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1. Introduction

With the sophistication of artificial vision systems, the need to endan-
ger human lives for many hazardous activities is increasingly proving to
be avoidable. From aerial reconnaissance missions to space exploration,
many projects stand to benefit, in particular, from the sophistication in
techniques to precisely find world positions of objects present in video
data. Unfortunately, mechanical automation of such a task is compli-
cated by the narrow fields of view of video data and the inaccuracy of
mechanical information available describing the position of the camera
in the world. Instead, computer vision techniques can be used to success-
fully align any given video frame with pre-calibrated reference imagery.
After alignment, a video frame inherits pixel-wise calibration and as a
consequence objects in the frame are exactly placed in the world. This
ability to accurately position objects like buildings, roads, landing sites
and spatial landmarks in general, facilitates precise automation of ac-
tions that previously required human intervention. The core challenge
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then is to develop techniques to autonomously align video sequences to
pre-calibrated reference imagery.

Significant research effort has been expended towards frame-to-frame
registration (the spatial alignment of successive frames of a video se-
quence) and it is now largely acknowledged to be a solved problem.
However, frame-to-frame registration techniques are not easily general-
ized to frame-to-reference registration (alignment of video frames with
pre-calibrated reference imagery), since the reference image may be cap-
tured from a different viewpoint, through a different modality or at
a different time altogether. As a result, the mapping between corre-
sponding pixels in the frame and reference is often highly complex and
unmodelled. In particular, the large duration of time that may elapse
between capturing of the reference and the video frame can produce
distortions from extreme change in illumination to the total absence of
certain visual features in either one of the two images. Furthermore,
inconsistencies of textured areas like forests or plateaus may be intro-
duced due to seasonal changes, due to changes in illumination or simply
because of intrinsic differences in cameras. Clouds, blurring, and oc-
clusion by vehicle parts may exacerbate these problems even further.
As these problems are not encountered in frame-to-frame registration
problems, related registration techniques do not take them into consid-
eration. Furthermore, from a conceptual point of view, however accurate
frame-to-frame registration may be, it can only provide positional infor-
mation of a given object relative to the camera. In order to accurately
recover the absolute position of an object in the world (in the form of
geo-coordinates or any fixed world coordinates), some accurate standard
of reference is required.

However, despite these limitations, the framework for frame-to-frame
registration is useful in approaching frame-to-reference registration as
well. Image registration, in general, can be defined as a search for the
ideal spatial transformation between two images. If I1(~x) and I2(~x) are
the two image arrays, their relationship is defined as

I1(~x) ≡ I2(f(~x)), (7.1)

where f(~x) is the set of allowable transforms for each image I2(~x).
Within the taxonomy of [14], parametric alignment is achieved by a
search over the transformation parameters, ~p, that would maximize some
global measure of ‘fit’ or similarity, between I1(~x) and I2(W (~x; ~p)), where
W (~x; ~p) is the set of allowable parametric transformations.

The situation addressed in this chapter is the geo-registration of an
incoming video frame with precisely calibrated reference imagery. The
video frame is captured by a camera mounted on an aircraft and is re-
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Figure 7.1. Aerial Photograph Classifications. Depending on the angle of the optical
axis the aerial photograph can be classified into one of the following three categories:
Nadir, High Oblique and Low Oblique.
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ferred to as the Aerial Video Frame, Ivideo(~x). As shown in Figure 7.1,
the angle at which an aerial photograph is taken is often used to clas-
sify the photograph into one of three types: Nadir, High Oblique and
Low Oblique. Photographs are classified as Nadir when the camera axis
points directly downwards, as High Oblique when the camera axis makes
a large angle with the ground and Low Oblique when the horizon is visi-
ble in the photograph. These angular differences are computed using the
position and attitude of the camera relative to a point in the real world
which is detailed in the telemetry (meta-data) accompanying each video
frame. Telemetry is an automatic measurement of data that defines the
position of the camera in terms of nine parameters: vehicle latitude,
vehicle longitude, vehicle height, vehicle roll, vehicle pitch, vehicle head-
ing, camera elevation, camera scan angle and camera focal length. This
telemetry information can be used in conjunction with a sensor model
to place the video frame relative to the Reference Imagery in a world
coordinate (or vice versa). The Reference Imagery is a high-resolution
orthographic image, usually with a Ground Sampling Distance of ∼1
(meaning a pixel corresponds to 1 m2 on ground). This Reference Im-
agery is geodetically aligned, and has an associated Digital Elevation
Map (DEM), so that each pixel of the Reference Imagery has a precise
longitude, latitude, and height associated with it. Figure 7.2 pictorially
explains the nature of the Reference Imagery available along with its as-
sociated DEM. The Reference Imagery, which covers a substantial area,
is cropped on the basis of the telemetry data to a smaller area corre-
sponding to Ivideo(~x) (see Figure 7.4). This Cropped Reference Image
is subsequently referred to as Iref (~x).

