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filtering. The simulation of an electronic neural network setup show Shape from Intensity Gradient
that the detection of a moving image is not only possible in real-time
but also with high resolution and lower level noise. This demonstrates Ruo Zhang and Mubarak Shah

that biologically inspired quasiparallel processing has advantages

in pr ing moving im information, and provi new w.
f phocgss g- OI 9 t?.ge f 0 att.o , and pQ d]?s at. € TayAbstract—UnIike existing global shape-from-shading (SFS) algorithms
Or hardware implementation for motion processing tunctions. r-\'/ﬁ‘ﬂch involve the brightness constraint in their formulation, we propose

proposed algorithm which solves the problem of image-backgrouacthew SFS algorithm which replaces the brightness constraint with an
discrimination by binding current motion information with previouslyintensity gradient constraint. This is a global approach which obtains

acqu”'ed afterlmages may be have some usefulness in robot Vls|dhe solution by the minimization of an error function over the entire

image. Through the linearization of the gradient of the reflectance map
and the discretization of the surface gradient, the intensity gradient can
be expressed as a linear function of the surface height. A quadratic
error function, which involves the intensity gradient constraint and the

traditional smoothness constraint, is minimized efficiently by solving a
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There are several simple and efficient SFS approaches whilrfaces, since the change of intensity is small, the brightness con-
use only local intensity information to derive shape. These includgraint in their error function still dominates. The Taylor's series was
Pentland’'s methods [16], [17], Lee and Rosenfeld’s method [1@pplied to linearize the reflectance map, and discrete approximations
and Tsai and Shah’s method [22]. for surface gradients, and their derivatives, were used. The iterative

Pentland [17] solved for the surface slant and tilt, the radius eEheme was implemented using a hierarchical structure to solve for
curvature, and the light source direction using six equations obtainagface height and gradient simultaneously. The initial values for the
from the intensity, as well as the first and second derivatives béight and gradient could be zero. Their results showed inaccuracies
the intensity. His approach can classify a surface into one of fie@ound the light source direction, which is due to the brightness
categories: planar, cylindrical, convex, concave, or saddle surfaderivative term.

However, it is limited to surfaces with equal-magnitude principal Lee and Kuo's approach [11] involves the brightness and smooth-
curvatures. ness constraints. The linearization of the reflectance map was com-
Lee and Rosenfeld [10] considered the derivatives of the intenstiined with the triangularization of the surface to express the re-
in both thex and y directions, and found that, in the light sourceflectance map as a linear function of the height. A quadratic error
coordinate system, the tilt of the surface was the same as the arfglection was minimized by solving a sparse linear system. The
of the intensity gradient. This result was obtained by approximatimgultigrid method, with successive linearization, was used to solve

the local surface with a spherical patch. The slant of the surfattés linear system. All height values could be initialized to zero.

was obtained under the assumption that the surface has unifornBoth Zheng and Chellappa’s method and Lee and Kuo’s method
reflectance, and the brightest point on the surface has its norrnah recover good low frequency information, but high frequency
pointing in the light source direction. The disadvantage of thisformation, the details, are smoothed out. Zheng and Chellappa’s
approach is its limitation to spherical surfaces. results are affected by the background value. Lee and Kuo’s method

Another approach by Pentland [16] linearized the reflectance megmds to oversmooth the surface and the recovered height is incor-
in terms of the surface gradient, through the Taylor's series. Bgctly slanted upward in one direction.
taking the Fourier transform of the linearized brightness equationRouy and Tourin [19] presented a solution to SFS based on Hamil-
and considering the relationship between the Fourier transform toh—Jacobi—Bellman equations and viscosity solutions theories in
the surface gradient and the Fourier transform of the height, tbeder to obtain a unique solution. A link between viscosity solutions
height can be recovered through the inverse Fourier transform of #med optimal control theories was given via dynamic programming.
intensity. Since no smoothness constraint is needed, this algoritMoreover, conditions for the existence of both continuous and smooth
is applicable to complex natural surfaces. However, it has difficulgolutions were provided.
with images of quadratic and higher order surface reflectance becaus&nother approach is by Dupuis and Oliensis [5], [14], [15]. Oliensis
of the linearization of the reflectance map. [14] observed that the smoothness constraint is only needed at the

