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Abstract
To facilitate activity recognition, analysis of the scene at
multiple levels of detail is necessary. Required prerequi-
sites for our activity recognition are tracking objects across
frames and establishing a consistent labeling of objects
across cameras. This paper makes several innovative uses
of the epipolar constraint in the context of activity recog-
nition. We first demonstrate how we track heads and hands
using the epipolar geometry. Next we show how the detected
objects are labeled consistently across cameras and zooms
by employing epipolar, spatial, trajectory, and appearance
properties. Finally we show how our method, utilizing the
multiple levels of detail, is able to answer activity recog-
nition problems which are difficult to answer with a single
level of detail.

1 Introduction
Increasingly many of the activity recognition and surveil-
lance research efforts are utilizing multiple cameras with
varying degrees of overlap in the Field of Views (FOV)
of the cameras. Single camera systems and even multiple
camera systems that are set to the same zoom cannot cap-
ture all information available in a scene. We show that a
necessary prerequisite for solving many activity recognition
problems thoroughly is the introduction of a camera sys-
tem in which multiple levels of scene detail are employed.
In many surveillance environments detailed information on
the person’s facial features and expressions will need to be
integrated with other information such as whether a given
person at a computer was the same person who entered the
room from a particular door. However, the person first needs
to be detected using the low zoom view and tracked from
frame to frame. Next his body parts (arms, face, hands,
legs) need to be tracked using the medium level zoom view
to determine his interaction in the environment. Finally, his
facial expression and features need to be analyzed using the
fine level zoom. This will provide the basic information
needed to perform composite activity recognition. By com-

Figure 1: Example of scene showing zoom 1, zoom 2, and
zoom 3 views.

posite, we mean those activities that are hard to recognize
with only one level of detail. In order to achieve the above
flow of events, a number of problems need to be overcome.
First the camera placement needs to be determined. We ex-
perimented with a camera configuration in which there is
a hierarchy of N ≥ 3 zooms which give various degrees
of detail in the scene, as shown in Figure 1. There is a
large change in zoom and occlusion in the image because
we wanted the approach to be robust enough to work with-
out strict camera placement requirements. Another problem
is that the head and hands need to be automatically identi-
fied in each view and successfully labeled across views. Fi-
nally the cameras need to communicate to each other about
higher level activities.

Our key contributions are the following: We first demon-
strate a bootstrapping process which is able to automati-
cally find the face and hands in the video sequences. Our
approach utilizes dynamic color models and multi camera
cooperation to achieve better recognition than was possible
with independent cameras. Then a method for consistently
labeling objects across multiple cameras (each camera hav-
ing a different zoom) is presented. An improvement over
current labeling methods is achieved by incorporating not
only epipolar, spatial, and appearance information, but also



by developing and integrating a trajectory comparison. Fi-
nally it is shown how the individual views can be combined
to give better activity recognition capability. We assume
that the epipolar geometry of the scene is known, but it
could be learned as in [22]. Related work is discussed in
Section 2 and some mathematical conventions are given in
Section 3. Sections 4 - 6 present the proposed solution. In
Section 7 results are discussed and finally we conclude.

2 Related Work
One only has to consider a survey of the activity recognition
problem [1] [9] to see the wealth of material available. The
problem of integrating multiple levels of detail (MLOD) to
improve activity recognition is not as well studied. This pa-
per provides a formulation for studying MLOD in the con-
text of activity recognition.

In [16] multiple cameras are used to cover non overlap-
ping regions to recognize activities, however they do not at-
tempt to use multiple levels of detail to perform finer action
recognition. In [7] a method is presented for fusing multiple
views, however there is a need for user supervision.

An active vision system is presented in [20] using one
static and one Pan-Tilt-Zoom (PTZ) camera to identify and
track multiple people. This approach makes a number of
restrictive assumptions on the color of people’s clothes and
number of people present. No activity recognition capabili-
ties are demonstrated.

By combining multiple cameras in an active vision sys-
tem with stereo vision, [11] is able to perform face and hand
tracking and limited gesture recognition. Their correspon-
dence only considers horizontal epipole line information
and object size. A multiple camera approach is given in
[14] to detect events for an intelligent meeting room, how-
ever they do not use the high zoomed cameras for activity
recognition. In both these systems the camera positions are
known beforehand. We have tried to avoid active vision sys-
tems (i.e., PTZ and foveating cameras) in our approach for
simplicity.

