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1. Introduction

Humans have the very complex ability to interpret facial expressions, ges-

tures, even the so called \body language". Hearing-impaired people further

develop this ability since most of them can perform some lipreading and/or

understand sign language. It is well known that the visual information

about speech through lipreading is very useful for human speech recogni-

tion. Humans use visual information to enhance our speech recognition,

even when the available visual signal is noisy, distant or incomplete.

It is essential for computer systems to possess the ability to recognize

meaningful gestures and lip movement if computers are to interact natu-

rally with people. Currently, human-computer interface is mainly through a

keyboard and/or mouse. Physically challenged people may have di�culties

with such input devices and may require a new means of entering com-

mands or data into the computer. Gesture, speech, and touch inputs are

a few possible means of addressing such users' needs to solve this prob-

lem. For example, using Computer Vision, a computer can recognize and

perform the user's gesture and vocal commands thus alleviating the need

for a keyboard. Applications for such a vision system are the remote con-

trol of a robotic arm, guiding a remote computer presentation system, and

executing computer operational commands such as opening a window or

executing a program.

Lipreading is a very di�cult task, especially since certain phonemes can

appear visually identical (phonemes are minimal meaningful units of sound

from which two words can be distinguished). For instance, the phonemes

\b", \p", and \m" sound di�erent but look the same when spoken [2].
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Acoustically-based automatic speech recognition (ASR) is still not com-

pletely speaker independent, is limited in vocabulary and is sensitive to

noise [2]. Combining acoustic and visual speech recognition is one possibil-

ity to better achieve lipreading capability.

The task of lipreading using computers is a complicated one. Many ideas

and methods have been put forward. The general problem of lipreading

remains unsolved. We present a method for lipreading which uses eigense-

quences. We consider the problem of recognizing the spoken English alpha-

bet. In our approach, gray level values of all the pixels in all frames in a

sequence representing a spoken letter are put in one large vector. Several

such vectors corresponding to the training sequences are used to compute

eigenvectors (eigensequence), for each spoken letter. The recognition of an

unknown sequence representing a spoken letter is performed by computing

the ratio of the energy of projection of the sequence on the model eigenspace

and the energy of the sequence. For a perfect match, this ratio tends to 1.

The success of any pattern recognition method usually depends on two

stages: i) feature selection and extraction which results in easily separable

clusters of patterns with minimal in
uence from class independent factors.

ii) correct and e�cient partitioning of the pattern clusters. In the eigen-

vector based work of face recognition, image intensity is just taken as the

feature and eigenvectors are derived for a compact representation of the face

patterns. Classi�cation is performed with ease in a much lower dimensional

space.

In the case of lips sequences, the samples may contain global head move-

ments and the change in the duration of the articulations. To reduce those

class independent variations spatial registration of the mouth position and

temporal warping of the sequence are introduced as the the �rst step dur-

ing training and recognition. In our method, we choose for each letter a

sequence sample as the reference. The training sequences of individual let-

ters are registered and warped against the corresponding reference sample.

This creates well matched groups of sequences for each letter and those

in each group have the same length as the reference sample. For an e�-

cient recognition, instead of representing all the sequences of all possible

lengths by a common basis, we use the principal eigenvectors derived from

each group of training sequences as the model for the corresponding letter.

This can be equivalent to characterizing the letter by a number of major

components common to those sequences. Recognition is based on to what

extent those components are contained in a novel sequence. The use of ma-

jor components for modeling is a non-linear procedure in which noise and

minor di�erence between the samples of the same group can be discarded

as minor components so that they can not in
uence the decision.

Our approach is based on the demonstrated success of the eigenvector
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approach using static images for face recognition problem [10, 7] and similar

approach for illumination planning [6]. Turk and Pentland [10] decompose

face images into a small set of characteristic feature images called \eigen-

faces", which are essentially the principal components of the initial training

set of face images. Recognition is performed by projecting a new image into

the subspace spanned by the eigenfaces, then classifying face by comparing

its position in face space with positions of known individuals. Murase and

Nayar [6] address the problem of illumination planning for object recogni-

tion. For each object, they obtain a large number of images by varying pose

and illumination. Images of all objects, together, constitute the planning

set. The planning set is compressed using the K-L transform to obtain a

low-dimensional subspace.

