Shape from shading using
linear approximation

In this paper, we present an extremely simple algorithm for
shape from shading, which can be implemented in 25 lines of
C code*. The algorithm is very fast, taking 0.2 seconds on a
Sun SparcStation-1 for a 128 x 128 image, and is purely local
and highly parallelizable (parallel implementation included).
In our approach, we employ a linear approximation of the
reflectance function, as used by others, However, the main
difference is that we first use the discrete approximations for
surface normal, p and ¢, using finite differences, and then
linearize the reflectance function in depth, Z(x, y), instead of p
and ¢. The algorithm has been tested on several synthetic and
real images of both Lambertian and specular surfaces, and
good results have been obtained.
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Shape from shading deals with the recovery of 3D shape
from a single monocular image. The recovered shape
can be in terms of depth Z, the surface normal
(ne.ny nz), or surface gradient (p,¢q). There are two
main classes of algorithms for computing shape from a
shaded image: global and local methods. In global
methods, the shape is recovered by minimizing some
In these approaches, the variational calculus technique
is used to iteratively compute the shape, which is
globally consistent. In local methods, the shape is
recovered by using local constraints about the surface
being recovered, or about the reflectance map being
used. The common assumptions about surface shape
and reflectance are that the surface is locally spherical,
and the reflectance map is linear in surface shape. The
local methods, in general, are simple, but only provide
an approximate shape. The global methods, on the
other hand, are more complex, but provide very close to
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accurate shape. A representative method of global
approaches is used by Horn'. His algorithm simulta-
neously computes both the depth and the surface
gradient. He combines three constraints: the brightness
constraint, integrability constraint and gradient
smoothness constraint. The local shape from shading
algorithms are by Pentland” and Lee and Rosenfeld®.

In shape from shading algorithms it is assumed that
the reflectance map is given, or its form is known. Since
images of most surfaces in the real world can be
approximated by Lambertian reflectance, most shape
from shading methods use the Lambertian reflectance
model. The important parameters in Lambertian reflec-
tance are albedo and illuminant directions. Commonly,
the albedo is assumed to be constant. There are several
methods for computing the light source direction
originated by Pentland®. These methods assume the
surface to be locally spherical. Recently, Chellappa and
Zheng® proposed two methods for computing the light
source direction; the local voting method and the
contour-based method. These methods are more robust
and accurate for synthetic and real images, and more
consistent with different bands of real colour images,
different subimages of a scene, or images of different
resolutions. The authors also provide a good compar-
ison between the methods of Pentland, Lee and
Riosenfeld, and their own method.

Chellappa and Zheng® proposed a global algorithm
based on constrained function optimization. A typical
cost function (e.g. one used by Horn) involves an
intensity constraint, a regularization constraint and an
integrability constraint. The key idea in Chellappa and
Zheng's approach is that they introduce a new cost
function which does not use the quadratic regulariza-
tion term. Instead, they require the gradients of the
reconstructed image to be close to the gradients of the
input image. Chellappa and Zheng also use the linear
approximation for the reflectance function around the
surface normal (p,q) by taking the Taylor series
expansion up to the first-order terms, similar to
Pentland.
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Oliensis® has suggested that the smoothness term in
the objective function is unnecessary for images
contaiming singular points, i.e. maximally bright points.
He believes that smoothness will distort the surface
reconstruction. Recently, Bichsel and Pentland’
presented a simple algorithm along the lines of
Oliensis. The algorithm is based on a minimum
downhill principle which guarantees continuous
surfaces and stable results.

Lee and Kuo® recently proposed an algorithm based
on a triangular' element surface model and the linear
approximation of the reflectance map. They approx-
imate a smooth surface by the union of triangular
surface patches which can be expressed as a linear
combination of a set of nodal basis functions. The
depth value was computed by minimizing a quadratic
cost functional of brightness error. Their method does
not require any integrability constraints or assumptions
about boundary conditions.