A key element of any multi camera activity recognition
system is the consistent labeling of objects across cameras.
An obvious option would be to compute the full 3D align-
ment using stereo. Basic stereo methods will fail because
the assumption of the standard stereo setup is violated [18].
Even after applying polar rectification [17] to our image
pairs and then attempting [13] and [3], these direct meth-
ods failed. The polar rectification cannot resolve the am-
biguities in occlusion and illumination changes across the
cameras.

In [19], a feature based method is used, in which the fea-
ture point matches are picked randomly. Then a homogra-
phy is estimated and an error function is minimized which

allows the best guesses to help contribute to a better esti-
mate in the next round. In our case however, we do not
have a ground plane to work with, which they require, and
we have a full 3D scene. As noted in [2] the approach is also
sensitive to noise and match ambiguities. Work presented
in [5] attempts to find the fundamental matrix and establish
trajectory correspondences in 3D scenes. However, their
method does not take full advantage of appearance, trajec-
tory, and spatial properties, which we have found adds more
robustness to finding the consistent labeling across cameras.

A method is presented in [6] to track across wide field of
views. They use epipolar, homography, landmark, apparent
height, and apparent color to resolve ambiguities. However
the system assumes common illumination across the cam-
eras. We use a better appearance comparison using energy
minimization. They neglect to use trajectories themselves,
which also provide us a valuable cue to alignment. Further,
their approach would have problems without ground plane
calibration.

In [15] correspondences are acquired using segmentation
and epipolar geometry with information combined from
multiple cameras. A ground plane exists to calibrate with
in their case. Multiple views with widely different zooms
are not considered.

3 Definitions and Conventions
There are many good references on the details of 3D mul-
tiview geometry. [10] and [23] provide good introductory
knowledge. Only the minimum foundations needed for our
purposes are presented here. A pair of images are related
by the fundamental matrix, so all points in image I can then
be transferred to their corresponding epipolar line in I ′ by
l = p · F , where l = [ α β γ ] are the coefficients of
the line equation

α · r + β · c + γ = 0 (1)

p is any point in I , F is the fundamental matrix and r, c are
the row and column of point p. All epipolar lines will pass
through the epipole, which can be found directly from F
by taking its singular value decomposition, F = U · W ·
V T . From here the epipoles are obtained immediately by
normalizing the last columns of V and U respectively. To
transfer an epipolar line to image coordinates normalize l ,
then, for lines with slope |m| > 1 apply equation 2:

p1 = l × [ 0 1 0 ]T and p2 = l × [ 0 −1/Y 1 ]T

(2)
where Y is the height of the image and p1, p2 are the in-
tersection points of the image with the epipolar line l . A
slightly modified operation gives the intersection points for
lines with slope |m| ≤ 1. We will follow the convention



that the lowest zoomed image is zoom 1, and the highest
zoomed image is zoom 3. The ideas could be easily ex-
tended to more than three levels of detail.

Here we present the mathematical notations and con-
ventions we will use in Section 5 in order to more clearly
explain the proposed solution. Assume a set of N cam-
eras, with frames Fi,j where i is the camera number and
j, 1 ≤ j ≤ J , is the frame number. Define the set of ob-
jects in a particular image frame as Xi,j = {x1

i,j , . . . , x
m
i,j},

with i, j defined as before and m defined as the num-
ber of objects in a particular frame. Note, xki,j are the
four numbers of the bounding box for each object. Thus
given a sequence of frames for a particular camera Si =
{Xi,1, Xi,2, . . . , Xi,J} we would like to determine the con-
sistent labeling between all objects in the various sequences
Si,∀i. That is, for a given frame j and object information
T = {{X1,j}, . . ., {XN,j}} expanded as T = {{x1

1,j , . . .,
xm1

1,j },{x
1

2,j ,. . .,xm2
2,j },. . . , {x1

N,j , . . . , xmN

N,j }}, for each
camera we would like to find the mapping

(xkn,j) = {xa1

b1,j
, xa2

b2,j
, . . . , x

ap
bp,j
}

which takes a particular object k in frame j viewed from
camera n, and finds the corresponding object ak with 1 ≤
ak ≤ mbi in camera bi ∀i,3 1 ≤ i ≤ N , i 6= n, for frame
j, if the object is visible. zooms. We have subscripted m to
stress this fact that the number of objects can vary between
frames and/or cameras.