There are several challenges specific to Aerial Video Geo-Registration
that can be identified individually. First, it should be noted that the
two imageries are in different projection views: Ivideo(~x) is an image
of perspective projection, whereas Iref (~x) is an image of orthographic
projection. While the telemetry information can be used with a sen-
sor model to bring both images into a single projection view, telemetry
noise present at high altitudes can cause geo-positioning errors of up
to 100m. Second, because of the large duration of time that elapses
between the capturing of the two images, data distortions like severe
lighting and atmospheric variations and object changes in the form of
forest growths or new construction cause a high number of disjoint fea-
tures (features present in one image but not in the other). Third, it
should also be noted that remotely sensed terrain imagery, in particu-
lar, has the property of being highly self-correlated both as image data
and elevation data. This includes first order correlations (locally similar
luminance or elevation values in buildings), second order correlations
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Figure 7.2. The Reference Imagery and its associated DEM. The Reference Imagery
is geodetically aligned, i.e. each pixel has a longitude, longitude, and elevation asso-
ciated with it. (a) The Reference Image is a high-resolution intensity array (6856 x
8292) with each pixel corresponding to 1m2 in the real world. (b) The Digital Eleva-
tion Map (DEM) is of lower resolution compared to the Reference Imagery but can
be interpolated to provide an elevation for each reference image pixel. Array elements
of higher elevation are shown to have brighter intensity values. (c) The 3 dimensional
display of the texturized elevation map. The axes are 102 m i.e. 1 pixel corresponds
to 1m2 in the real world.



146

Figure 7.3. Draping an Aerial Video Frame. A video frame is registered in the real
world with the reference image. As the geodetic position of each pixel in the reference
image is accurately known, the corresponding pixels in the aerial image inherit this
information.

(edge continuations in roads, forest edges, and ridges), as well as higher
order correlations (homogeneous textures in forests and homogenous el-
evations in plateaus). Therefore, a central challenge in achieving precise
geo-registration is the reliable handling of the outliers caused by the data
distortions and ambiguities that have been described in this paragraph.

The objective of this work is to recover a meaningful adjustment of
the sensor parameters based on the spatial registration of Aerial Video
Frames with Reference Imagery. Furthermore, pixel-wise assignment of
precise three-dimensional locations can be computed for an incoming
video frame as it would be aligned with the geodetically calibrated Ref-
erence Imagery. The overlaying of a registered frame on the reference
environment is illustrated in Figure 7.3. Figure 7.4 shows the difference
between the Aerial Video Frame and the Reference Image, and success-
ful geo-registration between the two. It can be observed that not all
buildings present in the Aerial Video Frame are present in the Reference
Image and vice versa. Thus such ‘geo-registration’ can be effectively
used for updating aerial maps, accurate targeting and providing accu-
rate geo-locations for objects of interest. Geo-registration can be used
for creating geo-mosaics [30] and annotation of video data as well [25].

The remainder of this chapter is structured as follows. Section 2
reviews and categorizes related work. Section 3 discusses procedures
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Figure 7.4. Registration of the Aerial Video Frame with the Cropped Reference
Image. (a) Based on the telemetry data, that specifies the corresponding area of the
Reference Imagery the camera is capturing, the Reference Image is cropped. (b) The
aerial video frame before and (c) after geo-registration with the Cropped Reference
Image. It should be noted that the Reference Image is an Orthographic Image while
the Aerial Video Frame is a Perspective Image.
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employed in bringing both images into a common viewing space. Section
4 describes the processes involved in the geo-registration of images, which
is followed by a discussion of the results and conclusion in Sections 5 and
6, respectively.

2. Related Work

In the past, substantial research has been directed towards determin-
ing the geo-location of objects from an aerial view. Several systems such
as Terrain Contour Matching (TERCOM) [2], SITAN, Inertial Naviga-
tion/Guidance Systems (INS/IGS), Global Positioning Systems (GPS)
and most recently Digital Scene-Matching and Area Correlation (DS-
MAC) have already been deployed in applications requiring geo-location.
While each of these systems has had some degree of success, several
shortcomings and deficiencies have become increasingly apparent. By
understanding the limitations of these systems, we can acquire a better
appreciation for the need of effective image-based systems.

As the name suggests, TERCOM (Terrain Contour Matching) fixes
the position of airborne vehicles by matching elevation contours detected
by radar, with stored digital contour data. TERCOM operates on the
premise that the elevation contours of a given terrain area uniquely dis-
tinguish it from any other. This premise is evidently violated in plateaus
and wherever terrain relief is below sensor detection capability, as well as
areas containing ridge-like relief (the aperture effect). Moreover, systems
like TERCOM are not a ‘passive’ means of geo-location as they require
the emission of interceptable electromagnetic emission. One passive al-
ternative is INS, which is a gyroscopic-based technology that has the
ability to accurately measure telemetry information of an airborne ve-
hicle. However, despite the fact that this system produces only slight
errors, these errors are cumulative and furthermore the most accurate
systems are usually too expensive for widespread use. Global Position-
ing Systems are a reliable and cheaper alternative that use the concept
of trilateration to estimate the position of a GPS receiver, however GPS
systems are susceptible to interference and may be blocked altogether.

Although the aforementioned technologies were able to revolutionize
many military and domestic functions, the problems highlighted here
motivated the advent of image-matching techniques to exactly recover
the position of an airborne vehicle in the real world. Image-based geo-
location has two properties in particular that motivate its use: First,
it is a passive positioning approach, i.e. it does not rely on electro-
magnetic emission that may be distorted or blocked. Second, it allows
geo-positioning per frame, so the small errors that may be incurred are
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not cumulative. One example of a deployed image-based technology
is DSMAC. It converts the scenes picked up by the missile’s camera
to simplistic binary images, and cannot rotate or scale images. Due
to this crudeness of the matching model this attempt has had limited
field success. It was quickly realized that even small mechanical vi-
brations that are commonplace on such vehicles could cause significant
error in high altitude cameras, and therefore solving the resulting prob-
lem of image alignment was a difficult one. As a result, many assorted
approaches of aligning images to recover geo-location information, or
‘geo-registration’ as it is often called, have subsequently been proposed,
some strictly using computer vision concepts, and others implicitly in-
corporating earlier contour matching and inertial navigation concepts
into their geo-registration algorithms.