Instead of using the eigenvectors of a set of still images, we use eigense-

quences of a spatio-temporal sequence of images for the lipreading problem.

We believe that lip movements for the same letter are expected to follow

the similar spatio-temporal patterns. Therefore, eigensequences are suitable

for the lipreading problem. Previously, separate spatial and temporal eigen

decompositions have been used [4]. Since lip movement is essentially spa-

tiotemporal in nature, to exploit this statistical redundancy in an integral

way, in this paper we use the spatiotemporal eigen decomposition, in which

the set of eigenvectors span the space of all possible sequences.

In order to recognize continuous utterances, we have developed a method

for extracting letters from connected sequences. Our method uses the av-

erage frame di�erence function of a sequences and extract subsequences

corresponding to individual letters by detecting the beginnings and end-

ings of letters. This detection, in turn, is based on the peaks and valleys in

the smoothed version of average frame di�erence function.

We have experimented with several sequences of English alphabet let-

ters \A" to \J", and obtained very encouraging results. Since, in real life

we speak the same letter with di�erent speeds at di�erent occasions, these

sequences were variable in length. We use dynamic time warping to align se-

quences to a �xed length. Our eigensequence based approach for lipreading

is very simple and straightforward; the major computation during recogni-

tion is simple dot product.

2. Related Work

In Petajan et al. [8], the lipreading task is performed by using the mouth

opening area of a speaker to create a codebook. The mouth window is

located by tracking the nostrils. The mouth image is then binarized, then

a threshold is applied, so that only the mouth opening created a dark area.

This large set of mouth images was reduced by clustering to about 255
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clusters. A representative of each cluster is stored in a codebook of mouth

images, which are ordered by increasing size of dark area, and identi�ed

with an index value. Once the mouth images codebook has been created, an

inter-cluster distance table is computed, for faster computation during the

matching process. The models of spoken words (the spoken letters and digits

from zero to nine) are stored and vector quantized. Vector quantization

replaces each mouth opening image of a sequence by the index of the closest

image in the codebook, thus creating a vector of indices representing the

sequence. Recognition is done by computing the distance between vector

quantized word samples and every vector quantized word model. The model

with smallest distance represents the sample.

In Finn and Montgomery's approach [2] twelve dots were placed around

the mouth of a speaker and tracked during the experiments; a total of

fourteen distances were measured, and used as a feature vector. The data

were normalized relative to time and overall amplitude of distance measure-

ments. The recognition consisted of computing a total root mean square

value between two utterances: the model with smallest di�erence was con-

sidered the correct model.

A di�erent scheme was developed by Mase and Pentland [5]. They ob-

served that the most important features that a�ect mouth shape relate to

the elongation of the mouth, and to the mouth opening, a�ecting upper and

lower lips. Using optical 
ow, the authors expressed the two principal types

of motions of the mouth as functions with respect to time: mouth open-

ing O(t) and elongation of the mouth E(t). O(t) and E(t) are computed

in each frame, then smoothed and normalized to a �xed variance. Word

boundaries were taken to be times when O(t) = 0, i.e. when the mouth is

closed, and can easily be located on the O(t) plots. Templates were used

for recognition, and matching was performed, after a resampling step that

normalizes the time to speak one word (time warping).

Kirby et al. [4] used a linear combination of the �xed set of eigenvectors

of the ensemble averaged covariance matrix to express mouth images. A

spoken word made up of P images can then be expressed as a Q � P

matrix of coe�cients computed with respect to the set of Q eigen images.

A template matching technique was then used for identi�cation of particular

words.

Goldschen [3] used visual information from the oral-cavity shadow of the

speaker for continuous speech recognition. His system uses Hidden Markov

Models for distinguishing optical information. The HMM's were trained to

recognize a set of sentences using visemes, trisemes (triplets of visemes),

and generalized trisemes (clustered trisemes).