Pentland? proposed a local algorithm based on the
linearity of the reflectance map in the surface gradient
{(r,g), which greatly simplifies the shape from shading
problem. Later, Pentland® presented an extension of his
linear model to quadratic surfaces using photometric
motion for extracting shape and reflectance.

We believe that the linearity of the reflectance map in
the depth Z, instead of in p and ¢, is more appropriate
in some cases, and its use results in a better depth map.
In this paper, we present a new method for computing
depth from a singie shaded image. In our approach, we
employ the discrete approximations for p and g using
finite differences, and linearize the reflectance in Z(x, y}.
Our method is faster, since each operation is purely
local. In addition, it gives good results for the spherical
surfaces, unlike other linear methods. Moreover, our
method is more general, and can be applied to any
reflectance function. For instance, in this paper we
describe an extension of this method to the specular
surface.

The organization of the rest of the paper is as follows.
The next section deals with the main part of the paper,
where we describe our method for shape from shading.
We consider both the Lambertian and specular surfaces.
We then present a comparison between our method and
Pentland’s method, and highlight the advantages of our
method. Next, the issue of convergence of a solution is
addressed. Qur algorithm is extremely simple to
implement, except in some special cases. We discuss
those cases and provide a general algorithm. The
method has been tested extensively on a large set of
real and synthetic images of both Lambertian and
specular surfaces, and our experiments are summarized.

SHAPE FROM SHADING
Lambertian surfaces

The reflectance function for the Lambertian surfaces is
modelled as follows:

E(x,)) = R(p,q) (1

_ I+ pps + 44s
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and ¢ is the slant of the illuminant. Using the following
discrete approximations for p and ¢:

where E(x,y) is grey level at pixel (x,p), p =%, ¢ =
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the above reflectance equation can be rewritten as:

0=fEx,y,Z0x, M. Z(x = 1,),2(x,y = 1))
=E(x,y) - R(Z(x,y) = Z(x — 1,3), Z{x, )
- Z(x,y—1)) (5
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For a fixed point (x,y) and a given:image E, a linear
approximation (Taylor series expansion up through the
first order terms) of the function f'(equation (5)) about a
given depth map Z" "' is:

0=fECy)Z(x,0),Z(x— 1L, y),Z(x,y — 1)) )
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FEEN,Z 0. 2" Hx = 1,y),

z" ey = 1)
The above equation can be written as follows:
27,‘,8_‘ —= FEC ), 2" (6,0, 2" (x = Ly),
TLAX, ) — 1)
Z" (xy = 1) = Z(x,y = 1)

3 n-1
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Z" = Ly, 2" Ny = D)+ Z(x = Ly)
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or in vector form as follows:
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For an N x N image, there are N° such equations which
will form a linear system, A-Z = B, where A is an
N? x N? matrix, Z and B are N? x 1 vectors. This linear

& Aiff 14 ¢ Ty 3
system is difficult to solve directly, since it will involve

the inverse of a huge matrix, 4. However, it can be
solved easily using the Jacobi iterative method. Now let
us look carefully inside the Jacobi iterative method. For
a given initial approximation 2°, each depth value is
solved sequentially in an iteration. For example, the
depth value Z{x,y) at the nth iteration can be solved
using the previous estimates, Z" (i, ), for all the Z (i, )

with i£x and j#y When Z" '(x—1,y) and
Z" 'x,y—1)) are respectively substituted for
Z{x—1,y) and Z(x,y — 1} in equation (6}, the third
and fourth terms on the right-hand side vanish.
Therefore, equation (6) reduces to surprisingly simple
form given in the following equation:

0= f(Z(x,»)

~ (27 06 0) + (206 ) — 27 1 (x,0)

n=1
i [ ) )

Then for Z(x,y) = Z"(x, y), the depth map at the nth
iteration, can be solved directly as follows:

(2", )
A2 x, p))

Z"x, ) =Z" N ) +

9
dZ(x,y)
where:
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dzZ(x,y)
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Now, assuming the initial estimate of Z°%(x,y) =0 for
all pixels, the depth map can be iteratively refined using:
equation (9). We have observed that application of
Gaussian smoothing to the final depth map Z"(x,y)
results in a much smoother depth map.