Two types of approaches can be distinguished: Elevation-Based Cor-
respondence and Image-Based Correspondence. Elevation-Based ap-
proaches have the general drawback that they rely on the accuracy of
recovered elevation from two frames, a task found to be notoriously diffi-
cult. Furthermore the contour-based approach in [13] is unlikely to find
correct matches in areas of self-correlated elevation like plateaus and
ridges when correspondence is difficult to establish. On the other hand,
the research literature of image-based correspondence is quite vast; [15]
is a general survey of some of these registration techniques. However,
conventional techniques are liable to fail because of the inherent differ-
ences between the two imageries. ‘Direct methods’ of alignment typically
minimize a parametric error function specified in terms of some image
measurable quality such as brightness constancy (corresponding pixels
will have equal intensity values as in [14], [17]). These methods are li-
able to fail since many corresponding pixels are often dissimilar. In such
a case, there is little statistical correlation between the imageries glob-
ally. Alignment by maximization of Mutual Information [20] is another
frequently used registration approach, and while it provides high levels
of robustness it also allows many false positives when matching over a
search area of the nature encountered in Geo-Registration. Furthermore,
formulating an efficient search strategy is difficult. On the other hand,
specific to geo-registration, several intensity based approaches to geo-
registration intensity have been proposed. We will investigate previous
work on geo-registration subsequently, followed by a description of our
work.
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2.1 Elevation Based Geo-Registration

Elevation based algorithms attempt to achieve alignment by matching
the DEM with an elevation map recovered from video data. Rodrequez
and Aggarwal in [13] perform pixel-wise stereo analysis of successive
frames to yield a recovered elevation map or REM, as the initial Data
Rectification step. Next, to bring the REM and DEM into a common
representation both are converted into ‘cliff maps’, which are the con-
tours of zero crossings of the elevation map after convolution with a
Laplacian of Gaussian Filter. Along these cliff contours (expressed in
terms of chain code), local extrema in curvature are detected to define
critical points. To achieve correspondence, each critical point in the
REM is then compared to each critical point in the DEM. A hypoth-
esis/verification scheme is used, where a match is hypothesized if the
mean squared error between the REM and DEM critical point neigh-
bourhood is small. From each hypothesis instance, a transformation
between REM and DEM contours can be recovered. After transforming
the REM cliff map by this transformation, alignment verification is per-
formed by finding the fraction of transformed REM critical points that
lie near DEM critical points of similar orientation. While this algorithm
is highly efficient and lends itself easily to real-time implementation,
it runs into similar problems as TERCOM i.e. it is likely to fail in
plateaus, ridges and depends highly on the accurate reconstruction of
the REM. Recovering elevation from stereo is a challenging task and no
relevant solution was proposed. In [31], Sim and Park propose another
geo-registration algorithm that reconstructs a REM from stereo analysis
of successive video frames. Normalized Cross Correlation based point-
matching is used to recover the elevation values. Both elevation maps
are rectified into a relative elevation map with respect to a pre-defined
maximal feature point. To establish correspondence, a set of sample
feature points are selected along a fixed row with equal intervals and
a search area of 5x5 pixels is defined between the relative REM and
DEM. For each possible match, an evaluation of cumulative difference
between the relative REM at each feature point, and the associated rel-
ative DEM at the search instance is computed. The translation that
minimizes this cumulative difference is then chosen to be the correspon-
dence between the REM and DEM. In another approach proposed by
the same group ([18]) a relative position estimation algorithm is applied
between two successive video frames, and their transformation is recov-
ered using point-matching in stereo. As the error may accumulate while
calculating relative position between one frame and the last, an absolute
position estimation algorithm is proposed using image based registration



Alignment of Aerial Video Frames 151

in unison with elevation based registration. The image based alignment
uses Hausdorff Distance Matching between edges detected in the images.
The elevation based approach estimates the absolute position, by calcu-
lating the variance of displacements. These algorithms, while having
been shown to be highly efficient, restrict degrees of alignment to only
two (translation along x and y), and furthermore do not address the
conventional issues associated with elevation recovery from stereo.

2.2 Intensity Based Geo-Registration

Intensity-based approaches to geo-registration use intensity properties
of both imageries to achieve alignment. Work has been done develop-
ing image-based techniques towards registration of two sets of reference
imageries [16], as well as the registration of two successive video images
([14], [17]). However, it was found that for frame-to-reference registra-
tion a different set of issues needed to be tackled. As the video data and
the reference imagery are usually in different projection views the initial
view rectification module is usually required. In [27], Cannata et al use
the telemetry information to bring a video frame into an orthographic
projection view, by associating each pixel with an elevation value from
the DEM. As the telemetry information is noisy the association of eleva-
tion is erroneous as well. However, for aerial imagery that is taken from
aircrafts of nadir orientation the rate of change in elevation may be as-
sumed low enough for the elevation error to be small. By ortho-rectifying
the aerial video frame, the process of alignment is simplified to a strict
2D registration problem. Correspondence is achieved by taking 32 × 32
pixel patches uniformly over the aerial image and correlating them with
a larger search patch in the Reference Image, using Normalized Cross
Correlation. As the correlation surface is expected to have a significant
number of outliers, four of the strongest peaks in each correlation surface
are selected and consistency measured to find the best subset of peaks
that can be expressed by a four parameter affine transform. Finally, the
sensor parameters are updated using a conjugate gradient method, or
by a Kalman Filter to stress temporal continuity.