Bregler and Konig [1] created a hybrid system that uses both acoustic

and visual information. They use a procedure similar to \snakes" and \de-
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formable templates" to locate and track the lip contours. Then either the

principal components of the contours are used, or the principal components

of a gray level matrix centered around the lips are used. The latter uses

matrix coding in an approach they termed \Eigenlips". Their work showed

improvement for the combined architecture over just acoustic information

alone in the presence of noise.

3. Eigensequences

Eigen decomposition represents the signal by a linear combination of a set

of statistically independent orthogonal bases. This representation is most

compact in the sense that, taking few number of the bases, the proportion

of the signal energy projected on them is statistically maximum among all

possible linear decompositions.
Consider a sequence of mouth images, I1; I2; : : : ; IP , where each image

hasM rows and N columns, and P is the number of frames in the sequence.
The gray level value of all pixels are then collected throughout the sequence
in a long vector (of size MNP ) as follows:

u
j = (I1(1; 1); : : : ; I1(M;N); I2(1; 1); : : : ; I2(M;N); : : : ; IP (1; 1); : : : ; IP (M;N));

where In(x; y) is the value of the pixel at location (x; y) in frame n. Matrix

A is then made from these vectors, uj as follows:

A =
h
u1; u2; : : : ; us

i
: (1)

The eigenvectors of a matrix L = AAT are de�ned as

L�i = �i�i 1 � i � n

where �i is the eigenvector and �i is the corresponding eigenvalue. The

eigenvectors �i are called the eigensequences.

The matrix L is a MNP �MNP matrix, which is exceedingly large

even for smallM and N . However, eigenvectors, �i, can be computed from

matrix C = ATA, which is a smaller matrix, s� s, where s is the number

of sequences. Let �i and �i respectively be the eigenvector and eigenvalue

of matrix C, then

C�i = �i�i; (2)

ATA�i = �i�i: (3)

Premultiplying the above by A, we get

AAT (A�i) = �i(A�i): (4)
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Since L = AAT , A�i are the eigenvectors of L.

In equation 1 above we have assumed that all uj vectors, hence se-

quences, are of the same length. Since this can not be guaranteed in the

real world, we apply a warping algorithm [9] to obtain sequences of equal

length.

Any unknown sequence, ux, can be represented as a linear combination

of eigensequences as follows:

ux =
nX
i=1

ai�i: (5)

The linear coe�cients, ai, can be computed by �nding the dot product of

vector ux with the eigensequences as:

ai = uTx :�i 1 � i � n (6)

4. Model Generation and Matching

We use eigensequences to solve the lipreading problem. First, several train-

ing sequences for each spoken letter are used to compute eigensequences,

and the Q (typically 3 to 5) most signi�cant eigensequences are selected

and used as a model in recognition. Assume that we are given a novel se-

quence, representing an unknown spoken letter. In order to recognize this

sequence, we �rst determine its projection on the eigenspace of model let-

ters (by computing the linear coe�cients, ai's), then compute the energy

(described below) for each possible match. The letter with the highest en-

ergy is selected as a possible match.

In our approach, each model is a set of eigensequences, e.g., the model

for letter ! is a set
n
�!
1
; �!

2
; : : : ; �!Q

o
, where the superscript denotes the

letter, and the subscript denotes the eigensequence number. To generate

a model, one training sequences for each letter is selected as a reference

sequence, and the remaining training sequences for that letter are warped

to the reference sequence to obtain �xed length sequences.

The projection of a novel sequence, ux, on the eigenspace of letter ! is

given by:

a!i = uTx :�
!
i ; 1 � i � Q; ! 2 fA; : : : ; Zg : (7)

Note that before computing this projection, the novel sequence, ux, is

warped to the reference sequence of letter ! in order to make it of the same

length. Due to slight head movement during the utterances, the frames in
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the novel sequence may be spatially misaligned with respect to the ref-

erence model sequence. We compensate for this by registering the frames

using maximum correlation. Correlation of a window in the novel frame is

computed in the reference frame for possible displacement of �20 pixels in

the y direction, and the best displacement is selected to register the frames.

