optical flow constraint.

Williams and Hanson’s method is very interesting, but highly
complex. Although they rely on straight lines as tokens, in some
scenes it is rare to find straight lines, and the method for fitting straight
lines itself is involved. An additional step for fitting straight lines to
the end points of optical flow is therefore needed. Since the straight
line as a token is highly unstable in its attributes across frames, the
merging and splitting of line segments should be considered. Our
method is very simple, and gives quite good resulis. We track flow
vectors that are interesting in the spatial as well as the temporal
domain (thus avoiding too many redundant trajectories), and link
them into motion trajectories.

Kenner and Pong [7] describe two related methods for computmg
long image sequence flow. In the first method they detect tokens
in each frame of a sequence, and store tokens obtained from 2il
frames in a composite frame. They assume the motion to be small,
consider adjacent tokens to be in correspondence, and fit straight
lines to the adjacent tokens using the Hough transform. This step
impiies that the authors are only interested in translation trajectories.
In the second method, Kenner and Pong compute optical flow for
the first two frames, and use the flow vectors to constrain the search
to a small region. If no match is found for a particular token, the
search for that token is discontinued. Our method is more general,
and will work with the output from any optical flow method. Since
we track the tokens that are interesting in the spatial and temporal
domain, our search space is very small. Moreover, our method is

not limited to only translation motion. It will work for any type of
motion, including rotation.

II. SMOOTHING TRAJECTORIES USINGKALMAN FILTER

The motion of most objects in nature is continuous, and the
resultant motion trajectories are piecewise smooth. However, we have

notirad that the ffo1nntnﬂno nhtained kn the mathnd Ater‘ncenrl in tha
notized that the ir Gy lallivs Uoialnet s NS00 Gl inn Wil

previous section may not be smooth. This is due to two reasons:
First, the optical flow is not always accurate, and second some error
is inteoduced during the linking of optical flow vectors. These two
sources of error can integrate over time and may result in trajectories
being not smooth. Therefore, we introduce the Extended Kalman filter
(EXF) [3] as a post-processor for smoothing the trajectories. Kalman
filter has been extensively used in solving several vision problems.
For instance see [13] for a recent work.

We will model the motion of trajectorics as a 2-D ballistic motion.

The nncitinn (! wt\ nf 2 ‘h’anpr‘h’\f\? at time # ig oiven ag
A4 POSITCH X LY e iAmes IS gven as
e_ 1 =2
z = Eaxt + vt + zg )]
t_1 2
' = Sayt Fugtt o @

where a, and a, are accelerations in the = and y directions, v, and
v, are velocities in the z and y directions, and (g, yo) is the initial
position. We will assume that the initial position is known (We will
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Fig. 4. Results for the soccer ball sequence. (1) Frame 1. (b) Frame 5. (<) Frame 8. (d) Moravec interest points (total 52 points}
superimposed on Frame 1. (¢} After including optical flow information, 40 points were left. {f} Optical flow for the first two frames.
(g) The resultant trajectories. (h) The resultant trajectories after smoothing.

use the first point of the trajectory as the initial position). Therefore,

filter provide new estimates & of &, and 5* of 5™ as follows:
we will be dealing with four unknown parameters (a.,ay. ¥z, Vy),

and the measurement vector (z*,%*). We can consider the function =1L R - MiET
f(b,¢) = (0,0), where b € R? is the position of the trajectory, and ¢ ctmtpapenT ot tetmly s gt Tyl
¢ € R* is the unknown parameter vecior: Bo=S5700) (W + MES™(0)7)

§'= (I - K'MHS*?

P . 1 where
flb,c) = (2" - -2-azt‘ — vzt — @, ¥ — --2-ayt‘ = vyt — ¥o)
. £t
={0,0). . 3) vt = _ft{St’é!—l) + aict—l
; ¢
M= ?if.
The problem is to find the best estimate & of ¢ given the function f af ' T
and the measurement vector b°. This is very suitable for the Extended Wt = E (Oft

Kalman filtering approach. The recursive equations of the Kalman T ab
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after smoothing,

Al is the covariance matrix for the measurement vector 5%, which is
assumed to be known, and T denotes the transpose of the matrix,
The proportional factor K* is known as the Kalman gain, and St is
the covariance matrix associated with the error in the estimate. At
the end of each iteration, the trajectory can be regenerated based on
the parameter vector c.