4 Detection and Tracking of Heads
and Hands

For activity recognition the faces and hands first need to be
detected and tracked. We use a boot strapping approach
which first finds the head regions and then builds color
models of these regions which are used to find the hands.
The head regions are detected using the object detector de-
scribed in [21]. Using the RGB pixel values of the head
region, the following function ∀i, j, k ∈ Z, |i|, |j|, |k| ≤ N

h(r+i, g+j, b+k)← h(r+i, g+j, b+k)+e−
(

i2+j2+k2

2σ2

)

is applied to create a gaussian weighted color model. A
similar function ∀i, j, k ∈ Z, |i|, |j|, |k| ≤ N

h(r+i, g+j, b+k)← h(r+i, g+j, b+k)+e
−
(

i2+j2+k2

2(σ−1)2

)

is used to weight the negative samples. In [12] the remain-
ing color pixel values are treated as negative samples. This
will not produce a good color model in our case because
the hand regions will count as negative samples. To over-
come this limitation, after building a color model using the
positive sampled regions, this intermediate color model is

Figure 2: Output from the face detector and color segmen-
tation are shown for zoom 1. Though no explicit color
model has been generated for the hands, they show up re-
liably even for multiple people. Initially the person’s head
on the left is found, but later in the sequence the face detec-
tor misses the correct head(bottom row left side of output
image), though the color segmentation still recognizes this
region as a skin region.

stored. The final color model is only negatively weighted by
those samples which did not show up positively in the inter-
mediate color model. This prevents the hand regions from
contributing adversely to the final color model and provides
better segmentation. An appropriate threshold can be cho-
sen to make a binary decision H(r, g, b), which can then be
used to segment the images.

Since the face detector is for frontal head regions only,
the color model will be helpful for detecting hands and
heads with small variations in viewpoints. Figure 2 shows
the input images on the left and the output of the color seg-
mentation and head detection on the right. Detected heads
were drawn with a rectangle around them.

Once a detected head given by the face detector has been
present for more than four frames, a mean shift [8] tracker is
tracks this head, which will provide further tracking infor-
mation. Note there is no limitation to how many heads can
be in the scene at one time. An alternative approach would
be to attach mean shift trackers to head regions whose cen-
troids project to epipolar lines that intersect found head re-
gions in all other views.

Next the hands must be found and tracked in each view.
We could simply track all skin colored regions, but this has
problems as there are many spurious skin regions marked.
Better detection is possible using multiple cameras. First,
using the color model, all possible hand candidates are la-
beled in each sequence. Hand candidates are those that have
size

∑

i H(I(xi, yi)) ≥ δ · AverageHeadSize, where I is
an RGB color value and δ = .05. The computation is per-
formed at all levels of detail.

Once all candidate hand regions are labeled, the epipolar



(a) (b)

Figure 3: Unambiguous Hand Labeling. In (a) we see three
skin regions. The largest one is the head and has already
been identified in the first stage. The two smaller dark re-
gions are the hand candidates. The one on the right in (a) is
found. Its centroid is projected to the corresponding epipo-
lar line in (b). This line is searched and it is found that there
is a hand candidate on this epipolar line.

geometry is used to confirm or reject the presence of a hand
on an epipolar line in another view. Figure 3(a) is a lower
zoomed image, and Figure 3(b) is a higher zoomed image.
The lines in each image, are the corresponding epipolar
lines from the other image. To do the match across se-
quences, the epipolar lines are searched for a region with
size ε ·AverageHeadSize. If there are multiple hand can-
didates along this line, the search is deemed ambiguous, and
no hand tracks are introduced. This can be seen in Figure
4. If there is only one valid hand match in the other view,
a mean shift tracker is attached to this region in both views,
and the hand colored region is tracked across frames. In
subsequent frames the color segmentation guides the mean
shift tracker. This method is able to successfully detect the
face and hands and introduce mean-shift tracks for these re-
gions. When there are multiple head and hand regions and
when there are other objects that need to be tracked, the
cameras will need to have a consistent set of labels for all
objects. A method to establish these consistent labels across
cameras is presented next.