Let the energy of projection of ux on the eigenspace of letter ! bePQ
i=1 (a

!
i )

2, and the energy of ux is jjuxjj. We will use the ratio of these two

energies, E!, de�ned below for matching.

E! =

PQ
i=1 (a

!
i )

2

jjuxjj
(8)

For a perfect match, this ratio will be equal to 1. E! is computed for all

model letters, and the letter with the highest energy is selected as a match.

As stated earlier, we are using the Q most signi�cant eigensequences in

our method. If we use all the eigensequences, then the novel sequence ux

can be expressed as:

ux =
nX
i=1

bi�i 1 � i � n: (9)

where ai's and bi's are related as follows:

ai =

�
bi if 1 � i � Q

0 otherwise
(10)

Now, consider the normalized distance between ux and its projection

D =

Pn
i=1(bi � ai)

2

Pn
i=1bi

2
; (11)

which is equivalent to

D = 1�

PQ
i=1ai

2

jjuxjj
(12)

where jjuxjj =
Pn

i=1bi
2. Consequently, minimizing the normalized distance

D is equivalent to maximizing the energy ratio, E!, de�ned in equation 8.

It is important to use the normalized distance in matching. As noted

earlier, before a novel sequence is projected onto each model eigenspace, it

is spatially registered to the reference sequence of that model. Therefore,
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the part of the (spatial) sequence taking part in the projection is not �xed

and may vary with each mapping. Therefore, the absolute distance is not

suitable.

The recognition process, in summary, requires that, �rst, the models be

generated. For model generation, we

� Warp all the training sequences for a spoken letter with respect to a

reference sequence.

� Perform spatial registration using correlation.

� Represent each letter by its Q most signi�cant eigensequences:n
�!
1
; �!

2
; : : : ; �!Q

o
.

Then, for matching, the following steps are taken:

� Warp the unknown sequence with respect to the reference sequence of

each model.

� Perform spatial registration.

� For each model, compute the ratio of the energy of the projection of

the unknown sequence into the model's eigenspace, and the energy of

the unknown sequence.

� Determine best match by the maximum of all ratios computed.

5. Modular Vs. Global Eigenspaces

In the space of all possible sequences, the lip sequences map to the clusters

of individual letters. The task of lipreading then becomes that of deter-

mining which cluster an unknown sequence belongs to. We can use two

methods of eigen representation. One method is to compute the eigenvec-

tors of the entire space (global eigenspace) and discriminate the lip patterns

by the distance to the respective cluster centers. The other is to use the

modular eigenspace, in which the principal eigenvectors which give the most

compact description of individual clusters are constructed, and the distance

from the input to the subspaces spanned by the principal eigensequences is

used.

We use modular eigenspaces in our approach, that is, separate eigense-

quences are computed for each spoken letter. The global approach would use

training sequences of all letters to compute global eigensequences. As noted

earlier, before computing eigensequences, we must convert all the sequences

to some �xed length. An important advantage of the modular eigenspace is

that sequences for construction of each model are only warped among that

group. Whereas in the global approach, it is di�cult to select any reference

letter to which all other sequences can be warped, because the sequences

signi�cantly di�er from each other.
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6. Extracting letters from connected sequences

The approach used in this chapter treats each spoken letter as a basic unit

for recognition. It is assumed that the lip movements for a given letter

can be expected to follow similar spatiotemporal patterns. Consequently,

a good method for automatically isolating and extracting letters from a

continuous sequence is needed for successful recognition.

For simplicity, we assume that our task is to recognize independent

letters from lip sequences. The speaker is required to begin each letter with

the mouth in the closed position, a constraint which was enforced with no

di�culty during the experiments. The separation of the letters is based

on the temporal variation, between successive frames. This is determined

by computing the average absolute intensity di�erence function, f(n), as

de�ned below:

f(n) =
1

MN

MX
x=1

NX
y=1

jjIn(x; y)� In�1(x; y)jj (13)

Figure 1 shows the plot of the average frame di�erence function, f ,

for a connected sequence seq-a. From this plot, it is easy to see that the

value of f during the articulation intervals is not necessarily greater than

that during the non-articulation intervals, so separation of letters by using

direct thresholding will not succeed. However, we note that the articulation

intervals in this function correspond to clusters of big peaks and the non-

articulation intervals correspond to the valleys between peaks, which may

also have small local peaks.