V. ResuLTS

The proposed algorithm for computing motion trajectories was
tested on several sequences of images. In the first example (shown in
Fig. 2), we videotaped the motion of three toys: a Jeep, a Car and a
Truck. The Jeep moves from left to right, the Car moves diagonally
from the bottomn fght comer to the top left corner, and the truck
moves from Jeft to right in a direction slightly towards the upper right

corner. Five frames from the sequence were digitized, and optical
flow was computed for the first two frames as shown in Fig. 2(f).
The Moravec operator selected 14 points, ten points corresponding
to the moving objects, and four stationary points corresponding to
the date and time at the lower right comer of the image. The optical
flow constraint was able to remove zll stationary points, and one
point corresponding to the top left point on the car. The optical
flow distribution around that point is shown in Fig. 3(b). Since the
optical flow at the central point is similar to its neighbors, it was not
selected. Note that the direction as well as the speed is considered in
determining the similarity of flow field. This can be explained more
clearly by referring to Fig. 3(d), in which the polar ceordinates for the
fiow vectors are used. The mean of the flow vectors is shown by X,
and the box around the mean (determined by the standaxd deviations
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Fig. 6. {2} A scene with nwo objects: 2 cube and 2 pyramid. The cube has

a velocny of vy = 3 vy = 2 and vy = 1. The Pyramid-has a velocity
of v; = 3.1, vy = 2.1 and v, = 1.1. (b) The trajectories traced out
by the objects with the objects superimposed on the location of the first
frame. The corner poiits on the objects were picked and tracked. There are
eight comers on the cube, and four corners on the pyramid. (¢)«{d) The
segmentation of trajectories as belonging to different objects. Even though
at some time instants the objects show the same velocity, the segmentation
algorithm looks at the entire frame sequence and segments the trajectories
comectly. (c) Trajectories of pyramid. (1) Trajectories of cube.

Fig. 7. When there is no error, tme FOE will be the point f. pl, pi, pi, are
three points in frame 1, while P! , p2, P2 are their con'&cpondmg points m
fra.me 2. Due to small erors in optical ﬂow and feature point detection, p3,

p%, and p? are detected at 4%, g2, and ¢¥, which are in the neighborhood ofp%
%, and p3, and FOE trangle f13 fi2 fos is formed. Hence angles d1,ds and
dy are small. If time to collision is large, angles * and s will also be small.

of the speed and direction, in this example, we use £1 standard
deviation) identifies a rectangular region in the speed-direction space;
the flow vectors in that region are considered to be similar. Since the
central point shown by P is inside the box, it is considered similar
to its neighbors, and is not selected. The distribution of flow vectors
around the right-most point on the truck which was selected is shown
in Fig. 3(2), and its corresponding polar plot is shown in Fig. 3(¢). It
is clear from Fig. 3(c) that the flow vector of this point lies outside
the rectangular box, hence it is different from surrounding points. The
trajectories computed by linking the optical flow vectors for the points
shown in 2(d) and 2(¢) respectively are shown in 2(g) and 2(h). The
smoothed trajectories after applying the Kalman filter are shown in
2(1). These trajectories appear smoother than the trajectories shown
in parts (g) and (h).

The results for the Soccer ball sequence are shown in Fig. 4. The
bali is rotating counter-clockwise around the Z- axis. The Moravec
interest operator picked up 52 points, 12 of which were filtered out by
the optical flow constraints. The optical flow corresponding to six of
those points that were close to the center was too small (indicated by
Fig. 4(f)), and the remaining six points had optical flow very similar
to their neighbors.

For the Cones sequence (shown in Fig. 5), the camera was moved
inside a pathway, and the cones were stationary. The trajectory for the
cone on the left (right) of the camera was moved to the left (right).
The point comresponding to the left-most cone moved out of view
after frame 5; our program stopped linking the trajectory from that
frame. The point commesponding to the ceiling light at the top moves
out of the view in latter frames. Since that point is very close to the
border of the image, the optical flow estimate was incorrect there, and
the program continued to link the flow vectors in the wrong direction.