Instead of linearizing the reflectance map in terms of the gradiebundaries if we have initial values at the singular points. Based on
Tsai and Shah [22] employed a discrete approximation to the gradiéims basic idea, Dupuis and Oliensis [5], [15] developed an iterative
first, then linearized the reflectance map in terms of the heiglatigorithm to recover depth using discretized optimal control and
Consequently, at each pixel, the intensity can be expressed bgymamic programming. The proof of equivalence between the optimal
linear function of the height at neighboring pixel, and the Jacobbntrol representation and SFS was illustrated. At first, they did
iterative scheme can be applied to solve the entire linear systamt deal with a general light source and multiple singular points.
This algorithm breaks down when self-shadows exist in the imagéd.ater, they removed these restrictions and allowed for a general light

Although local approaches are simple and fast, they have limitseurce and multiple singular points. However, their initial algorithm
tions, especially in the case of noisy real images. Therefore, sevdBl requires a priori depth information for all singular points. A
SFS algorithms use global information to ensure robustness. later extension [15] can determine this information automatically

The first two global approaches were by Ikeuchi and Horn [8], arity assuming twice differentiable depth, isolated singular points, and
Brooks and Horn [4]. Both combined the brightness constraint amtnzero curvature at singular points.
the smoothness constraint to form an error function, then minimized itBichsel and Pentland [2] simplified Dupuis and Oliensis’'s ap-
using variational calculus. In his later approach, Horn [7] added tipeoach. They found that a minimum downhill principle could remove
integrability constraint to the error function. To solve the problerthe ambiguity introduced by singular points, so that the height
of slow convergence for Horn's approach, Szeliski [20] used theformation at singular points can be propagated to build a contin-
hierarchical and preconditioned conjugate gradient descent methodi¢éois surface. The propagation follows the principle that the height
improve the efficiency. Unlike the above algorithms, which involvénformation is only passed to pixels that are farther away from the
the recovery of either the surface normal or the surface gradielight source. Among all the pixels that are farther away from the
Leclerc and Bobick [9] used a discrete approximation of the surfatight source, they choose the one that is the closest. The closest point
gradient to introduce height into the error function, which consists the one that has maximum height among those that lead away
of the brightness constraint and the smoothness constraint. Tliemm the light source. This is based on the fact that since hoth
they directly solved for height by taking the derivative of the erroand y are fixed at each pixel, the distance to the light source is a
function and applying the conjugate gradient technique. All of thmonotonically increasing function of the surface height if the angle
above techniques require known shape information at occludibgtween the light source direction and the optical axis is less than
boundaries in order to enforce correct convergence. Leclerc a@@ . Eight directions in the image grid are considered, and the image
Bobick’s approach needs the height output from stereo as the initimprerotated to align the projection of the light source direction in the
estimate. image plane with the:-axis, since the directions for which a solution

Zheng and Chellappa [23] were the first to consider the firskists form a very narrow angle with the light source direction, at low
derivative of intensity in the variational calculus approach. Howevdrrightness points. For each of the eight directidnsf we consider
their derivatives were taken along theandy directions. Their error d to be both thep direction ¢ component of the surface gradient)
function contains the brightness constraint, the brightness derivatased the direction of steepest descent, then in the orthogonal direction
constraint, and the integrability constraint. For smooth Lambertian(y component of the surface gradient), the reflectance map should
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vanish. Consequently, is obtained by differentiating the reflectanceS = (S, Sy, S-) is the unit light source direction. We then take the

map with respect t@, and solving it for zero. The change of heightdirectional derivative of the reflectance map (1) along the intensity

along directiond is thep value corresponding to this This approach gradient directiond; ; as shown in (2), at the bottom of the page,

used the concept of the derivative of the reflectance map with respetierepy, ; andgy, , are the directional derivatives of ; andg;, ;

to ¢, but it does not directly use the intensity gradient informatioralong the intensity gradient direction.