Our approach begins with separating those clusters of peaks. First, the

frame di�erence function, f , is smoothed to obtain function g. Then the

global valleys are detected in g. These valleys occur between two consecutive

letters. For each valley in g, starting from the frame number corresponding

to the location of a valley in g, the hillside on the left and the hillside on

the right in f , where f crosses a preset threshold, are identi�ed. Next the

�rst valley on left of right hillside, and the �rst valley on the right of left

hillside in f are determined. The left valley is the end of a previous letter,

and the right valley is the beginning of the next letter. The threshold, T ,

used for determining hillsides in f should satisfy the following constraint:

max
i
(pI(i)) < T � min

j
(pL(j));

where, pI is the value of a local peak in the non-articulation interval and

pL is value of a (left-most and right-most ) outer-most peak during the

articulation. Since the outermost peaks usually are large, a large margin

can be allowed for the setting of T .
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Figure 1. Plots of the frame di�erence function, f , and smoothed (�ltered) version of
f , g, for connected sequence seq-a. The valleys in g are shown as Vab, Vbc, Vcd. The
beginning and endings of letters \A", \B", \C" and \D" respectively are shown as Ba,
Ea, Bb, Eb, Bc, Ec, Bd and Ed.

The plots for f and g and detected beginning and end of letters in

connected sequences a and b are shown in Figures 1 and 2.

7. Warping

Warping is used twice in our method for lipreading. First, during the gen-

eration of model eigensequences, second during the matching of a novel

sequence with the model eigensequence. In this section, we brie
y describe

warping. Temporal warping of two sequences uses the Dynamic Program-

ming Algorithm of Sakoe and Chiba [9]. The columns of each frame of a

sequence are concatenated to form one vector, and a sequence of vectors is

created. Thus for each pair of sequences we have:

A = [a1; a2; : : : ; ai; : : : ; aI ]

B = [b1; b2; : : : ; bj; : : : ; bJ ]

where an is the n
th vector of sequence A, and bn is the n

th vector of sequence

B.

The algorithm employed uses the DP-equation in symmetric form with

a slope constraint of 1. Therefore, g(i,j) is computed as follows:

Initial Condition:

g(1; 1) = 2d(1; 1)
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Figure 2. Plots of the frame di�erence function, f , and smoothed (�ltered) version of
f , g, for connected sequence seq-b. The valleys in g are shown as Vab, Vbc, Vcd. The
beginning and ending of letters \A", \B", \C" and \D" respectively are shown as Ba,
Ea, Bb, Eb, Bc, Ec, Bd and Ed.

where d(i; j) = jjai � bj jj.

The DP-equation we used:

g(i; j) = min

2
4 g(i � 1; j � 2) + 2d(i; j � 1) + d(i; j)

g(i � 1; j � 1) + 2d(i; j)

g(i � 2; j � 1) + 2d(i � 1; j) + d(i; j)

3
5

The minimum equation used for the calculation of g at point (i; j) gives

the path from the previous point to the current point, thus creating a

path from (1; 1) to (I; J). Each point on this path indicates which frames

from the input sequence match to frames in the reference sequence, which

creates a warped sequence that uses the frames of the input sequence and

is the same length as the reference sequence. Having a slope constraint of

1 allows for three possible cases for matching the lengths of the sequences.

Two frames from the input sequence match to one frame in the reference

sequence, in which case the two input frames are averaged to create one.

There is a one-to-one correspondence, in which case the input frame is

unchanged. Or, one frame from the input sequence matches to two frames

in the reference sequence, in which case the input frame is just repeated.
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8. Results

Our �rst experiments used sequences of ten spoken letters. (A{J). For each

letter, �ve sequences were digitized. Three sequences (seq-1, seq-2, and

seq-3) were used as a training set to generate the model eigensequences,

and the method was tested on recognizing two remaining sequences (seq-4

and seq-5). Images were collected at a rate of 15 frames per second. One

person supplied all the sequences. The sequences were taken with good

lighting conditions. The resulting images were then cropped from 640�480

to 220 � 180 centered around the lips.