5 Establishing Consistent Set of La-
bels Across Cameras

In order to allow the cameras to communicate object infor-
mation to one another, a method to determine the consistent
set of labels across the cameras needs to be found. For sim-
plicity we will describe our method using two cameras. The
ideas can easily be extended to work with additional cam-
eras. Given two cameras, Caand Cb we want to determine
the consistent set of labels for objects between cameras for
frame j (see Section 3 for a more precise definition).

Our approach has the following components:

• Minimize epipolar line projections for each object

(a) (b)

Figure 4: Ambiguous Hand Labeling. In (a) we see three
skin regions. The largest one is the head and has already
been identified in the first stage. The two smaller dark re-
gions are the hand candidates. The one on the right in (a) is
found. Its centroid is projected to the corresponding epipo-
lar line in (b). However we see that there are two hand
candidates on this epipolar line. No hand tracks are in-
troduced in this time instant because there is an ambiguity
as to which hand candidate in (b) corresponds to the hand
candidate in (a).

• Minimize the spatial and trajectory constraints
• Minimize appearance constraints for each object

First, for the jth frame ∀m features: Xa,j =
{x1

a,j , . . . , x
m
a,j} compute the centroids pi and make a set

of all centroids Pa = [xc,1, yc,1], . . . , [xc,n, yc,m]} in
camera Ca. Transfer these points using the fundamental
matrix to get the set A of corresponding epipolar lines
{l1, . . . , lm} = {{p1 · F}} , . . . , {pm · F} in camera Cb

that corresponds to the centroids Pa from Ca. Apply equa-
tion 2 to find the image intersection points of the epipolar
lines in the set A.

Then generate a set of centroids Pb = {[xc,1, yc,1], . . . ,
[xc,n, yc,n]} in camera Cb ∀n features: Xb,j = {x1

b,j , . . .
, xnb,j}. There is no requirement for n = m. Based on the
epipolar constraints, if the ith feature of Ca, x

i
a,j is visible

in Cb it will lie on the epipolar line lk. So ∀p ∈ Pb and
∀l ∈ A the error for this match is the Euclidean distance
between the centroid and the epipolar line

Errp,l =
|lα · pr + lβ · pc + lγ |

√

l2α + l2β

(3)

where Errp,l is the error to match the centroid in Ca (whose
epipolar line is l) with the centroid in Cb. pr, pc are the row
and column position of this centroid location. l is the epipo-
lar line with parameters described in equation 1. We can
compute the accumulated distance error for every centroid
p ∈ Pb in Cb with every epipolar line for every frame.
To compare objects the accumulated error is averaged over
the number of frames that had a valid track for each ob-
ject. Now since every epipolar line was generated by an
object in Ca, we can select for every object, xj in Cb, the



corresponding object xi, in Ca which generated the lowest
distance error Errp,l. If the number of objects differ across
cameras, then the matching occurs only in the direction with
less objects.

It is important for the matching to be commutative, so
that xi in Ca matches xj in Cb ⇔ xj in Cb matches xi in
Ca. The above approach does not meet that criteria when
multiple centroids in Ca lie on similar epipolar lines in Cb.
The next three constraints provide additional restrictions on
matched objects to help reduce the incorrect labelings.

5.1 Spatial Constraints
When multiple centroids in one camera map to similar
epipolar lines in another camera, the labels can become in-
correct (see Figures 5 and 6). This kind of situation can be
detected based on spatial inconsistencies. In Figure 5 the
centroid of the hand in zoom 2 lies on its epipolar line in
zoom 3, similarly with the right hand. However, in zoom
3, the epipolar line that was generated by the hand in zoom
2 is actually closer to the centroid of the head in zoom 3.
Spatially in zoom 2 the hand is below the head. So the spa-
tially lower centroid in zoom 2 matches the spatially higher
centroid in zoom 3 though there is a spatial intersection in
both views which clearly indicates the correct ordering of
the centroids. This condition violates the spatial consis-
tency constraint. Two conditions aid in detecting this in-
consistency. In the first case, the bounding boxes of the
objects intersect each other, shown in Figure 5. We can as-
sume (since the cameras are arranged in a hierarchical man-
ner), that the spatial ordering of objects is consistent across
cameras. If the distances to epipolar lines indicate a spa-
tial inconsistency the match in question is penalized. This
is done by adding the Euclidean distance between the two
bounding boxes’s centroids in Cb to Errp,l.