(10

Specular surfaces

Specularity only happens when the incident angle of the
light source is equal to the reflective angle. It is formed
by two components: the specular spike and the specular
lobe. The specular spike is zero in all directions except
for a very narrow range around the direction of specular
reflection. The specular lobe spreads around the
direction of specular reflection.

The simplest .model for specular reflection is
described by the delta function as follows:

Is = B9, — 26,)

where I is the specular brightness, B is the strength of
the specular component, §; is the angle between the light
source direction and the viewing direction, and 8, is the

angle between the surface normal and the viewing

direction. This model assumes that the highlight caused
by specular reflection is only a single point. However, in
real life, this assumption is not true.

Another model is developed by Phongm. It represents
the specular component of reflection as powers of the
cosine of the angle between the perfect specular
direction and the viewing direction. This model is
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capable of predicting specularities which extend beyond
a single point. However, the parameters in this model
have no physical meaning.

A more refined model, the Torrance-Sparrow
model'!, assumes that a surface is composed of smail,
randomly oriented, mirror-like facets. It describes the
specular brightness as a product of four components:
energy of incident light, Fresnel coefficient, facet
orientation distribution function, and geometrical
attenuation factor adjusted for foreshortening. On the
basis of the Torrance-Sparrow modei, Healey and
Binford'? came up with a simplified model by using the
Gaussian distribution as the facet orientation function,
and considering the other components as constants. It
can be described as:

Is= Ke &)

where [ is the specular brightness, K is a constant, 2 is

the angle between the surface normal and the bisector of
1

LR AL AU R

(N-H)), m indicates the surface roughness, H is the
bisector of the light source direction and the viewing

direction, and A is the surface normal (N = L‘”) )
VPR gla

The reflectance function for the specuiar surface

using the terminelogy in equation (1) can be modelled

as follows:

viewing direction and source direction {x =cos

E(x.y)=R(p,q) =Is = Ke ("m(*ﬁ)

Using the discreie surface normal as before, and
applying the same technique as in the case of
Lambertian, we have:

0 =Af(Z(x,»)
= E(x,y) = R(Z(x, ) — Z{x = L,y), Z(x, )
- Z(x,y—1))
= E(x,y) = Is
ST (AR R ENVAC RO R AR ENY)
df n=1
2Z0oy) (Z" " (x, ) (1
where:
AR SR C )|
W— =~20xK=xe (
. cos™" (N-H)
m? = \/l — (N-H)

P+ag+l
(P + ¢+ D7
Then the depth information can be recovered by the

above formula with function f, as in the case of
Lambertian.

COMPARISON WITH PENTLAND’S
METHOD

Our method is similar to Pentland’s” linear shape from
shading method in some aspects; therefore, we will
compare these two methods here. Pentland uses the
linear approximation of the reflectance map in p and 4.
By taking the Taylor series expansion of the reflectance
function R, given in equation (1), about p = pg, g = ¢o,
up through the first order terms, we have:

IR
E(x,y) = R{po,qo} + (p — Po)g(ﬁo, o)
IR
+(g~ q0)— 12
@~ 905, (7030 (12)
For Lambertian reflectance, the above equation at
Po = go = 0, reduces to:
E(x,y) =cos¢ + pcostsine + gsintsine

Next, Pentland takes the Fourier transform of both
sides of the equation. Since the first term on the right is
a DC term, it can be dropped. Using the identities:

23, ) Fyfon, @) (~ i) (13)

X

J .

ia—z(x:y)‘—’Fz(whwz)(— iar) (14)
Y

where Fz is the Fourier transform of Z(x, y), we get:
Fg = Foalon, w2} (— iw))costsing + Fu(w, 02)
{ — ;) sintsing

where Fg is the Fourier transform of the image E(x, y).
The depth map Z(x, ¥) can be computed by rearranging
the terms in the above equation, and then taking the
inverse Fourier transform.