V. SEGMENTATION

Isolating the trajectories into sets belonging to the same object
is an important first step that should be taken before any type of
shape or motion interpretation can be dome. The trajectories can
be broadly classified into three groups, depending on the type of
motion: iranslation trajectories, rotation trajectories, and translation
and rotation trajectories. A typical scene may contain multiple
objects; each object gives rise to a set of trajectories that could be one
of the above-mentioned types. In general, all three types of motion
could be present in a scene. The ideal segmentation algorithm will
be the one that is able to segment the trajectories in a scene like this.
In this section, we present a method for segmenting trajectories in a
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Fig. 8. Results of segmentation algorithm. (z)~{d) A sequence of a real scene with four moving objects: a cardboard box, a Rubic
cube, a metal box and a black object. Points a, b, and ¢ on cardboard box, points d, ¢, f and g on Rubic ¢cube and poinis k, 4, 7,
k, I, and m on metal box were tracked. The proposed algorithm came up with the correct segmentation. (¢) The trajectories of the
marked points over four frames. (f) The group of trajectories belonging to cardboard box. (g) The group of trajectories belonging to
Rubic cube. (h) The group of trajectories belonging to metal box. (i) Table showing some sample values for the terms computed in
steps 1(a) and 1(b) of the algorithm. The first group shows the values of terms for trajectories a, b, and ¢, of the cardboard box. The
next group consisis of four 3-combinations of trajectories d, &, £, g of Rubic cube. Similarly, the iweniy 3-combinations for metai
box are shown next. The last group shows the value of terms for trajectories that do not belong t¢ any single object. The values for
these combinations are much higher than the values of the trajectory groups that belong 1o the single object.

scene, where the motion of objects in Z direction is small and there By the definition of the FOE {Focus of Expansion), the trajectories
are no rotating objects. All points lying on an object that undergoes  of points belonging to the same object will have the same FOE.
only translation have the same velocity in the X, Y and Z directions.  Associated with each pair of trajectories is a FOE. If all pairs of
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Fig. 9. Results of segmentation algorithm. (a)<e) A sequence of a 1eal scene with four moving objects: a Rubic cube, a toy
truck, a black box, ard a metal box. Pointsa, b, and ¢ on Rubic Cube, points d, ¢, f, and g on toy truck, points h, i, and k on
black box and points I, m2, n, ando on metal box were tracked. The proposed algorithm came up with the correct segmentation:
(f) The trajectories of the marked points over five frames,

trajectories considered from three trajectories in the scene have the
same FOE, by the principle of non-accidentalness, we can say that the
three trajectories belong to the same object. Under this assumption,
if trajectories p, g and r have the FOE 9y, and if trajectories p,
s and § have the FOE 52, then J, and 1.")'2 should be the same, and
trajectories p, ¢, 7, s and ¢ belong to the same object. We use this fact
in our segmentation algorithm. Hence, one of the basic assumptions
of this algorithm is that there are at least three trajectories for each
of the objects present in the scene. It is possible that more than one
object may have the same velocity at a particular time instant. In
that case, all trajectories belonging to these objects are likely to be
grouped as belonging to the same object. To tackle this problem, our
algorithm looks at the whole span of the trajectories at all available
time instants. Our algorithm will classify trajectories p, ¢ and r as
belonging to different objects, even if they have the same pairwise
FOE at all time instants except the one.

This simple segmentation algorithm was tried over a synthetic
sequence having two objects, a Cube, and a Pyramid, as shown in Fig.
6. The objects were moved such that they had uniform scceleration.
The Cube had an initial velocity of vx =3, v, =2 .2z =1, and
the Pyramid had vx = 3.1, vy = 2.1, vz = 1.1. The comer points
of these two objects were tracked over a sequence of frames. Even
though at time ¥ they have the same velocity, since our segmentation
algorithm looks at the entire span of the trajectories, it was able to
segment the trajectories correctly. The results are shown in Fig. 6(c)
and Fig. 6(d).

The above segmentation algorithm makes use of the fact that all
the trajectories belonging to the same object will have the same
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FOE. However, in real images this might not be true, because there
may be some errors introduced due to the optical flow and feature
detection. Therefore, we will discuss a second algorithm that does not
require exact computation of FOE, but uses some useful properties
of FOE.

Let us consider the trajectories of three arbitrary feature points
located on an object. Under ideal conditions, these three trajectories
will pass through a common FOE when extended. Due to small errors
in the trajectories generation, these three trajectories when extended
will form 2 triangle, and we shall call this the FOE triangle. There is
an FOE triangle associated with every set of three trajectories. The
FOE triangle has some nice properties that can be used in trajectory
segmentation, assuming that the emors introduced in the trajectory
generation process are small, and the distance of the FOE from the
position of the feature points in the image is large.