An alternate approach is presented by Kumar et al in [22] and by
Wildes et al in [29] following up on that work , where instead of ortho-
rectifying the Aerial Video Frame, a perspective projection of the asso-
ciated area of the Reference Image is performed. This approach avoids
the errors involved in associating elevations with each aerial video pixel
on the basis of the telemetry information and therefore does not make
any assumptions about the rate of change of the elevation information.
In [22], two further data rectification steps are performed. Video frame-
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to-frame alignment is used to create a mosaic providing greater context
for alignment than a single image. For data rectification, a Laplacian
filter at multiple scales is then applied to both the video mosaic and
reference image. To achieve correspondence, two stages of alignment are
used: coarse followed by fine alignment. For coarse alignment salient
(feature) points are defined as the locations where the response in both
scale and space is maximum. Normalized correlation is used as a match
measure between salient points and the associated reference patch. One
feature point is picked as a reference, and the correlation surfaces for
each feature point are then translated to be centered at the reference
feature point. In effect, all the correlation surfaces are superimposed,
and for each location on the resulting superimposed surface, the top k

values (where k is a constant dependant on number of feature points)
are multiplied together to establish a consensus surface. The highest
resulting point on the correlation surface is then taken to be the true
displacement. To achieve fine alignment, a ‘direct’ method of alignment
is employed, minimizing the SSD of user selected areas in the video and
reference (filtered) image. The plane-parallax model is employed, ex-
pressing the transformation between images in terms of 11 parameters,
and optimization is achieved iteratively using the Levenberg-Marquardt
technique.

In the subsequent work, [29], the filter is modified to use the Laplacian
of Gaussian filter as well as it’s Hilbert Transform, in four directions to
yield four oriented energy images for each aerial video frame, and for
each perspectively projected reference image. Instead of considering
video mosaics for alignment, the authors use a mosaic of 3 ‘key-frames’
from the data stream, each with at least 50 percent overlap. For cor-
respondence, once again a local-global alignment process is used. For
local alignment, individual frames are aligned using a three-stage Gaus-
sian pyramid. Tiles centered around feature points from the aerial video
frame are correlated with associated patches from the projected reference
image. From the correlation surface the dominant peak is expressed by
its covariance structure. As outliers are common, RANSAC is applied
for each frame on the covariance structures to detect matches consistent
to the alignment model. Global alignment is then performed using both
the frame to frame correspondence as well as the frame-to-reference cor-
respondence, in three stages of progressive alignment models. A purely
translational model is used at the coarsest level, an affine model is then
used at the intermediate level, and finally a 2D projective model is used
for alignment. To estimate these parameters an error function relat-
ing the Euclidean distances of the frame-to-frame and frame-to-reference
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correspondences is minimized using the Levenberg Marquardt Optimiza-
tion.

The major limitation of the intensity based approaches are the as-
sumptions that are made. In [27] such an assumption is made implicity
through the choice of an orthographic system model, since the error of
ortho-rectification increases with the magnitude of terrain relief. While
such an error is avoided by use of perspective projection in [29], strong
assumptions of scene planarity are made during correspondence, first
with a translational local matching, followed by the progressive pyramid
proposed. Though these assumption may hold in many cases, and they
may simplify computation significantly, they are liable to introduce error
when scene relief increases. Furthermore, since generic transformation
models are being used, transformations that are not physically realizable
(like single dimensional shears or scalings) are included within the set of
allowable transformations that is searched.

2.3 Our Work

In this chapter, we outline a method to recover geodetic alignment for
a video sequence, while plausibly adjusting the sensor telemetry param-
eters. An intensity-based approach was favored over an elevation-based
one because recovering elevation from a video sequence has proven to
be unreliable, particularly when the scene is as highly self-correlated as
aerial video often is. A salient aspect of earlier work in intensity-based
approaches was the generation of local correlation surfaces by translat-
ing a template. Instead of imposing such a strict translational constraint
on motion so early on in the alignment estimation process, we propose
an algorithm that computes local similarity measures, and utilizes them
to directly estimate global similarity. Since we do not generate similar-
ity surfaces, our method can recover larger rotation, shear and scaling
and does not degenerate when higher order parametric models of motion
are used or when scene relief is high. We correct the correlation coef-
ficient to allow coefficient addition by the use of Fisher’s Z-transform
and detail a modification of the error function to inherently allow op-
timal registration in the presence of outliers caused by disjoint features
or the dissimilarity in sensors. Finally, since the estimation procedure
is performed by adjustment of the telemetry parameters, an update of
telemetry information is output, along with pixel-wise calibration of the
aerial video image. The general workflow is diagrammatically expressed
in Figure 7.5.
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Figure 7.5. The Geo-registration Work-Flow. This diagram gives a general overview
of the inputs, processing and output of the proposed algorithm. δp is the iterative
sensor parameter update predicted by the optimization algorithm.
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3. Rectifying the Projection View

Since the aerial video data is a sequence of perspective images and the
Reference Imagery is high-resolution orthographic image, the transfor-
mation between any arbitrary video frame and the reference image can
be quite large. As a result, robustly recovering these transformations is a
difficult and unsolved task, even when the images have high visual simi-
larity. Fortunately, each aerial video frame is accompanied by telemetry
(meta) data detailing the position and orientation of the sensor (cam-
era). By using the telemetry and elevation data to generate a sensor
model, the two imageries can be projected into a common projection
view. Ideally, if the telemetry data were noiseless, there would be no
need for further correspondence, but due to mechanical vibrations and
turbulence, image rectification using the telemetry provides only coarse
alignment. While the estimate provided by the telemetry information
is sufficiently close to make the problem tractable, the visual differences
between the images are still acute enough to make the precise adjust-
ment a challenging task. In this section we compare two approaches to
bringing the images into a common projection view: ortho-rectification
and perspective projection, followed by details involved in using the
telemetry information to bring both image into a common view projec-
tion (shown in Figure 7.6). Such projection constitutes the first module
of our geo-registration algorithm.