Figure 5: One type of spatial inconsistency. Notice that the
head and right hand intersect in both views. In this particu-
lar case the epipole is not in the image. However, if it were
in the image, the epipolar lines would not be so close. Thus
the first spatial constraint tests for intersecting bounding
boxes. If the boxes intersect in one view, then intersecting
boxes in other views are checked for consistency and penal-
ized if necessary.

Figure 6: A second type of spatial inconsistency. In this
case the bounding boxes of the skateboard and book do not
intersect but the epipolar lines are almost on top of one an-
other. This could result in incorrect labeling. The second
spatial constraint penalizes label matches that flip flop the
order of the centroids.

Figure 6 demonstrates another case in which the best
matched objects violate the spatial consistency. The bound-
ing boxes of the skateboard and book do not intersect but the
epipolar lines are almost on top of one another, which will
result in the epipolar distance minimization selecting the in-
correct labels. By considering pairs of epipolar lines which
are close in Cb, the objects that they match to in Cb and the
original centroids in Ca, which generated the close epipolar
lines are analyzed for spatial consistency. If the labels are
not spatially consistent the Euclidean distance between the
two bounding boxes’s centroids in Cb is added to Errp,l.

5.2 Trajectory Constraints
Suppose that two objects with similar appearance are on
the same epipolar line. If they alternately take turns mov-
ing toward each other, this could present problems for the
above constraints, but will present no difficulty for a tra-
jectory analysis. Moving objects in one view must match
with similarly moving objects in another view. By penaliz-
ing candidate trajectory matches which try to match mobile
to stationary objects we can effectively eliminate false pos-
itives arising from similarly colored objects moving along
the same epipolar line. The penalty is computed by multi-
plying the Errp,l by .00001.

5.3 Appearance Constraints
Previous methods have considered color similarity of ob-
jects between views to increase the accuracy of the label as-
signments. However directly comparing objects in this way
can present difficulties especially when the cameras are not
color calibrated. Relative color similarity between objects
still can give useful information. After applying the pre-
vious constraints to all frames, if there are still ambiguous
matches (i.e., those objects for which there is not a 1-1 map-
ping), then collect these ambiguous objects into two lists.
The ambiguous objects in Ca are A = {x1

a,j , . . . , x
q
a,j} and



those in Cb are B = {x1

b,j , . . . , x
q
b,j}, where q is the num-

ber of ambiguous objects. To get the correct matches, find
the permutation of superscript indices in B to minimize the
relative error:

p = argmin
P

|A|
∑

i=1

[(
1

M
)

M
∑

x∈xi
a,j

I(x)− (
1

N
)

N
∑

x∈x
pi
b,j

I(x)]

Figure 7 shows some results of the labeling. The tracks
that are colored the same were matched across views. In
Section 4 the method automatically finds the heads and
hands. In order to test the accuracy of the labeling algo-
rithm, we have manually introduced bounding boxes around
other objects. The algorithm still correctly labels all objects
across all views. More results are presented in section 7.

6 Combining Multiple Zooms for Im-
proved Action Recognition

After performing tracking and labeling across cameras, the
final step is to use the multiple levels of detail for improved
activity recognition. A first natural situation to detect is
whether a person has an object in hand or not as the hand
is coming to the face. Suppose that we try to determine
whether there is an object in the hand and where it came
from. If only a view such as zoom 1 is available then this
will present several challenges because there is not enough
detail in these lower zooms to determine whether the hand
had an object in it, and whether it went to the mouth or the
ear. In a higher zoomed view such as zoom 3, there is no
way to know where the object originally came from in the
scene or where and when to look for the object, but zoom
1 and zoom 2 both can share this information with zoom
3. Thus, multiple zooms need to be combined in a manner
such that each zoom level answers the questions that it is
best able to answer. We show how to combine multiple lev-
els of detail to detect and analyze these composite actions
that are difficult to detect with a single level of zoom.

To identify if there is an object in either hand, the hands
in zoom 1 and 2 are analyzed for motion by computing Ft.
A short term color segmentation is performed on any mov-
ing objects, Ft that are not skin in the region of the hand. If
significant motion of non-skin colored pixels is found, the
epipolar line in zoom 3 corresponding to l = p ·F where p

is the centroid of the potential object in the lower zoom is
found. This gives the possible epipolar line of the object’s
position in zoom 3. When significant motion is observed in
zoom 3 on this line, zoom 2 transfers the color information
of the candidate moving object and based on the epipolar
geometry the presence of an object is confirmed or denied.