The problem with this method is that it has difficulty with multiple The first order Taylor's expansion around the fixed point

singular points and is sensitive to noise. ®; ;> @ ;o Pa; ;> qdm_) yields the following linear approximation
Similar to Horn’s and Dupuis and Oliensis’s approaches, Kimméb the directional derivative:

and Bruckstein [3] reconstructed the surface through layers of equal - o _
j ~Rdi,j(]7i,j-, 4i, 5> Pa; ;» 1a; )

height contours from an initial closed curve. Their method applied 4, i

techniques in differential geometry, fluid dynamics, and numerical + IR, ; (pa, . =Dy )+ 9Ra, (4a: - =Ty )
analysis, which enabled the good recovery of nonsmooth surfaces. Opa, , I i dqa, ; 0 T
The algorithm used a closed curve in the areas of singular points for ORy. . ORy, . ;
initialization. + E)p,'ﬂj (pi; =i ;) + 3(]7,7’]_] (2., =@, ;) ()

None of the above methods deal with interreflections—the m
tual illumination between surface facets. Nayar al [12], [13]
addressed the shape-from-interreflection problem using photometric Ry, ; = i ;pi j + Bi j0i, 5 + Vi, jPa; ; + Di, j0d; 5 + 0,5
stereo. They observed that the erroneous shape extracted by shape- OR,.

%y rewriting (3), we obtain

from-photometric-stereo algorithms in the presence of interreflections @i, = 8]);171-]
was shallower than the real shape. Therefore, they proposed a method E)Rd’.].
to iteratively refine the shape. Similar formulation of interreflection 3, ; = 6—3
was also discussed by Forsyth and Zisserman [1]. 4
Common problems among the existing SFS algorithms include i = ORa,
oversmoothing, lack of robustness, and excessive execution time. To Ipa;
overcome these problems, we introduce a new SFS algorithm, which ~ ~ JRy, |
follows the traditional global approach, but provides more realistic ¢%J = W

and reliable results with a fast execution time.

. . Ni,; =Ra, . (P; i» T 52 Pg. > Uy, .
In the following, we first present the theory of the proposed I d“@_’f' ! ’] p_‘lw qdw)_ B
method in Section Il, then describe its multigrid implementation in = @i yPi = Bigl, = %iPa, 90, o (4)
Section_lll. _Section_ IV presents the results. Finally, we provide thge yse the following discrete approximations fer;, ¢:. ;, and their
conclusion in Section V. derivatives:
Il. SHAPE EXTRACTION USING THE INTENSITY GRADIENT Pisg =%i,5 = %=1
In our approach, we use neither the spherical assumption as in By =505 = ALy
Lee and Rosenfeld’s and Pentland’s approaches, nor do we base our Doy, ; = Zij = 2%, -1+ Zi, -2
algorithm on singular points. Unlike Zheng and Chellappa’s approach, Pys,; =i — Zi,j—1 = Zit1,j + Zit1, -1
which considered the intensity derivatives in th@ndy directions, . — i i — s o
: . ; - . Qui, 3 = Zi,j = Zitl,j = Zi,j—1F Zit1, j—1
the brightness constraint, and the integrability constraint, we drop 9 o
the traditional brightness constraint and use the intensity gradient Qui,g = #id = 22415 ¥ Zitz,
constraint. The direction of the intensity gradient is the direction in Pd; ; =Pe; ;AT + Py AY
which the shape of the surface changes the most in the Lambertian Qd;, ; =qu; AT+ qy Ay

model. The directional derivative of the reflectance map, rather than o o
the reflectance map, is linearized using Taylor's series. The discreti¥4€re r., ; andg., , are derivatives along the direction, p,; ;

tion of both the surface gradient and its directional derivative, @A"d4v..; are derivatives along the direction, Aw;, ; = cos ¢, and
terms of height, is used in order to express the derivative of tht¥i.; = sin ¢ [f is the angle of the intensity gradient at pixel
reflectance map as a linear function of height at neighboring pixefé: 7)1 Then the directional derivative of the reflectance map (4) can
To enforce a unique solution, the smoothness constraint, instead’B€xPressed as a linear function of the height at neighboring points
the integrability constraint, is applied. The resulting nonlinear error Ru,  moai (2 — 2 o)+ Bi j(zij —
function, which includes the smoothness constraint and the simplified
intensity gradient constraint, is minimized through the solution of a

Zig1, )
4+ i, iz — 2z j—1 + zi joo) A

sparse linear system, which is solved by the multigrid technique. + (20 = zig—1 =z Zi, 1) Ay ]
We use the traditional Lambertian model, based on the assumption + i, (25,5 — zig1, 5 — #i,j—1 + zit1, j—1) Az
of an infinite point light source 4 (215 — 2zi41,j + zi2, ) Ayi 5] +ni . (5)