3.1 Ortho-rectification vs Perspective Projection

Image projections (transformations of the 3D world onto a 2D projec-
tion plane) are either perspective or parallel. The distinction between
these two projections is the position of the center of projection relative
to the image plane. In perspective projection, the center of projection
lies close to the image plane and therefore the lines of projection (all of
which converge at the center of projection) may meet the image plane at
different angles (i.e. they are not parallel). The visual manifestation of
this phenomenon is perspective fore-shortening, where objects at larger
distances appear smaller than similar objects up close. In parallel pro-
jection views, like orthographic projection, a line at infinity is defined,
and the center of projection is said to lie on that plane. The projec-
tion lines are therefore parallel, since they all ‘intersect’ at the plane at
infinity. Figure 7.7 (a) and 7.7 (b) illustrate the differences between
both projections. Since the aerial video data is received from a camera
mounted on an aircraft, it is a perspective image. On the other hand,
the Reference Image is a high-resolution photograph taken from high al-
titude cameras, available as an orthographic image (in parallel view). To
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Figure 7.6. Projection Views. Top Left: Original Aerial Video Image in Perspective
View. Bottom Left: An orthographic view of the Aerial Video Image. Bottom Right:
Cropped Reference Image in Orthographic View. Top Right: Perspective View of
Reference Image.
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analyze both images in a common projection view, two options emerge:
(1) An ortho-rectification of the Aerial Video Frame as in [27], or (2) a
perspective projection of the Reference Image as performed in [13], [22],
[29]. These two alternatives have already been shown in Figure 7.6 and
the spatial relationship between them is illustrated in Figure 7.7 (c).
Since the sensor and elevation model of the scene are available it is pos-
sible to perform such rectification of projection. Ideally, if the telemetry
and elevation information are accurate, both these projections should be
equivalent, but noise in the telemetry brings about certain differences in
each approach.

The general importance of Orthographic Projection is that this pro-
jection preserves both distances and angles, and there is no distortion of
shape or distance in any two-dimensional transformation. For purposes
of rectification, the utility of orthographic projection lies in its indepen-
dence from depth values of pixels. If both the Aerial Video Frame and
the Reference Image are projected as orthographic images, transforma-
tions can be restricted to two-dimensions, and these transformations are
easier to estimate robustly. It is also important to note that by definition
any two-dimensional transformation of an orthographic or accurately
ortho-rectified image should not reveal hidden surfaces, nor occlude cur-
rently exposed surfaces. The main drawback of working exclusively in
the orthographic view, however, is that the process of ortho-rectifying
the Aerial Video Frame requires the elevation values corresponding to
each image pixel. Since the telemetry is noisy, a projection error results
when each pixel is traced to the Digital Elevation Map (to recover its
elevation), and thus the projected ortho-rectified image will not strictly
be an accurate orthographic representation of the Aerial Video Frame.
This error can often be assumed to be negligible if the camera is nadir
or the environment is one of low elevation rate of change. However, for
environments of moderately high rates of change, and more so for low
flying aircrafts, such an assumption is often violated.

For the general case, inclusive of oblique cameras and environments
of high rate of change in elevation, this inaccuracy can be avoided al-
together if the Cropped Reference Image is instead perspectively pro-
jected. Since both the Digital Elevation Map and the Reference Image
are geodetically co-registered, the Reference Imagery can be used to tex-
turize the DEM (Figure 7.2), effectively assigning each reference pixel
an accurate elevation value (as far as the accuracy of the DEM allows).
Thus while viewing the Reference Image from the perspective projec-
tion view, the elevation value for each pixel is known and the view as it
should appear from the camera according to the telemetry information
can be generated accurately. The drawback involved with working in the
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Figure 7.7. Image Projections. (a) In perspective projection the projection lines
converge at the center of projection close to the image plane. (b) In Parallel projection
the projection lines remain parallel and converge at infinity. (c) The relationship
between the perspective projection lines and the parallel or orthographic projection
lines. To re-create an orthographic image from a perspective view, the corresponding
elevations of the perspective image pixels in the world are required.
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perspective projection view mainly pertain to an increase in complexity,
since accurately aligning large displacements requires the estimation of
three-dimensional transformations, and accuracy can be lost by making
assumptions of scene planarity. However, this nominal increase in com-
plexity is outweighed by the errors avoided in many potential situations.
Therefore, in the interest of maintaining a general framework for geo-
registration, we employ a perspective projection of the Reference Image.
It should be noted that if the perspective projection model is precisely
followed any transformation may expose hidden surfaces, or alternately
occlude exposed ones.

3.2 Perspective Projection of the Reference
Image

The first step in perspective projection is setting up the reference en-
vironment. The elevation data is triangulated to form a mesh-surface,
and subsequently texturized with the Reference Imagery. In this way,
each reference pixel is exactly calibrated with a latitude, longitude and
elevation. This accurate co-registration of the reference image and the
elevation map is the basis for perspective projection (which will be elab-
orated presently). Using information from the telemetry, the point of
intersection between the camera projection axis and the reference sur-
face is defined as the Reference Origin. A world coordinate system is
defined around this Reference Origin as

~Xworld = [Xworld, Yworld, Zworld]. (7.2)

Next, a sensor model is defined. The sensor (camera) is mounted on an
aircraft, and Figure 7.9(a) shows the camera’s 3-D coordinate system.
This camera coordinate system is defined, relative to the camera’s Center
of Projection, as

~Xcamera = [Xcamera, Ycamera, Zcamera]. (7.3)