Note that while it is true that the epipolar geometry maps
points to lines (for orthogonal, perspective cameras), we can

actually do better and predict the exact location of where to
look for the object. Since we have an object position in
zoom 2, we can find its epipolar line l in zoom 3. Then
intersect this line with the image plane, and only look at
these intersection points, P , for entering objects, those that
appear in this frame for the first time. Note that |P | ≤ 2
because the images are planar. This reduction in the search
space is possible since we know the object is not yet in zoom
3. For instance if no objects appear in zoom 3 at location P ,
zoom 3 assumes a false positive was observed. This allows
for a bad segmentation in zoom 2 to be auto corrected in
zoom 3. Now this will not yet eliminate the bad segmen-
tation in zoom 2 but it stops the propagation of the error.
Zoom 2 can then be notified of its error.

If the object is confirmed in zoom 3, then segmentation
in zoom 3 can proceed since we have a predicted location
P , and color model C. By passing location and color in-
formation between cameras, we can achieve better object
segmentation. This allows early identification of objects in
zoom 3. By passing this updated color and spatial infor-
mation back to zoom 2 we can update its color and spatial
parameters for the object in question, which will allow for
better segmentation in the lower zooms. Results from our
multi camera segmentation have demonstrated that we are
able to correctly determine when an object is in the hand and
further, when zoom 2 gives an incorrect result the method
is able to determine this in zoom 3 and notify zoom 2. Re-
sults are shown in Figures 8 and 9. In the first case zoom
2 triggers that an object is present in the hand because the
segmentation is not perfectly correct. This can be seen by
observing the hole in the segmented skin image. The zoom
3 segmentation is correct and it does not observe any signif-
icant motion of non-skin colored objects, thus it overrides
zoom 2’s decision and notifies zoom 2 of the incorrect seg-
mentation. In the second example, there is a mobile phone
being brought to the face. Here zoom 2 identifies an object
and alerts zoom 3 to its possible location and color. Zoom
3 then correctly verifies that an object is present.

7 Quantitative Results
The proposed overall method has been formulated in the
context of activity recognition for a hierarchy of views. Our
method is able to consistently label objects across cameras
without the need for ground plane calibration. When the
various constraints are combined we achieve 100% accu-
racy on our test data sets, as presented in Table 1. Data
Sets 1-5 were hierarchy of zoom sequences and Data Set 6
was a sequence with partially overlapping FOVs as found in
many surveillance papers [4]. The method of determining
whether there is an object in the hand using multiple views
has been tested on 10 sequences. In 8 sequences the method
was successful in determining if an object was present in the



Figure 7: Output of consistent labeling with objects shown in red boxes and the object trajectories superimposed on the last
frame in the sequence. The matched trajectories across views are shown in similar colors. All objects were labeled across
views correctly.

Figure 8: Zoom 2 images are on the right and zoom 3
images are on the left. The first row is the input images.
The second row is the Ft images, and the third row is the
color segmentation images. In zoom2, a poor color model
does not correctly segment all of the hand(bottom left).
Thus zoom 2 incorrectly concludes that an object is present.
However, in zoom 3, the color segmentation is correct, so
zoom 3 can override zoom 2’s decision.

hand or not. Some of the cases are very challenging. For in-
stance the method is successful in determining that there is
an object in the hands when eye glasses are being brought to
the face. With one camera this would be particularly chal-
lenging.

Figure 9: In this case zoom 2 correctly detects an object,
and zoom 3 confirms that an object is present. See Figure 8
for more explanation.

Table 1: Consistent Labeling Results

Data Set
#

Objects
in Cam-
era
1

Objects
in Cam-
era
2

Objects
in Cam-
era
3

%
Matched

1 7 7 3 100
2 7 7 3 100
3 8 8 3 100
4 6 6 2 100
5 7 7 3 100
6 6 6 0 100



8 Conclusion
We have developed a robust method to perform activity
recognition. The presented framework is able to combine
information over cameras in multiple ways to increase over-
all system performance. Heads and hands are automatically
found and tracked using multiple levels of detail. We have
presented a method which is able to incorporate epipolar,
spatial, trajectory, and appearance together into a unified
framework to achieve consistent object labeling across mul-
tiple cameras. The activity recognition module itself is able
to integrate multiple levels of detail to determine whether
there is an object in the hand in which it would be rather
difficult with a single view.
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