(=pij> =i, 1) -5 (1) Now compute the height,, ;, by minimizing the following function:

ﬁ/p?,]+q12‘]+1 n—1 n—1 n—1 n—1

Ii, .—Ra, .)2—1—/\ pi .—|—p2. .—i—qz. .+q2. )
whereI; ; is the input intensity at pixeli, j), which is equal to ; ];( 7 7 ; ];( g PPyt et )
the reflectance mag; ;, (v:,;, ¢:,;) is the surface gradient, and (6)

Ii,j :Riij =

R, _ (_S.rpdg,j - S!/qdi,j)(pzz,j + qlz,j +1) - (Sz - Smp,j,] - Syqi-,j)(p"‘jpdi,j + qi‘.].qdi,j)

. e ()
’ (07 ; + a7 ; +1)3/?
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wheren is the image size andlis the weight of the smoothness term.
The first term is the intensity gradient constraint and the second tern
is the smoothness constraint. Substitutidg ; from (5) for the first
term of (6), we obtain

n—1 n—1

2 2 2 2 2 2
D DR CHEE SRR

i=0 j=0
2 2 2 2 2 2
+di e ez o iz
+ 2[ai, jbi, j2i, 7, -1+ i jei % R

ta; jdi jzi 2 2+ @i j€i 550 Zig, o1

tai i fi iz jzide, +bi iz i1 zign,

+bi jdi, i -1z =2+ b jei % =1 Zig, = Fig. 1. Synthetic input images. (d)etters with light source direction

+bi iz o1z, Fciidiozivn, % e (=1, 1, 1) and (b)Pennywith light source directior(5, 5, 7).

dl' i€i jZi. 2% j— dl' i 9%, j—22i+2, 4 . . . .
Fdigeiizig—ztin o digfigzig-2 s, Adding the smoothness term (8) to this quadratic equation, we have
+ei i fi gzt jm1zie g+ ai g%
+ b, i, 7051 F Ci 90 i1, i ;',jzz',j—2 1T —w 9)
+ € i i i zinn, -1+ fi iz )+ 0 ) @)
where whereT = U+AV. U is ann® xn” (n is the image size) symmetric,
sparse matrix consisting of the second-order terms from{{7¢an
be formed by using &2n — 3) x (2n — 3) templateAU;, ; given in
— & (Axi ;4 Ay ) (10), shown at the bottom of the page, whose nonzero elements are
bi i =i+ v, (20z 4 Ay ) + éi, jAai the properly positioned coefficients from (7). The diagonal elements
of AU;, ; are the coefficients of the squared terms. The symmetric
i =08 DAY, i i(Axy s+ 2Ay; 6] - M > S
ci,j =B+ i i AYi, 5 + i, (Axi, j + 24y, ) elements are obtained from the coefficients of the remaining second
dij = — i jAri order terms. InitiallyU is zero; then for eacly, j), AU;, ; is added

ai,j = — i — Bij — v, Az + Ay, )

ei; = — Y, i Ay ; — i j Az to the proper position i/’ where the upper-left corner aAU;, ;
T corresponds to positiofw — 2, x —2) in U, andx = i *n+ j. This
fii Pi, jRYi, . . .

S procedure will form a sparse banded matrix which can be represented
Jirg =i 5 T by ann? x 19 matrix.

The second term of (6), the smoothness constraint, can be repAs an example, givelti, j), the term2a;, ;b; ;zi jzi, j—1 in (7)
resented by a template, to be applied to the 2-D height, as followdll add the value2a; ;b; ; to U at the symmetric positionse:, =2)