Telemetry information is then used to recover the position and orien-
tation of the aircraft, with respect to the world coordinate system. This
relationship is expressed as

~Xcamera = Πt
~Xworld, (7.4)

where the coordinate transformation matrix Πt is
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Figure 7.8. Perspective Projection of the Reference Image. (a) The Aerial Video
Frame displays what the camera actually captured during the mission . (b) Or-
thographic Footprint of the Aerial Video Frame on the Reference Imagery (c) The
Perspective projection of Reference Imagery displays what the camera should have
captured according to the telemetry.
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, (7.5)

or more concisely,

~Xcamera = GyGzRyRxRzT ~Xworld, (7.6)

where Gy is a rotation matrix in terms of the camera elevation angle ω,
Gz is a rotation matrix in terms of the camera scan angle τ , Ry is a rota-
tion matrix in terms of the vehicle pitch angle φ, Rx is a rotation matrix
in terms of the vehicle roll angle β, Rz is a rotation matrix in terms of
the vehicle heading angle α, T is the translation matrix derived from the
vehicle latitude, longitude and height. The details of converting vehicle
longitude and latitude to meter distances from the given reference point
can be found using many cartographic texts and for the scope of this
paper, it is assumed that the vehicle displacements ∆Tx, ∆Ty and ∆Tz

are either available or have been computed. Figure 7.9(b) shows the
relationship between the camera and world coordinate systems. Once
the camera image plane has been placed, it is possible to establish cor-
respondence between Aerial Image Pixels and elevation data (DEM) by
use of a simple ray tracer. It is reiterated here that since the telemetry
data is noisy the correspondence yielded by the ray tracer is erroneous
as well.

Therefore, instead of ortho-rectifying the Aerial Image using erro-
neous elevation correspondence, we perspectively project the Reference
Image using the exact elevation correspondence (since it is co-registered
with the DEM). To achieve this perspective projection of reference co-
ordinates, we define the homogeneous reference coordinates as

~X
ref
world = [Xworld, Yworld, Zelev, 1], (7.7)

where zelev is taken from the co-registered DEM. Furthermore, the ho-
mogeneous perspective coordinates are defined as

~X
ref
perspective = [Xperspective, Yperspective, Zperspective, 1]. (7.8)
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Figure 7.9. Coordinate Systems. (a) The aircraft coordinate system is shown here.
This is the coordinate defined relative to an origin point in the world. For clarity, the
additional coordinate system of the camera relative to the aircraft has been omitted.
(b) The aircraft coordinate system shown relative to the origin in the real world.
Based on the parameters defined by the telemetry, the aircraft coordinate system is
placed in within the real world.
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Figure 7.10. The relationship between the camera plane and the projected area on
the reference imagery. Placing a bounding box on the extremities of the footprint
creates the cropped reference image.

Finally to project the reference image the following camera matrix is
used

~X
ref
perspective = Πc

~X
ref
world, (7.9)

where Πc is the Camera Matrix. It is calculated as

Πc = PΠt, (7.10)

where P is the perspective matrix (defined by the focal length) and Πt

is as defined in (6). The perspectively projected image can thus be gen-
erated by matching each projected pixel to its corresponding reference
pixel using (9). The spatial relation between the projected image and
the reference data is shown in Figure 7.10. At this point it is instructive
to note that had the telemetry information been precise, computing the
geodetic coordinates of each aerial image pixel would have been a trivial
exercise of matching Reference Values with Pixel Coordinates. However,
since the telemetry information is noisy, the elevation and positional val-
ues assigned to each pixel may be misaligned by up to a hundred pixel
elements. It is this displacement that is compensated for using spatial
registration.

4. Alignment

In the introduction various sources of visual differences between the
Aerial Video Data and the Reference Imagery were pointed out. As
a result of these differences, brightness constancy constraints are reg-
ularly violated and therefore conventional direct alignment techniques
that globally minimize the brightness constancy constraint usually meet
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failure. While there may not be strong global correlation between two
corresponding images, within small patches that contain corresponding
image features, statistical correlation has been shown to be significantly
higher ([23]). In this section, we present a direct alignment technique
that globally maximizes an average measure of local similarity by search-
ing over the parameters of the telemetry. We begin with a discussion of
sensor model update strategy, followed by the construction of the error
function using Normalized Cross Correlation and the outlier rejection
mechanism. Finally, we discuss the error minimization strategy.

4.1 Sensor Model Update

In section 3.2 we described the sensor model in terms of eight transfor-
mation parameters and the camera focal length. For each Aerial Video
Frame, Ivideo these parameters are approximately detailed within the as-
sociated telemetry data. To compensate for the misalignment between
Ivideo and Iref (projected using the telemetry), we adjust these parame-
ters directly to maximize alignment. Since the telemetry detail includes
three vehicle translational parameters, three vehicle rotation parame-
ters, and two camera rotation parameters, each with their individual co-
variance values, we use these co-variance values to perform a weighted
optimization. The transformed coordinate location ~xn+1 is defined as

~xn+1 = Π( ~xn;~a, ~ϕ), (7.11)

where Π is the transformation, defined with respect to the pixel location
~xt at iteration t, the sensor parameters ~a, and the co-variance values ~ϕ.

Optimizing over the parameters of ~a has two advantages over the
use of generic parametric transformation (e.g. affine, projective). First,
along with alignment, the telemetry information is simultaneously re-
fined as well. Thus the system can be used not only as a means to
calibrate what is being viewed but also to passively determine where the
scene is being viewed from. Second, searching over the telemetry param-
eters inherently excludes physically unrealizable transformations. The
set of allowable transformations within a generic transformation matrix
includes transformations like single dimensional shears and scalings that
cannot be realistically achieved by the sensor setup. Because of these
advantages, the sensor parameters are updated to optimize a measure of
alignment, defined as the optimization function, between the two images.