Let pi, p3, p} be three points in frame 1, as shown in Fig. 7.
Let p?, p2, pZ be their corresponding points in frame 2. Let f be
the point of intersection of these three trajectories. Due to efrors in
optical flow and feature detection, let points p, p3, p2 be detected
at ¢f, 3, ¢f respectively. Let angles ¢ipipl, d3p3pd, ¢ipip} bedl,
d2 and 43 respectively. Let fi2 fi13 foz be the FOE triangle formed.
We will show that two of the angles of this triangle will be small.
In general if the Z component of velocity is small, the angles r, s
formed by the ideal trajectories at the FOE f will be small.

Hafesfro+d2=s+d3
Frafizfes +di=r+4d2
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Fig. 9 (Continued). (g) The group of trajectories belonging to Rubic cube. (h) The group of trajectories belonging to toy truck.
(i) The group of wrajectories belonging to black box. (j) The group of trajectories belonging to metal box. (k) Table showing
some sample values for the terms computed in steps 1(2) and 1(b) of the algorithm. The first group shows the values of terms
for trajeciories a, b, and ¢, of Rubjc cube. The mext group consists of four 3-combinations of trajectories 4, e, f, g of the toy
track. Similarly, the four 3-combinations for black box, and metal box are shown next. The last group shows the value of terms
for trajectories that do not belong to any single object. It is clear that the values for these combinations are much higher than the
values of the trajectory groups that belong to the single objeci.
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Since r, s, d1, d2, and d3 are all small, the two angles f13 fos fiz and
frz f12 foz will also be small. We will call this an angle constraint. It
can be shown that using this constraint, the probability of accidentally
grouping any three arbitrary trajectories is small, if a small threshold
for angles is used. Assume that all angles are equally likely. Since the
sum of angles fis faz fi2 and fis fi2 fos can vary from 0 to 180, the
probability of accidentally grouping the trajectories is z /180, where
x is the angle threshold. This probability for a small threshold, say
z = 20, becomes 20/180 = 0.111. In case of set of trajectories
greater than 3, we check for each 3-combination of this group. Hence
the probability of grouping 4 or more trajectories is even smaller.

We will be mzking two additional assumptions in our segmentation
algorithm. First, we will assume that the distance between feature
points lying on the same object is small; this will be termed the
distance constraint. Second, all trajectories belonging to the same
object have the same sign of motion along the x and y axes; this will
be called the sign constraint. The second assumption is a necessary
condition. For example, for the trajectories shown in Fig. 7 to belong
lo the same object, each term in the vector difference of ¢7 — »l,
a2 — pi and ¢f — p} should have the same sign along the z and
y axes. ' :

We tried the previous segmentation algorithm over a sequence of a
real scene shown in Fig. 8. This scene contains four moving objects: a
cardboard box, a Rubic cube, a metal box, and a black object. Points
a, b, and ¢ on Cardboard Box, points 4, ¢, f and g on Rubic cube, and
points k, %, j, k, I, and m on metal box were tracked. The algorithm

came up with the comrect segmentation. By strict order analysis, the
order of this algorithm is exponential. In this real scene, there are
13 trajectories. The total possible number of three combinations is
3*) = 286, but only 25 combinations survived the first step. The
number of 4-combinations obtained for this set was 16, the number
of S-combinations was 6, and there was only one 6-combiration. Note
that none of the invalid 3-combinations survived the first step. Fig.
8(i) shows some sample numerical values of the terms computed in
steps 1(b) and 1(c) of the segmentation algorithm using FOE triangle.
The values for these combinations are much higher than the values
of the trajectory groups that belong to the single object.

We also applied this algorithm to another sequence of real scenes
shown in Fig. 9, consisting of five frames, with four moving objects: a
Rubic cube, a toy truck, a black box and 2 metal box. Points a, b, and
¢ on the Rubic cube, points d, ¢, f and g on the toy truck, points A,
i, 7, and % on black box and points [, m, », and ¢ on metal box were
tracked. The ¢amera was kept at a larger distance from the objects as
compared to the the previous experiment. Our algorithm came vp with
The total number of possible 3-combinations is (3*) = 455, but only
24 survived the first step. The number of 4-combinations out of this
set was five. There were no combinations of five or higher. The final
segmentation had three 4-combinatiops and one 3-combination. In
both experiments, we found that the constraint that two of the three
angles of the FOE triangle should be small was itself sufficient for the
correct segimentation. However, the distance and the sign constraint'
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Fig. 10. Resuits of segmentation algorithm for walking sequence. (2)—(e) A sequence of a real scene with three walking persons:
Female-1, Female-2, and Male-1. Points @, b, ¢ and 4 on Female- 1, points e, f, g, & on Female-2, and points 7, 7, and &k on
Male-1 were tracked. The proposed algorithm came up with the correct segmentation. (f) The trajectories of the marked points
over 5 frames. (g) The group of irajectories belonging to Female-1. (h) The group of trajeciories belonging to Female-2. (i)