[11], [21]: and (w2, 71) (Wherex; = ixn+j andzs = i xn 4 j — 1).
1 This corresponds to assignirdg;, jb;, ; to AU; ; at the symmetric
2 _8§ 2 positions (z3, #4) and (x4, x3) [wherezs = x; — (» — 2), and
V. i{) 1 -8 20 -8 11 x4 = w9 — (x—2)]. [Note: (x — 2, x—2) is the position of upper-left
: 29 _8 2 corner of AU;, ; in U]
1 The vectorw is ann” x 1 vector consisting of the first order terms

from (7). Initially, w is the zero vector, then for eadh, j), 0 <

9,ej < n, we locate the corresponding positiondmasx: = i*n+ j,
then subtract; ;g:, j, bi jgi, i, @i, 5Gi, 5 €i,3Gi, 5 Ci,jGi. 5y Ji,iGi, s
from positionse — 2, z— 1, z, x +n—1, x+n, x+ 2n, respectively,
12Uz~ w4 in w. Finally, 1 is a scalar consisting of the sum of the constant

Here, h is the spacing between pixels. The templates for the ima
boundary can be found in [11] and [21].
Equation (7) can be rewritten in the following matrix form:

sl bigdiy o oaigdig 0.0 dijei; cigdig 020 dijfi;
n—2 n—1
1172 .
b,‘,7]’di7]’ Ebi,j (l,@jbiyj 0---0 bi1j8i7j b,jvj(),j’]’ 0---0 bi,j.fi,j
a;, ;di ;  a; jbi ; %a?yj 0---0 a;jei; a;jci; 0.0 a‘,;,]’{)i,]’
n—2 n—2 n—2 :
0 _ 0 0
A[/Yi,j — 2 n—2 . n—1 (10)
dijjeij bijei; aijeij 0---0 el cijei; 0---0 eijfi;
Ciogdivy bigeig angeng 000 ciges sl 00 eifi
n—1 n—1 n—1 :
0 0 0
n—2 n—1
—— —— 1 o
dijfi,; bisfiy aiifiy 0.0 e ifi; ciifi; 0.0 5 fi;
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(a) (d) (g) (i)

(c) () (i) (1)

Fig. 2. Results for the ettersimage. (a) Three-dimensional plot of the true depth, (b) 3-D plot of the recovered depth from Lee and Kuo's algorithm,
(c) 3-D plot of the recovered depth from our algorithm, (d) range image of the true depth, (e) range image of Lee and Kuo's recovered depth, (f)
range image of our recovered depth, (g) shaded image for (b) using light sguicel, 1), (h) shaded image for (b) using light sour€k, —1, 1), (i)

shaded image for (b) using light sour¢g, 1, 1), (j) shaded image for (c) using light sour¢e-1, 1, 1), (k) shaded image for (c) using light source

(1, -1, 1), and (l) shaded image for (c) using light sourck 1, 1).

terms of (7) The process of one cycle for solving the linear systEm= w,
can be described as follows.

n—ln-l 1) Initialization: Start at the finest gridé (% indicates the spacing
n= gi ;. between pixels).
i=0 j=0 2) Presmoothing:Apply a relaxation method to compute an ap-
proximate solution,z,, to Tz, = wp, on grid A, with z;,
The minimization of (9) is done by solving the linear system initially zero.
Tz = w. 3) Coarse-Grid Correction:
Ill. MULTIGRID TECHNIQUE a) Compute the residual on grid +, = T2, — ws.
The multigrid method [18] was first introduced by Brandt in the b) Reduce gridh into H.
early 1970's for so!vmg elliptic partlgl dlﬁgrentlal equatlgns (PDE s).. c) Restrictry, (on the fine gridh) into 77 (on the coarse
It is a fast technique to solve either linear or nonlinear elliptic grid H): 11 = R(r)
problems; we are looking for a solution to a linear problem. e o )
The basic idea behind the multigrid method is to combine a ~ d) If H is the coarsest grid, use an exact solver to obtain a
traditional relaxation method with coarse-grid correction, so that the solution Zy; for Ty 2y = ry on grid H. Go to (f).
error generated in the finer grid can be corrected in the coarser grid e) Obtain a solutionfy for Tyzyg = ry on grid H.
to yield a more efficient, and accurate, solution. The number of grid Recursively repeat (2) through (4) for coarser grids.
levels, L, in one iteration of the multigrid method is determined by f) Upon returning from the recursion, prolongate the cor-

the size of the imagey, to beL = log, n—1. The multigrid method
can be performed iteratively by using the solution from the previous
iteration as the initial value for the next. One iteration of the multigrid g) Correct the solution on griél: Z, = Zx + AZ.