During model generation, three training sequences of each letter were

�rst warped to a selected reference using dynamic time warping method [9].

Then the eigensequences were computed. The eigensequences for letters \A"

to \J" are shown in Figures 3-12. During the recognition, seq-4 (shown in

Figure 13) for a given unknown letter was warped to each of the ten model

letters for possible match. Then, energies were computed using equation 8.

This process was repeated for all ten unknown letters in seq-4. The results

for matching are summarized in Figure 17. The matching of seq-5 (shown

in Figure 14) was performed as for seq-4, and the results are summarized

in Figure 18. The recognition rate is 90% for both sequences.

We also experimented with two connected sequences shown in Figures

15, and 16. First, the method discussed in section 6 was used to isolate

spoken letters. Then extracted sequence corresponding to each letter was

matched with the models as discussed above. The results are summarized

in the tables shown in Figures 19-20. The recognition rate is 100% for both

connected sequences.

Note that the values of energy ratios shown in the tables in Figures

17{20 are densely centered around 1, therefore high precision is needed

to distinguish between them. This can be easily improved by subtracting

the average image from each frame of the sequences, including frames in

the models and the unknown sequences. The subtraction will not alter

the relative distance between the sequences but reduce their energy on

the whole, so the dynamic range of the representative energy ratio will be

increased.

In our next set of extensive experiments, we studied the e�ect of re-

duced resolution on our method. In this case, we also used sequences of

ten spoken letters (A{J). For these tests, we digitized twenty connected

sequences, where each sequence was of the letters A through J. The aver-

age frame di�erence function was used to isolate the individual letters from

these sequences. The images were cropped as stated above, but during the

warping, every image was reduced in size to 29�19. Ten sequences for each

letter were used for model generation, and the remaining ten were used as
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unknown sequences.

The results are shown in the table in Figure 21. Using only the highest

ratios for matches, we had 10 matches out of a possible 10 for the letters

\A", \B", \F", and \H". There were 8 of out 10 matches for letters \E",

\G", and \J", while \I" matched 7 times, and \C" and \D" matched 6.

Considering the second highest ratios, the letters \C", \D", and \I" had

3 additional matches, and \E", \G", and \J" had 1. And going to the

third highest ratios, the letters \C" and \E" had 1 additional match. Thus,

considering only the highest ratios as matches, we achieved an 83% correct

recognition rate. Considering the two top ratios for matching, that rate

jumps to 95%, and allowing for the three top ratios gives a recognition rate

of 97%.

9. Conclusions

We presented a method for lipreading which uses eigensequences. In our

approach, gray level values of all the pixels in all frames in a sequence

representing a spoken letter are put in one large vector. Several such vectors

corresponding to the training sequences are used to compute eigenvectors

(eigensequence), for each spoken letter. The recognition of an unknown

sequence representing a spoken letter is performed by computing the ratio

of energy of projection of the sequence on the model eigenspace and the

energy of the sequence.

Future work will include the experimentation of the proposed method

with sequences of other letters \K" to \Z", and digits \0" to \10". Since

the proposed spatiotemporal eigen decomposition results in a more compact

representation, it can also be used to solve the image compression problem.
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Figure 3. Three eigensequences of letter \A".

0 1 2 3 4 5 6 7 

8 9 10 11 12 

0 1 2 3 4 5 6 7 
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0 1 2 3 4 5 6 7 

8 9 10 11 12 

Figure 4. Three eigensequences of letter \B".
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Figure 5. Three eigensequences of letter \C".
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8 9 10 11

Figure 6. Three eigensequences of letter \D".
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Figure 7. Three eigensequences of letter \E".

0 1 2 3 4 5 6 7

8 9 10 11 12

0 1 2 3 4 5 6 7

8 9 10 11 12

0 1 2 3 4 5 6 7

8 9 10 11 12

Figure 8. Three eigensequences of letter \F".
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0 1 2 3 4 5 6 7

8 9 10 11 12

0 1 2 3 4 5 6 7

8 9 10 11 12

0 1 2 3 4 5 6 7

8 9 10 11 12

Figure 9. Three eigensequences of letter \G".