4.2 Optimization Function

A pixel’s intensity, while actually a measurement of the brightness at
a certain receptor on the CCD-array, is often treated as a pixel’s identity
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and is used to measure similarity. The implicit assumption of brightness
constancy approaches is that pixels can be identified on the basis of their
brightness. In practice, of course, this is not always the case as illus-
trated lucidly by the so-called ‘aperture-problem’ described by Stumpf
(e.g. linear ambiguity due to linear features). Although not a complete
solution to the aperture problem (which is an inherent ambiguity), the
identity of a pixel is often more uniquely expressed by the set of pixels
centered at a given pixel coordinate rather than just the one pixel itself.
It directly follows that similarity can be measured more reliably if the
pixel identities are more unique. One simple demonstration can be made
with counting rules. If local similarity is being measured between two
images, a single pixel at a coordinate can have one of a maximum of
256 ‘identities’. By expanding the coordinate representation to a 3 × 3
patch instead, not only do the number of possible ‘identities’ increase
drastically, important structural information is captured as well. Hence,
in order to have a stronger local measure, we compute similarity between
two patches at each location rather than simply comparing two pixels.
This point can also be made in terms of solving a system of equations.
Since, two dimensional flow estimation equations are underconstrained
for a single pixel, the Lucas and Kanade optical flow estimation tech-
nique [4] assumes that neighboring pixels in a small window have the
same flow vectors. The system is then solved as an overconstrained sys-
tem. While Lucas and Kanade estimate local motion by looking over
a pixel neighborhood, we estimate local similarity over a pixel neigh-
borhood and compute global motion by maximizing the sum of local
similarity.

The objective function we use is a measure of global alignment be-
tween the current Aerial Video Frame and Reference Image. For any
state of the sensor parameters this measure of global fit is defined lo-
cally, since stronger correlation is likely to exist locally. However, unlike
previous approaches, we do not locally convolve correlation templates to
recover correlation surfaces. The similarity measure of choice is Normal-
ized Cross Correlation, since it is invariant to local contrast changes and
closely approximates the statistical correlation between two patches. Be-
tween Ivideo(~x) and Iref (Π( ~xn;~a, ~ϕ)) the measure of similarity is defined
as

F (~x) =
∑

i

r(~xi;~a, ~ϕ)), (7.12)

where r is a correlation coefficient between two patches centered at each
pixel location. In order to ensure that F is a quantity to be minimized,
we define r as 1 − ‖ρ‖ (the Normalized Cross Correlation Coefficient).
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However, the Normalized Cross Correlation coefficient is not a linear
function of the relational magnitude between the images [1], and as a
result, correlation coefficients cannot simply be averaged. As a statistic,
the r has a sampling distribution (if n sample pairs from two signals were
correlated over and over again the resulting r’s would form a sampling
distribution). This distribution has a negative skew (negative bias). A
transformation called Fisher’s Z-transformation converts r to a value
that is normally distributed and is defined as

zi =
1

2
[ln(1 + ‖r‖) − ln(1 − ‖r‖)]. (7.13)

As a result of having a normally distributed sampling distribution, there
is an equal probability of detecting different correlation magnitudes and
hence they can be meaningfully added.

4.2.1 Incorporating an Outlier-Rejection Mechanism.

Disjoint image features, local motion and photometric ambiguity may
all contribute to causing outliers. We propose a methodology to min-
imize the effect of outliers on the global average of local similarity, by
making an observation about pixel identities. Changes in pixels of high
dissimilarity are given less importance than pixels with higher similar-
ity. We observe that the larger the dissimilarity between two pixels, the
more likely they are to represent different artifacts (disjoint features, lo-
cal motion etc). In order to ensure that similarity variations in areas of
low similarity have less of an effect on the global similarity measure than
variations in areas of high similarity we use a sigmoid response function.
Since we use gradient information during optimization, the gradient be-
havior of our similarity measure is of prime importance. We therefore
modify the similarity measure to ensure that minor changes in areas of
large difference are ignored. The sigmoid correlation function is

η(~xi,~a) =
1

1 + (1−‖ri‖
1+‖ri‖

)
b

2

, (7.14)

where b is a constant that represents sensitivity to noise. Substituting
the value of z from equation (12) gives the final similarity measurement.
At every pixel (xi, yj), a similarity score, η(~xi;~a) is calculated between
two patches of size wx × wy centered at (xi, yj). Since the similarity
score is additive, the global similarity measure F is redefined summing
for all (i,j) as

F (a) =
∑

i

η(~xi;~a, ~ϕ)). (7.15)
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Figure 7.11. Rectifying the Error Function. The error response of Sum of Squared
Difference (left) encourages variations in pixels of low similarity. After rectifying with
a sigmoid response (right), pixels with high similarity have a larger effect on the error
function.