method, from the finest grid to the coarsest and back to the finest,

is called a cycle. There are different structures for the cycle [18]. 4) Post-SmoothingTake Z, as initial value, apply a relaxation
We use the V-cycle structure since it is simple to implement, yet  method to refine the approximate solutian, to Ty z, = wp,
provides reasonably good results. on grid h.

rection to a finer gridAz, = P(Zm).
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(c) (f) (i) (1)

Fig. 3. Results for thePennyimage. (a) Three-dimensional plot of the true depth, (b) 3-D plot of the recovered depth from Lee and Kuo's algorithm,
(c) 3-D plot of the recovered depth from our algorithm, (d) range image of the true depth, (e) range image of Lee and Kuo’'s recovered depth, (f)
range image of our recovered depth, (g) shaded image for (b) using light s@ur8e 7), (h) shaded image for (b) using light source5, —5, 7), (i)

shaded image for (b) using light sour¢e-5, 5, 7), (j) shaded image for (c) using light sour¢a, 5. 7), (k) shaded image for (c) using light source

(=5, =5, 7), and (I) shaded image for (c) using light source5, 5, 7).

In our multigrid implementation, Gauss—Seidel was used for both TABLE |
the relaxation method and exact solver. Full-weighting restriction MEAN p—q ERROR FOR SYNTHETIC IMAGES

1 1 1
6 8 16 i Images

R: 11 1 (11) Methods 1 Letters } Penny
§ 4 8
1 1 1 Lee & Kuo 0.266687 | 1.135478
16 8 16 Proposed method 0.22 | 0.47092

was applied to transfer the residual from finer grids to coarser grids,
and bilinear prolongation

of coarse-to-fine-correction in the multigrid techniqgue makes even
one cycle meaningful. The smoothing factowas chosen as 2000.
(12)  The maximum number of iterations for Gauss—Seidel is 500. The
initial heights were chosen as zero for all tests. In order to show
the performance, the top view of the 3-D plots of the recovered
Jlseights are presented. In addition, we also compute the mean surface
orientation error for results on synthetic images and compare our
algorithm with Lee and Kuo's.
We first show the results for the proposed algorithm on two
IV. ResuLts synthetic imagesLetters and Penny (Fig. 1). Lettersis generated
Among existing SFS techniques, Lee and Kuo's approach is offem the synthetic depth of a text string “TEST” with light source
of the newest and provides very good results. They also applied tfieection(—1, 1, 1), andPennyis generated from the range data of
multigrid technique. Therefore, we implemented their algorithm aral penny with light source directio(®, 5, 7). Both images are 128
compared the results with ours. by 128.
The results for our algorithm are given after one multigrid cycle; Fig. 2 shows results for theettersimage It contains 3-D plots of
since the results after one cycle are already accurate enough, any ekiatrue depth, the reconstructed depth from our algorithm and Lee
cycles will not yield significant improvement. However, the propertand Kuo's (all of them have the same view); range images for the true

[ B e N e N
N = = N
[ B R N e N

was applied to make the correction from coarser grids to finer gri
At each level, the size of the grid is reduced by half.
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(d)

(i) () (k) @

Fig. 4. Results for real images. (Mask[the estimated light source direction (is-0.479 847, —0.907563, 1)], (b) Mannequin[the estimated light source
direction is(—0.345, 0.345, 0.875)], (c) Lenna[the estimated light source direction (i$.5, 0.866, 1)], (d) David [the estimated light source direction is
(—0.707, 0.707, 1)], (e)-(l) 3-D plots of the recovered height from Lee and Kuo’s algorithm [(e)—(h)], and from our algorithm [(i)—(])].

TABLE 1
CPU TIME (IN SECONDY
Images
Methods Letters | Penny | Mask | David Lenna | Mannequin
Lee & Kuo 249.01 | 2678.29 | 2543.87 | 1077.22 | 14546.79 2366.25
Proposed method 387.14 | 374.37 | 397.58 | 814.39 | 1215.19 1424.67