0 1 2 3 4 5 6 7

8 9 10 11 12

0 1 2 3 4 5 6 7

8 9 10 11 12

0 1 2 3 4 5 6 7

8 9 10 11 12

Figure 10. Three eigensequences of letter \H".
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0 1 2 3 4 5 6 7

8 9 10

0 1 2 3 4 5 6 7

8 9 10

0 1 2 3 4 5 6 7

8 9 10

Figure 11. Three eigensequences of letter \I".

0 1 2 3 4 5 6 7

8 9 10 11 12

0 1 2 3 4 5 6 7

8 9 10 11 12

0 1 2 3 4 5 6 7

8 9 10 11 12

Figure 12. Three eigensequences of letter \J".
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222222222

333333333

444444444

555555555

666666666

777777777

888888888

999999999

101010101010101010

111111111111111111

12121212121212121212

13131313131313131313

14141414141414141414

A

1

A

1

A

1

A

1

A

1

A

1

A

1

A

1

A

1

A BBBBBBBBB CCCCCCCC DDDDDDD EEEEEE FFFFF GGGG HHH II J

Figure 13. Sequence seq-4.
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222222222

333333333

444444444

555555555

666666666

777777777

888888888

999999999

101010101010101010

111111111111111111

12121212121212121212

13131313131313131313

14141414141414141414

A

1

A

1

A

1

A

1

A

1

A

1

A

1

A

1

A

1

A BBBBBBBBB CCCCCCCC DDDDDDD EEEEEE FFFFF GGGG HHH II J

Figure 14. Unknown Sequence seq-5.
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0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71

72 73

Figure 15. Connected sequence seq-a. This contains letters \A", \B", \C", and \D". The
method discussed in this paper extracted four subsequences: frame 12{frame 22 (\A"),
frame 26{frame 39 (\B"), frame 42{frame 55 (\C"), and frame 57{frame 67 (\D").
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0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Figure 16. Connected sequence seq-b. This contains letters \A", \B", \C", and \D". The
method discussed in this chapter extracted four subsequences: frame 1{frame11 (\A"),
frame 17{frame 29 (\B"), frame 30{frame 43 (\C"), and frame 46{frame 58 (\D").
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Model Unknown A Unknown B Unknown C Unknown D Unknown E

A 0.9975 0.9905 0.9859 0.9495 0.9748

B 0.9894 0.9926 0.9890 0.9579 0.9789

C 0.9887 0.9889 0.9971 0.9540 0.9815

D 0.9851 0.9817 0.9902 0.9966 0.9900

E 0.9840 0.9843 0.9858 0.9914 0.9903

F 0.9931 0.9927 0.9929 0.9873 0.9865

G 0.9813 0.9786 0.9884 0.9836 0.9833

H 0.9792 0.9801 0.9829 0.9843 0.9831

I 0.9948 0.9862 0.9799 0.9673 0.9582

J 0.9831 0.9825 0.9879 0.9827 0.9753

Best match A F C D E

Model Unknown F Unknown G Unknown H Unknown I Unknown J

A 0.9933 0.9827 0.9884 0.9936 0.9846

B 0.9892 0.9889 0.9880 0.9845 0.9878

C 0.9904 0.9912 0.9906 0.9893 0.9921

D 0.9880 0.9902 0.9906 0.9858 0.9887

E 0.9820 0.9876 0.9874 0.9838 0.9860

F 0.9981 0.9914 0.9936 0.9945 0.9895

G 0.9827 0.9968 0.9816 0.9797 0.9902

H 0.9875 0.9869 0.9976 0.9819 0.9861

I 0.9911 0.9759 0.9881 0.9952 0.9797

J 0.9825 0.9885 0.9819 0.9848 0.9937

Best match F G H I J

Figure 17. Results for sequence seq-4. The entries in the table are the energy ratios,
the perfect match has ratio equal to 1. Recognition is 90%. Every input letter, except for
letter \B", was recognized correctly.
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Model Unknown A Unknown B Unknown C Unknown D Unknown E