4.2.2 Optimization Strategy. Optimizations are defined in
terms of an objective (error) function, system parameters that are to
be adjusted to optimize the objective function and an exit condition to
terminate the search. In order to find the optimal alignment between
the Projected Reference Image and the Aerial Video Frame we directly
adjust the parameters of the sensor model defined in (9). By adjusting
these parameters we try to maximize a measure of ‘goodness’ of align-
ment between the two images under inspection, the objective function,
defined in (15). The search for the optimal state of the sensor param-
eters is performed using Finite-Difference Quasi-Newton Optimization.
This algorithm iteratively builds up curvature information to formulate
a quadratic model problem. Gradient information is required, which is
provided using finite differences. This method involves perturbing each
of the sensor parameters, and thus calculating the rate of change of the
objective function. The algorithm was implemented in a hierarchical
fashion over a pyramid, since this provides an escape from local extrema
and also performs analysis at multiple frequencies. Typically, three ma-
jor iterations are performed at each level of a five level pyramid. Several
options for exit conditions may be used, like number of iterations, er-
ror thresholds, but the most often employed exit condition is fired the
change in error falls below a threshold.
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The steps of the algorithm may be summarized as follows:

1 For each coordinate position (i, j) calculate the local similarity
η(~xi;~a) between the two 5 × 5 block around Iref (Π(~xt;~a, ~ϕ)) and
Ivideo(~xi) using normalized cross correlation. Sum η(~xi;~a) for all
(i, j) to evaluate the global measure of similarity.

2 Calculate δ~a, the update for ~a, using Quasi-Newton Maximization
of objective function.

3 Update ~a′ = δ~a · ~a.

4 Return to step one and repeat until exit condition is fulfilled.

5. Results

To demonstrate the algorithm described in this chapter, experimental
results are presented in this section. Despite the substantial illumina-
tion change to the extent of contrast reversal, examination of the results
shows a precise pixel-wise alignment. Figure 7.13, 7.14, 7.15, and 7.16
show the initial Video Frame and Reference Imagery before and after
registration. Visual inspection reveals significant misalignment after per-
spective projection of the reference image using the telemetry and sensor
model. Attempts at minimizing this misalignment using brightness con-
sistency constraints fails, but with the proposed algorithm proposed in
this chapter, accurate alignment is achieved.

On the first clip, a pre-registration average error of 47.68 meters with
a standard deviation of 12.47 and a post-registration average error of
4.34 meters and standard deviation of 3.19 per frame was recorded. On
the second clip, a pre-registration error of 51.43 meters with a stan-
dard deviation of 14.66 and a post-registration average error of 3.46 and
a standard deviation of 2.91 was recorded. As ground truth was not
available to assess the error automatically, manual measurement was
performed per frame. The results on the two 30 key-frame clip is shown
in Figure 7.12. The frames in the clip contained adequate visual context
to allow single frame registration.

The portion of the image set on which the algorithm presented did
not perform accurately, were of three types. The first type was images
without any features at all, like images of textured areas of trees. Since
there was little information providing constraints for alignment, it was
difficult to judge a successful alignment. The second problem faced was
the linear aperture problem, and thus only a single dimensional con-
straint could be retrieved from them. The most convincing method of
addressing both these issues is using some form of bundle adjustment,
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Figure 7.12. Misalignment errors. (a) Clip One: The pre-alignment and post-
alignment errors for 30 frames. A pre-registration average error of 47.68 meters with
a standard deviation of 12.47 and a post-registration average error of 4.34 meters and
standard deviation of 3.19 per frame was recorded. (b) Clip Two: The pre-alignment
and post-alignment errors for 30 frames. A pre-registration error of 51.43 meters
with a standard deviation of 14.66 and a post-registration average error of 3.46 and
a standard deviation of 2.91 was recorded.

as was used in [29]. These methods were not used in this work since
only video key-frames with little or no overlap were available. The last
problem faced was that of occlusion by vehicle parts like tires and wings.
This was addressed by calculating the fixed positions of the vehicle parts
with respect to the camera in terms of the camera parameters (camera
elevation angle, camera scan angle, and camera focal length). The por-
tion of the image is then ignored or if it happened to cover too much of
the image space then the image is ignored.

6. Conclusion

The objective of this chapter was to present an algorithm that robustly
aligns an Aerial Video Image to an Area Reference Image while realis-
tically updating the sensor model parameters. As input the algorithm
receives Aerial Video Data, noisy telemetry information, the DEM and
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Figure 7.13. Geo-registration despite visual dissimilarity. Aerial Video Frame and
Projected Reference Images shown before (a) and after (b) registration. (c) Affine
Frame-to-Frame alignment algorithm fails.
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Figure 7.14. Geo-registration despite disjoint features. Aerial Video Frame and Pro-
jected Reference Images shown before (a) and after (b) registration. (c) Affine Frame-
to-Frame alignment algorithm fails.
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Figure 7.15. Checker Board Comparison. (a) Original Images (b) Before (right) and
after (left) registration.

Figure 7.16. Checker Board Comparison. (a) Original Images (b) Before (right) and
after (left) registration.
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its associated area reference image. The major problems tackled here
were rectifying the images to bring them into a common projection view,
geodetic assignment for aerial video pixels, and plausible sensor model
parameter adjustment. Various forms of distortions were tackled, ad-
justing for illumination, compensating for texture variation, handling
clouds and occlusion by vehicle parts. The first step in the algorithm
was the perspective projection of the Reference Image using telemetry,
elevation information, and the sensor model to bring both images into a
common projection view. Alignment was then performed directly using
normalized cross-correlation without the use of a translating template.
Instead local correlation values were summed to calculate an estimate of
global similarity, a measure then minimized using Quasi-Newton Min-
imization by Finite-Differences. Instead of relying on planar transfor-
mation models, we perform per iteration rendering to compute updates
of the original telemetry parameters. To compensate for the significant
number of outliers, an intuitive outlier rejection mechanism was used to
reject outlying information directly. It is to be expected that the sensor
data will improve with the forward march of technology, bringing with
it the possibilities of more sophisticated models for the geo-registration
problem. Any improvement in the accuracy of elevation data in par-
ticular would allow more confident use of three-dimensional information
and matching. Future directions of the work include solving the initial
alignment robustly in the perspective viewing space using more realis-
tic rendering, and performing registration without continuous telemetry
information.
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