depth and the reconstructed depths from both algorithms; and shadszbnstructed depth is first rescaled according to the true depth, then
images of the true depth and both reconstructed depths using ¢heiscrete approximation is used to estimate the surface gradient.
original, the opposite, and the orthogonal light sources respectivelable | indicates that our results have approximately 18 to 59%
Similarly, Fig. 3 shows the results fé?enny. less error than Lee and Kuo'dettersimage is quite simple as
From the results foketters,we can see that our algorithm providesexpected error is much less than tRennyimage. Also note that
a more accurate recovery. This can clearly be seen from the ratige light source directions are different in both cases. The depth error
images, since each range image is scaled from the depth data intoisheot computed here since a single peak or valley point (outlier)
range [0, 255] to provide more contrast. The recovery of the bottom the recovered depth may cause big error due to the shift in the
two letters from Lee and Kuo’s algorithm can hardly be seen in theienormalization.
3-D plot due to oversmoothing, while our algorithm recovers all of The remaining results are given for four real images with
the letters reasonably well. The shaded images, generated from ter light source directions estimated by Lee and Rosenfeld’s
reconstructed depth, are also better. method [10]: Mask [the estimated light source direction is
For Penny,Lee and Kuo’'s method loses a lot of detail, which(—0.479847, —0.907 563, 1)], Mannequin [the estimated light
causes the shaded output image to appear blurry. Moreover, the 3dbrce direction ig—0.345, 0.345, 0.875)], Lenna [the estimated
plot shows that their algorithm recovers a twisted background of tlight source direction ig1.5, 0.866, 1)], and David [the estimated
penny. On the other hand, our algorithm does not seem to exhiliht source direction i$—0.707, 0.707, 1)]. The sizes oMannequin
any of these problems. and Lennaare both 256 by 256, and the sizes@évid and Mask
To further analyze the results of the two algorithms, we compasge 128 by 128. The results for Lee and Kuo’s algorithm, and for
them in terms of the mean surface gradient error (Table I). Tloair own algorithm, are shown in Fig. 4. Since a small error in the
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depth can cause a big error in the surface orientation, especially[ia] S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,”

the case of noisy real images, the shaded versions of the recovered in Proc. Int. Conf. Computer Visior,990, pp. 1-11. _
depth for the real images are not included here [13] —, “Surface reflection: Physical and geometrical perspectivEE£E

A . . Trans. Pattern Anal. Machine Intellvol. 13, pp. 611-663, July 1991.
For Mask, Mannequinand David, the recovered heights from Lee [14] J. Oliensis, “Shape from shading as a partially well-constrained prob-

and Kuo's algorithm are very flat, even for smalzalues. In contrast, lem,” Comput. Vision, Graph., Image Processal. 54, pp. 163-183,
our algorithm gives very good, detailed height information Néask 1991. ' _ _
andDavid. It also provides much more detail ftannequindespite  [15] J. Oliensis and P. Dupuis, “A global algorithm for shape from shading,”

. . , - in Proc. Int. Conf. Comput. Visior],993, pp. 692-701.
the noise at the object boundary. Lee and Kuo's algorithms recoverﬁ | A. Pentland, “Shape information from shading: A theory about human

very good height information for the real imagenna,but details perception,” inProc. Int. Conf. Computer Visiori,988, pp. 404-413.

are missing. Our result fdrennashows accurate details. The rough17] A. P. Pentland, “Local shading analysidEEE Trans. Pattern Anal.

height recovered in the area bénnas hair is due to the change in Machine Intell.,vol. PAMI-6, pp. 170-187, 1984. _

albedo, which violates the constant albedo assumption. (18] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
\ . Numerical Recipes in C.Cambridge, U.K.: Cambridge Univ. Press,

Although both Lee and Kuo's and our algorithms employ the 1990

multigrid technique, our method is significantly faster than Lee ard9] E. Rouy and A. Tourin, “A viscosity solutions approach to shape from

Kuo's in all cases except fdretters,no matter what threshold is used shading,”SIAM J. Numer. Analyol. 29, no. 3, pp. 867-884, 1992.

for Gauss—Seidel. This can be seen in Table II. The speedup rank@$ R. Szeliski, “Fast shape from shading;omput. Vision, Graph., Image

. . Process.vol. 53, pp. 129-153, 1991.
from 6.4 for theMaskimage to 1.6 for theVlannequinimage. The [21] D. Terzopoulos, “Multilevel computational processes for visual surface

analysis was done on a Sun SPARC 4. reconstruction,'Comput. Vision, Graphics, Image Processl. 24, pp.
52-96, 1988.