A 0.9965 0.9910 0.9809 0.9882 0.9773

B 0.9893 0.9948 0.9882 0.9889 0.9882

C 0.9889 0.9864 0.9965 0.9942 0.9913

D 0.9852 0.9804 0.9941 0.9967 0.9927

E 0.9857 0.9863 0.9875 0.9893 0.9944

F 0.9939 0.9925 0.9932 0.9811 0.9919

G 0.9821 0.9761 0.9779 0.9883 0.9801

H 0.9778 0.9796 0.9895 0.9901 0.9859

I 0.9953 0.9873 0.9659 0.9774 0.9649

J 0.9842 0.9836 0.9879 0.9879 0.9846

Best match A B C D E

Model Unknown F Unknown G Unknown H Unknown I Unknown J

A 0.9914 0.9841 0.9870 0.9948 0.9877

B 0.9867 0.9859 0.9882 0.9814 0.9854

C 0.9872 0.9906 0.9885 0.9886 0.9921

D 0.9781 0.9875 0.9884 0.9788 0.9878

E 0.9839 0.9836 0.9821 0.9825 0.9847

F 0.9962 0.9914 0.9917 0.9920 0.9915

G 0.9772 0.9745 0.9751 0.9771 0.9904

H 0.9809 0.9873 0.9949 0.9804 0.9825

I 0.9920 0.9773 0.9868 0.9949 0.9806

J 0.9774 0.9879 0.9813 0.9794 0.9933

Best match F F H I J

Figure 18. Results for sequence seq-5. The entries in the table are the energy ratios, the
perfect match has ratio equal to 1. Recognition is 90%. Every input letter except letter
\G", which was matched to letter \F", was recognized correctly.
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Model Unknown A Unknown B Unknown C Unknown D

A 0.9949 0.9846 0.9770 0.9770

B 0.9920 0.9928 0.9822 0.9818

C 0.9921 0.9873 0.9930 0.9907

D 0.9904 0.9878 0.9910 0.9926

E 0.9846 0.9800 0.9846 0.9875

F 0.9925 0.9901 0.9904 0.9815

G 0.9826 0.9819 0.9836 0.9838

H 0.9860 0.9839 0.9860 0.9831

I 0.9903 0.9710 0.9715 0.9650

J 0.9856 0.9821 0.9848 0.9817

Best match A B C D

Figure 19. Results for connected sequence seq-a. This sequence contained letters \A",
\B", \C" and \D". First the subsequence corresponding to these letters were extracted
using the method described in the chapter, then the extracted subsequence were matched
with ten model letters. The recognition is 100%.

Model Unknown A Unknown B Unknown C Unknown D

A 0.9953 0.9856 0.9871 0.9833

B 0.9895 0.9927 0.9900 0.9847

C 0.9914 0.9844 0.9911 0.9901

D 0.9864 0.9825 0.9894 0.9921

E 0.9824 0.9779 0.9876 0.9884

F 0.9911 0.9884 0.9879 0.9895

G 0.9797 0.9760 0.9869 0.9856

H 0.9843 0.9790 0.9826 0.9853

I 0.9935 0.9797 0.9819 0.9670

J 0.9872 0.9840 0.9874 0.9840

Best match A B C D

Figure 20. Results for connected sequence seq-b. This sequence contained letters \A",
\B", \C" and \D". First the subsequence corresponding to these letters were extracted
using the method described in the chapter, then the extracted subsequence were matched
with ten model letters. The recognition rate is 100%
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A B C D E F G H I J

1st 10 10 6 6 8 10 8 10 7 8

2nd 3 3 1 1 3 1

3rd 1 1

Figure 21. Results for reduced resolution series of tests using 10 unknown sequences.
The numbers indicate the number of matches out of 10 that were correct. The �rst row
shows results for the highest ratios. The second row shows the number of additional
matches from the second highest ratios. And the last row shows the same for the third
highest ratios. The success rate is 83% from the highest ratios, 95% from top two highest
ratios, and 97% from top three highest ratios.