The main difference between Pentland’s method and
our methed is that instead of linearizing the reflectance
in p and g, we use the discrete approximations for p and
g in terms of Z, and then linearize the reflectance in
Z{x, y). In this way, we have the following advantages.

First, we feel that the linearization of reflectance in Z
is better than the linearization in p and ¢. For instance,
it produces a good depth estimate for the spherical
surface as compared to Pentland’s method. Figure la
shows the grey level image of sphere without using any
approximation. Figure 1b shows the image generated
using linear approximation of reflectance map in Z,
Figure I shows the histograph of difference in grey
levels in Figures la, b, and Figure Id shows the
reconstructed depth by our method.

Second, when the light source direction and the
viewing direction are similar (images with central
illumination), as pointed out by Pentland, the
quadratic terms of the surface normal (p* and ¢*) will
become dominating in the reflectance function, and the
Fourier transforms of p° and ¢° will have a doubling
effect in the frequency domain. Since we do not use the
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Figure 1 Results for sphere image

using our method. (a) Grey level image
without any approximation. The light

source direction is (0.01, 0.01, 1); (b)

50 109 57 fb) 150 3

grey level image using linearity in Z; (¢)
histogram of diiference in (a) and (b):
{d) 3D plot of the depth map computed
by our algorithm

Fourier transform, we do not have any frequency
doubling effect, and our method is more general as it
can apply to both low-angle illumination and central
illumination.

Third, note that the Fourier components exactly
perpendicular to the illuminant cannot be seen in the
image data, and must be obtained from the boundary
conditions, or simply be set to zero. In our method, the
depth is obtained from the intensity domain instead of
the Fourier domain; therefore, no boundary conditions
are required.

Another advantage of our method is that, computa-
tionally, it is very simple. Each operation is purely local,
hence the method is highly parallelizable. In Pentland’s
method one needs to compute the Fourier and inverse
Fourier transform of the whole image, which is time-
consuming.

CONVERGENCE

Basically, our iterative algorithm is a form of the
Netwon-Raphson method. It is well known that the
Netwon—Raphson method converges quadratically
when provided with a sufficiently accurate initial
approximation. Generally speaking, a nonlinear
system, F(x) =0, where x is a vector of » unknowns,

can be solved using Netwon's method for nonlinear
systems. Netwon's method is a functional iteration
procedure which evolves from selecting x° and gener-

ating, for k = 1:
szxk_]—'J(Xk_l)_lF(Xk_l) (15)

where the matrix J(x) is defined by:

[3h(x)  Ofi(x) fi1()7]
8X| 8X2 8)(',,
L afRx)y df(x) f2(x)
T =150 T, o
afu(x) 6fn(x) afu(x)
L 3x, Ix; Ox, |

and is called the Jacobian matrix. This method is
generally expected to give quadratic convergence,
provided that a sufficiently accurate starting value is
known, and J(x)' exists. It involves solving a linear
system. This can be done by using the Jacobi iteration
method, which is efficient in terms of both computer
storage and computational times for a large system with
a high percentage of zero entries.

Equation (6) is a nonlinear equation in three
unknowns. We have a nonlinear system of N? such
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equations with N? unknown Z(x, y) for a N x N image,
where Z(x, y) is the depth value at a point (x, ). The
way we solve it using linear approximation is really a
form of Netwon’s method for a large nonlinear system
with a high percentage of zero entries. As mentioned
before, Netwon’s method is generally expected to
converge quadratically when provided with a suffi-
ciently accurate initial approximation. In ocur case,
without any prior knowledge about the input image,
the best initial estimation of depth, Z(x,y), for each
pixel is zero.

To show that our algorithm converges to the correct
answer and to evaluate its performance, we need to
choose an error- measure and test images. Horn'
discusses a number of possible error measures. Here,
we use the average magnitude of the gradient error
[p" — P+ |¢" — ¢} as the error measure, where (p", ¢") is
the estimated surface normal after » iterations, and
(5, §) is the true surface normal. Since we do not have
the true surface normal for the real images, we have
performed the convergence tiests on two synthetic
images, Sphere and Mozart.