[22] P. S. Tsai and M. Shah, “Shape from shading using linear approxima-
tion,” Image Vision Comput. Jvol. 12, no. 8, pp. 487—498, 1994.

We presented a new SFS algorithm, which replaced the traditiorja] Q. Zheng and R. Chellappa, “Estimation of illuminate direction, albedo,
brightness constraint with an intensity gradient constraint based on and shape from shading|EEE Trans. Pattern Anal. Machine Intell.,
the fact that the direction of the intensity gradient is the direction in Vol 13. pp. 680-702, July 1991.
which the shape changes the most. The results have shown that our
algorithm has robust performance for different images, and that it is
more efficient than the existing multigrid SFS technique.

V. CONCLUSION

ACKNOWLEDGMENT Fast Implementation of Forward Robot Kinematics of

The authors would like to thank Prof. Kuo and Dr. Lee of USC for Position with Distributed Arithmetic Architecture

their helpful discussions and for providirenny, LennaandDavid B. G. Mertzios and G. K. Grigoriadis

images. The authors would also like to thank Dr. Leclerc of Artificial

Intelligence Center, SRI International, for providing thtannequin
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[2] M. Bichsel and A. P. Pentland, “A simple algorithm for shape fro mplemented in the distributed arithmetic technique by using auxiliary

P } o inary functions, which are stored in look-up tables. The digit-serial
shading,” in Proc. IEEE Computer Vision Pattern Recognitiat§92, configuration of the proposed implementation is described. The serial

REFERENCES

pp. 459-465. ) X .

[3] R. Kimmel and A. M. Bruckstein, “Shape from shading via level sets and the parallel configurations may result as special extreme cases of the
Israel Institute of Technology, CIS Rep. 9209, 1992. digit-serial configuration.

[4] M. J. Brook and B. K. P. Horn, “Shape and source from shading,” in |ngex Terms— Digit-serial ~configuration, distributed ~ arithmetic,
Proc. Int. Joint Conf. Artificial Intelligencel985, pp. 932-936. forward kinematics of position, matrix-matrix-multiplication (MMM),

[5] P. quuis f';\nd J. Oliensis, “Direct meth_od for reconstructing_shape frofﬂatrix—vector—muItiplication (MVM), pipelining.
shading,” inProc. IEEE Computer Vision Pattern Recognitiat92,
pp. 453-458.

[6] B. K. P. Horn, “Shape from shading: A method for obtaining the shape I
of a smooth opaque object from one view,” Ph.D. dissertation, Mass. ’
Inst. Technol., Cambridge, 1970. ' Robotics manipulators are articulated chains of rigid bodies (links),

7] \B/- K. P. H%;n,%giellggtgand gradient from shadingifit. J. Comput. which are connected serially by joints. One end of the chain is

ision, pp. 37-75, . . : . .

8] K. |keu’§ﬁi and B. K. P. Hom, “Numerical shape from shading angttached to a supporting base where a inertial frame (the base) is
occluding boundaries Artif. Inteli.,vol. 17, no. 1-3, pp. 141-184, 1981, established, while the other end (the end-effector) is free, in order

[9] Y. G. Leclerc and A. F. Bobick, “The direct computation of height fromto accomplish the manipulation tasks. Forward (direct) kinematics

shading,” inProc. IEEE Computer Vision Pattern Recognitidt®91, deals with the problem of determining the position of the end-effector

INTRODUCTION

pp. 552-558. . N from a given set of joint coordinates. Inverse kinematics addresses the
[10] C. H. Lee and A. Rosenfeld, “Improved methods of estimating shape

from shading using the light source coordinate systeArtif. Intell., Manuscript received June 26, 1994; revised April 14, 1996.

vol. 26, pp. 125-143, 1985. The authors are with the Department of Electrical and Computer Engineer-

[11] K. M. Lee and C. C. J. Kuo, “Shape from shading with a linear triangulang, Automatic Control Systems Laboratory, Democritus University of Thrace,
element surface modellEEE Trans. Pattern Anal. Machine Intelupl.  GR-67 100 Xanthi, Greece (e-mail: mertzios@demokritos.cc.duth.gr).
15, pp. 815-822, Aug. 1993. Publisher Item Identifier S 1083-4427(99)01456-3.

1083-4427/99$10.00 1999 IEEE