The group of trajectories belonging to Male-1.

were also found to be satisfied in both experiments, even though the
scene would have been segmented correctly without them. Fig. 9(k)
shows some sample numerical values of the terms computed in steps
1(b) and 1(c) of the segmentation algorithm using FOE triangle.
Previous examples of sequences of real scenes were generated in
the laboratory with objects moved by hand. We also performed some
experiments on a sequence of real scenes with natural motion. The
trajectories generated in Fig. 2(h) for the Car Sequence were inputed
to our algorithm for segmentation, and correct segmentation was
obtained. The results are shown in Fig. 11. In the next experiment,
three persons, Female-1, Female-2 and Male-1, walking in 2 backyard
were videotaped. Female-1 walks from left 10 right, Female-2 walks

from right to left but at different distances from the camera, and
Male-1 walks diagonally from the upper left comer of the image
to the bottom right corner. The male person walks slower than the
fernales. Five frames from that sequence were digitized, and four
points corresponding to each female, and three points corresponding
to the male person were tracked.

Our program also performed quite well on this data, and segmented
the trajectories into three disjoint groups. The results are shown in
Fig. 10.

Segmentation Algorithm Using FOE Triangle
1) /* Find all three combinations of compatible trajectories. ¥/ .
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Fig, 11. Results of segmentation algorithm for the Car sequence. (a) The
trajectories generated in Fig. 2(i). (b) The group of trajectories belonging
to Jeep. (c) The group of trajectories belonging to Truck. (d) The group of
trajectories belonging to Car.
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For every three combinations of trajectories do

a) Form the FOE triangle, by extending the trajectories and
finding the intersection points. There will be (n—1) FOE
triangles, frames 1 through » — 1.

b) Sum two smallest angles (show as w and v in Fig. 7)
in each FOE triangle. Normalize the sum by dividing
«.(n — 1). Since the sum of the angles in a triangle is ,
there are (n — 1) such triangles.

¢) The three points corresponding to trajectories under con-

 sideration form a triangle (show as ¢f, ¢3, and ¢f in
Fig. 7) in the image plane for each frame. The perimeter
of this triangle is equal to the sum of the pairwise
distance between the points. There will be » — 1 such
triangles. Find the sum of the perimeters of these » — 1
triangles. Normalize the sum by dividing it by Ix(n—
'1).\/§.szze of the image. Smce there are 3 sides in cach
wriangle, there are total of (n — 1) such triangles, and the
maximum possible length of a side of any trangie in an
image is v2.size of the image.

d) I for all the frames, these three trajectories agree in the
sign of motion in both the x and the y directions, and
if the texms computed in (b) and (c) are each small, the
trajectories in this three-combination are considered likely
to be on the same object, otherwise not.

2) /* Group 4 or more points together that lie on the same object.
*f
An arbitrary set of m points, m > 4, are compatible if the
m possible combinations with {m — 1) points each are all
compatible combinations. This is a recursive definition that
terminates at m = 3, and the valid three combirations are
supplied by the results from the previous step.

3) The output from the previous step is groups of trajectories of
different sizes and costs (sum of terms in b, ¢ in step 1). A
subset of these groups is selected such that: the groups are
disjoint, are of low cost, and are of large size.

VI. CONCLUSION
This paper deals with the generation and segmentation of motion

trajectories, which is crucial to structure from motion approaches.’