In Figure 2 the error-iteration curve for the sphere
image is shown. We can clearly see. tha the average
error of the surface norm

L QL LU 3128058 A2 ai 1§ decreasiy

of iterations increase.

The results for the Mozart image are shown in
Figure 3. The true depth map shown in Figure 3a was
obtained by a laser range finder from the University of
Southern California. The grey level image generated
from the true dcpth map uvsing a light source of (0.01,
0.01, 1) is shown in Figure 3b. The grey level image
generated from the estimated depth map by our method
and using the same light source is shown in Figure 3c.
Figure 3d shows the error-iteration curve for the first 20

iterations.

0.75 T T . T T T T T T

0.7 b

0.85 b
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Q 5 10 15 20 25 Jo 35 490 45 50
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Figure 2 Error-iteration curve for the sphere image. #: aerr.plot

Figure 3 Results for Mozart image.

fay 2 nlat af the acrnal denth man
&y s DGl O anf adauas ULpln faap

obtained with a laser range finder
from USC; (b) reconstructed grey
level image using the actual depth
map and light source at {0.01, 0.01);
(c) reconstructed grey level image
using the estimated depth map and
light source at (0.01, 0.01); (d) error- C
iteration curve
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IMPLEMENTATION DETAILS approaches zero. And third, K" becomes zero when
Z"(x, y} approaches to true Z(x, y). Now, we define K"

Qur iterative algorithm can be implemented very as:

straightforwardly. Assuming the initial estimate of

Z%(x,y) = 0 for all pixels, we only need to compute the K = Sr.yMy

function f(Z"~'(x,y)), and the first derivative of the Wiy + 87, M,

function f'(Z"~ ' (x, y)) at each iteration. The formula in

equation (9) will refine the depth map at each step. where:

However, recall the first derivative of the function

12" '(x,y)) in equation (10) guarantees a nonzero M ,=_.df_(zﬂ—l( )

x. ¥ ¥

value only for the first step. Depending on the surface dZ(x,y)

shape of the object, equation (10) could become zero,

which cause division by zero in equation (9). For S’;‘}_=E{(Z"(x,y)_z(x,y))z]

example, when the surface normal is directly facing the

light source (p = p, and ¢ = g;), or when p=g¢ and E is the expectation operator, and W, , is small, but

p+qg=p;+¢q, the derivative of the function non-zero. Since W, , is a small value, K" is approxi-

S(Z(x, ), becomes zero. To solve this problem, we mately equal to 5, which is the inverse of

need to do some modification. Let us rewrite the d—z(“%)(z"'l(x, ). When M, , approaches to zero, K"

equation (9) as follows: becomes zero. When Z"(x, y) approaches to true Z(x, y),
S,y (the expected value of (Z2"(x,)) — Z(x, A will

ZMx, ) =Z" (%, ) + K'( = f(Z" Y (x, 1)) become zero. Therefore, K" will be zero. We can see

clearly that the definition of K" satisfies all three

where K" needs to satisfy three constraints. First, K" is constraints.

anproximatelv eaual to the inverse of —4 (7%= v o1y Many people in the vision community will recognize

approxmmaltely equai o the nverse ol Zr—t4" (X, y). J R 7 S

this as an example of Kalman filtering, which has been

Second, K" equals zero when Z—(Z"7'(x,y)) applied to many problems in the lower level vision. This

4Z(x,y)
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Figure 4 Results for Lenna image.
(a) Input image. The light source
parameters estimated by Zheng and
Chellappa’s method are:
slant = 32.46°, tilr = 11.73°;, (b) 3D
plot of the depth map computed by
our algorithm; (¢) reconstructed grey
level image using depth map in (b) and
constant albedo = 255 with the esti-
mated light  source  direction
(slant = 52.46°, tifr = 11.73%); (d) re-
constructed grey fevel image using
depth map in (b) and constant
albede = 255 with the light source
direction {slam = 43°, tilt = OF)
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Figure 5 Results for Mannequin
image. {a) Inpul image. The light
source parameters estimated by Lee
and Rosenfeld’s  method  are:
slant = 42.2°, tilt = 14.4°. (b) 3D plot
of the depth map computed by our
algorithm: (c) reconstructed grey level
image using depth map in (b) and
constant afbedo = 255 with the esti-
mated tight source  direction
(stant = 42.2°, tilr = 14.4°); (d) recon-
structed grey level image using depth
in (b) and constant afbedo = 255 with
the light source direction

(slant = 135°, tilt = 0°)

can be considered to be exrended Kalman filtering
because, in general, the equations for both the state
vector and a measurement vector in Kalman filter are
nonlinear. However, if good estimates of these vectors
are available, a linear approximation in a small
neighbourhood can be considered. That 1s precisely
what is being done here. In the Kalman filtering
terminology, K is known as the Kalman gain, and ¥, ,
and S, , are the standard deviations associated with the
input and the state variables, respectively.

The complete C code for our algorithm with sample
images are available by anonymous ftp from
eustis@cs.ucf.edu under the directory /pub/shading.
The main part of the program including the iterative
loop is only 25 lines. The program runs very efficiently,
since all the computations are purely local. For
instance, it takes about 0.2 s CPU time per iteration on
the Sun Sparcstation-1 for a 128 x 128 image.

EXPERIMENTS

Results for Lambertian surfaces

lied

ve ap our al orithm on several real :mngpe
ve obtained qui

Diauilill Il

e encouraging results. The results

are shown in Figures 4-7. In ali of these figures, the
depth map is shown after two iterations. In these
experiments the direction of the light source was
computed by using Lee and Rosenfeld’s” method or the
results for illuminant direction quoted in Chellappa and
Zheng® were used directly.

The results for the Lenna image are shown in Figure 4.
This image has been used as a test case in several papers
on image compression and shape from shading. In this
example, the nose, eyes and lips are recovered quite
reasonably, as shown in the 3D plot of the depth map in
Figure 4b. The surface area around cheeks also appears
nice and smooth. Two grey level images generated from
the recovered depth map using two different light
sources are shown in Figures 4c—d.

Next, the results for the Mannequin image are shown
in Figure 5. In this example, the head and the surface
area around the cheeks are recovered reasonably, as
shown in the 3D plot of the depth map in Figure 5b.
Two grey level images generated from the recovered
depth map using two different light sources are shown
in Figures 5¢—d.

The results of the Yowman image are shown in
Figure 6. This is a line drawing of a famous under-

around cartoon character named 7:nnu This imace was
ground cariceen chnaracior named Zippy. 1118 1mage

taken from Pentland’s® paper using a standard
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Figure 6 Results for Yowman image.
{a) Input image. The light source
parameters cstimated by Lec and
Rosenfeld’s method are:
slant = —45.15°, il = 62.14% (b) 3D
plot of the depth map computed by
our algorithm; {c) reconstructed grey
level image using depth map in (b) and
constant afbedo = 255 with the esti-
mated light  source  direciion
(slant = —45.75°, tilt = 62.14°); (d) re-
construcied grey level image wsing
depth map in (b) and constant
albedo = 255 with the light source
direction (slant = 45°, tilt = 0°)

camcorder, and was then digitized. The recovered 3D
surface shown in Figure 6& is amazingly good. The ears,
nose, eyes and lips are very clear. These results appear
to be slightly better than the results shown by Pentland
on the same image. Most parts of Pentland’s 3D plot
appear almost flat. Two grey level images generated
from the recovered depth map using two different light
sources are shown in Figures Gc—d, which appear very
similar to the original grey level image shown in
Figure Ga.

Finally, the results for the Part image are shown in
Figure 7. This is the image of an automobile part. The
recovered 3D depth map i i tgulc 75 Cl’c‘ﬁf‘l}" shows
various surfaces. The round surface in the centre
appears at a higher depth than the four surface areas
shown outside the centre.