In contrast to the conventional approaches for generation of motion
trajectories using motion correspondence, we ¢mploy sequences
of optical flows, and link the flow vectors for selected points
into motion trajectories. We also present a simple algorithm for
segmenting motion trajectories into groups belonging to individual
moving objects. Our approach uses some useful properties of the
Focus of Expansicn, however, it does not rely on the precise location
of FOE. Both algorithms have been tested against a large number of
sequences. In all cases the results are very encouraging. Our method
uses very fow parameters (one or two); the values of these parameters
were almost constant for all the experiments.
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An Adaptive Gait for Legged Walking Machines
over Rough Terrain

Ching-Long Shih and Charles A. Klein

Abstract—~\n adaptive gait algorithm for multilegged walking machines
over rough terrain has been developed, The heuristic and hierarchical
approach for the three levels of 1) body motion adaptation, 2) leg sequence
adaptation, and 3) leg position adaptation is effective, straightforward,
and relatively independent of the number of Iegs. On rough terrains with
depressions the algorithm behaves jfike a “free gait®; on level ground
terrain it behaves more like a periodic gait. The effectiveness of the
proposed gait over rough terrains with depressions is demonstrated with
several computer simulations,

1. INTRODUCTION

Humans and cursorial animals are generally recognized as having
better rough terrain mobility than that of wheeled or tracked vehicles.
This fact has motivated attempts to realize legged walking machines
[1]-(3], [7]- This work is concerned with determining the gait of
walking machines over rough terrain. In particular, the gait control
problem is formulated as the determination of the footholds for the
lifting and placing of the legs while avoiding areas of soft soil,
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rocks, holes, etc. Automatic gait generation for walking machines bas
applications in outdoor navigation, wall climbing, and underwater and
space activities. Moreover, automatic gait control is one of the key
elements of a totally autonomous system of a multilegged walking
machine.

Previously, much work has been devoted to the leg sequencing
problem for periodic locomotion over level ground terrain. The
standard periodic gait for straight-line walking is the wave gait in
which the locomotion is characterized by a forward wave of stepping
actions on each side of the body with a half-cycle phase shift
between the two sides. For a four-legged machine, the pattern was
identified by McGhee and Frank [4]. Bessonov and Umanov [5] also
showed that wave gaits maximize the longitudinal stability margin
over all periodic gaits of hexaped motion in straight lines. Here the
longitudinal stability margin is defined to.be the shortest distance from
the body’s center of gravity to the boundary of the support region,
as measured in the -direction of travel. Similar results for gereral
2n-legged machines were reported by Song and Waldron [6]. Other
periodic gaits, such as crab gaits and turning gaits, have also been
studied [7], [8). If some portions of the terrain present obstacles,
such as holes, rocks, soft soil, and excessive slope, then periodic
gaits become unsuitable because they do not take into account terrain
conditions.

To overcome rough terrain, free gaits [9], follow-the-leader (FTL)
gaits [10], adaptive gaits [7] and others [11] have been proposed.
The general strategy used in free gait algorithms is to minimize the

"number of legs on the ground. In the free gait algorithm, not only

the leg sequence, but also the position of each leg is optimized by
consideration of the gait stability of a legged machine. As a result,
the computation is relatively slow. FTL gaits are those for which a
high level planner {maybe a human operator) designates where the
front feet will step and the middle legs step on the footprints made
by the front legs, and the rear legs follow the footprint of the middie
legs, The advantage of the FTL gait is that the planner only needs
to select the permitted footholds for the two front legs, then the
rest of the legs automatically step on the permitted cells. Although
FTL has very good terrain adaptability, its use drastically constrains
the vehicle’s movement, Maneuvers such as sideways stepping and
turning in place are not easy. The adaptive-gait control algoxithm
for the quadruped proposed by Hirose [7] seeks to combine the
maintenance of an efficient gait on regular terrain with adaptability
to irregular tesrain and the avoidance of deadlocked positions.

This paper proposes a heuristic and hierarchical approach for walk- -
ing machines over rough terrain. The specific goal is the aptomatic
generation of a siepping sequence for walking machines that is suit-
able for both level ground and rough terrain. The proposed approach
for the body motion adaptation, leg sequence adaptation, and leg
position adaptation is quite effective, straightforward, and relatively
independent of the number of legs. Therefore, the modifications from
one machine t0 another are relatively minor. The effectiveness of
the proposed gait on rough terrains with depressions is demonstrated
with several computer simulations. The advantages of the proposed
adaptive gait are: 1) the motion can be omnidirectional; 2) the
algorithm is simple, effective, and independent of the number of legs;
and 3) it allows local modification of the motion trace.

II. DEFINITIONS AND GAIT STABILITY

In this section, we shall review some definitions for the gait
planning problem. The discussion is restricted to 2-dimensional rough

0018-9472/93803.00 © 1993 IEEE