Result for specular surfaces

The results for the synthetic specular sphere image are
shown in Figure 8. The input image, Figure 8a was
generated based on Healey and Binford’s reflectance
model. The reconstructed grey level image generated
from the recovered depth map using the same light

source and reflectance model is shown in Figure 8b. The
scaled needle map of the cenire area of the image is
shown in Figure 8c. The needle map clearly shows the
shape of a sphere.

The results for the cylinder image dre shown in
Figure 9. The input image, Figure 9a, was taken by a
camcorder in our lab. Since we do not have an exact
point light source, the image has one wide bright strip
instead of a thin line. However, the recongtructed grey
level image, Figure 9b, looks very similar to the original
grey level image.-

The results for a tomato image are shown in Figure /0.
The input image, Figure [0a, was obtained from
Carnegie Mellon University. The scaled needle map of
the centre area of the image is shown in Figure 10b.

PARALLEL IMPLEMENTATION

Since our algorithm is purely local, it is very suitable for
the parallel implementation. Currently, the algorithm
takes 0.2 seconds for a 128 x 128 image on the Sun
Sparcstation-1. The algorithm can be made real-time by
using a parallel machine. We have experimented with
two preliminary versions of this algorithm on the BBN
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Figure 7 Results for Part Image.
(2) Input image. The ligh source
patameters estimated by Lee and
Rosenfeld’s method are:
slant = 65.28°, 1ifr = 237.94°; (b) 3D
plot of the depth map computed by
our algorithm; (c) reconstructed grey
level image using depth map in (b) and
constant afbedo = 255 with the esti-
mated  light  source  direction
(stant = 65.28°, tilr = 237.94°); (d) re-
constructed grey level image using
depth map in (b) and constant
albedo = 255 with the light source

LA

S

e e
e
A

e

direction (sfanr = 45°, nilt = 0°)

GP1000 parallel machine. In the first version, the input
image was treated as common memory and was shared
by all processors. In the second version, each processor
was supplied with a copy of the input image to reduce
the memory contention. For the first version of the
single processor of GP1000 took about 17 s, due to siow
processors in the BBN machine. However, the speedup
of 34 with 59 processors was achieved. With the second
version, the single processor took about 6s, and a
speedup of 29 was obtained with the 32 processors.
Figure 11 shows the time-processor curve for the sphere
image using the second version of our parallel
algorithm. The architecture of GP1000 (MIMD
machine) is not very suitable for our problem, and in
general it is not appropriate for problems involving
image and matrix data structures. In the GP1000 a
whole row of an image or matrix is assigned to one
process which results in memory contention. Note that
due to the local nature of our aleorithm, a SIMD

[P ST} Wil dagiiitdalil, WALV AL

machine will be more suitable for parallel implementa-
tion. The MasPar, a SIMD parallel machine, has some
features to facilitate parallelization of algorithms for
solving our problem. First, the MasPar machine has a
2D PE array of 64 x 64. Second, each processor has its
own distributed local memory. Third, each processor

can easily communicate with its neighbours. Therefore,
an image can be naturally mapped to this PE array, in
which each processor performs the same instructions
simultaneously on one or more pixels. We will work on
the implementation of our shape from shading
algorithm on the MasPar in the future. We expect to
achieve a speedup of close to 100% for a 64 x 64 image
with 4096 processors.

CONCLUSIONS

The recovery of surface shape from a single shaded
image is a very important problem in computer vision.
We have presented a very simple and fast algorithm for
computing the depth map from a single monocular
image. Qur approach uses a linear approximation of
reflectance in Z. We first employ a discrete approxima-

tion nF and ¢, and then compute the Tavlor series of

il alia , Tiaa vl WP ULy v s Qi Sviivs

reﬂectance up to the first order term. This results in a
simple iterative scheme for computing the depth map
from an intensity image when the light source direction
is known. The algorithm works quite well, and is very
easy to implement. The results on several real scenes are
presented to demonstrate our method.
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Figuwre 8 Results for a synthetic
specular sphere image. (a) Input im-
age. The light source direction is (0.01,
0.01, 1I); (b) reconstructed grey level
image using the estimated depth map
with same light source direction; (c)
needle map
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