MODELING SCENES AND HUMAN ACTIVITIES IN VIDEOS

by

ARSLAN BASHARAT
B.S. Ghulam Ishaq Khan Institute, Pakistan
M.S. University of Central Florida

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida

Fall Term
2009

Major Professor: Mubarak Shah



(© 2009 ARSLAN BASHARAT



ABSTRACT

In this dissertation, we address the problem of understanding human activities in videos by
developing a two-pronged approaduarselevel modeling of scene activities afidelevel mod-
eling of individual activities. At the coarse level, where the resolution of the video is low, we rely
on person tracks. At the fine level, richer features are available to identify different parts of the
human body, therefore we rely on the body joint tracks. There are three main goals of this disser-
tation: identifying unusual activities at the coarse level, recognizing different activities at the fine
level, and predicting the behavior in order to synthesize activities at the fine level. The summary

of the three proposed solutions is presented in the following.

The first goal is addressed by modeling activities at the coarse level through two novel and
complementing approaches. For this purpose, we rely on the tracks of all the moving objects
in the scene observed by a static camera. First approach learns the behavior of individuals by
modeling the patterns of motion and size of objects in a compact model. The proposed method
provides a higher-level process to the traditional real-time surveillance pipeline for identifying
unusual activities and feeding back the learned scene model to improve object detection. Pixel
level probability density functions (pdfs) of appearance have been used for background modeling
in the past, however modeling pixel level pdfs of object speed and size from the tracks is novel.

Each pdf is modeled as a multivariate Gaussian Mixture Model (GMM) of the motion (destination



location & transition time) and the size (width & height) parameters of the objects at that location.
Output of the tracking module is used to perform unsupervised EM-based learning of a GMM at
every pixel location. Second approach learns the interaction of object pairs concurrently present
in the scene. This can be useful in detecting more complicated activities that the first approach
cannot model. We use a higher dimensional Kernel Density Estimation (KDE) model in order to
create this model. Mean shift is used for sample refinement followed by Markov Chain during
testing stage. The proposed model is successfully used to detect abnormal activities like illegal
jaywalking, person drop-off and pickup, etc. Most object path modeling approaches first cluster
the tracks into major paths in the scene, which can be a source of error. We avoid this by building
local pdfs that capture a variety of tracks which are passing through them. We also show the

improvements in object detection through the feedback of the learned scene model.

The second and third goals of modeling human activities at the fine level are addressed by em-
ploying non-linear dynamical systems. We show that such a model can be useful in recognition
and prediction of the underlying dynamics of human activities. In the case of human activities, we
use the trajectories of human body joints as the time series data generated by the underlying dy-
namical system. For this work we have borrowed the relevant key concepts from chaos theory and
developed methods to utilize them to solve the problems at hand. Next, we explain the proposed

recognition and synthesis methodologies based on the chaotic modeling of human activities.

We introduce a recognition framework that uses concepts from the theory of chaotic systems to
model nonlinear dynamics of human activities. The observed time series data is used to reconstruct

a phase space of appropriate dimension by employing a delay-embedding scheme. The properties



of the reconstructed phase space are captured in terms of dynamical and metric invariants, which
include the Lyapunov exponent, correlation integral, and correlation dimension. The underlying
dynamical system is eventually represented by a composite feature vector containing these invari-
ants. Our contributions in this work include: investigation of the appropriateness of the theory of
chaotic systems for human activity modeling and recognition, a new set of features to characterize
nonlinear dynamics of human activities, and experimental validation of the feasibility and potential

merits of carrying out activity recognition using methods from the theory of chaotic systems.

Finally, we also propose a framework for predicting the time series data observed in human
activities. We utilize concepts from chaos theory in order to predict the behavior of a nonlinear
dynamical system which exhibits deterministic behavior. Observed time series from such a sys-
tem can be embedded into a higher dimensional phase space without the knowledge of an exact
model of the underlying dynamics. Given an initial condition, the predictions in the phase space
are computed through kernel regression. This approach has the advantage of modeling dynamics
without making any assumptions about the exact form (linear, polynomial, radial basis, etc.) of
the mapping function. The predicted points are then warped back to the time series format. We
demonstrate the utility of these predictions for human activity synthesis and tracking. Our main
contributions are: multivariate phase space reconstruction for human activities, a deterministic ap-
proach in contrast to the popular noise-driven approaches, and activity prediction through kernel

regression in the phase space.
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CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

The understanding of human activities in videos has attracted the attention of many in the computer
vision research community. This technology can be useful in a variety of applications including,
but not limited to, security & surveillance, human computer interaction, robotics, and multimedia.

All of these application domains will have a significant impact on various aspects of our everyday
lives. Security & surveillance systems can be important for the public safety at airports, train sta-
tions, and large parking lots. The safety of various resources at warehouses, power houses, military
installations, etc. is also of significant interest to security agencies. In the case of human computer
interaction and robotics, a key objective is to automatically recognize different gestures to which
the machine then responds to appropriately. For instance, in the recent years there has been an in-
creased interest in developing camera equipped gaming consoles where the goal is to create a more
realistic interactive experience. In the case of multimedia and information retrieval, there is sig-
nificant interest in retrieving videos containing specific types of activities (e.g. dancing, fighting,
kissing, etc.) from large databases of movies and broadcast television videos. This could prove to

be greatly beneficial for organizations and individuals with rapidly growing video archives.

In order to build a robust system, which identifies various types of human activities, one should

consider several factors that can affect the system design choices. In the following we discuss some



of these important factors and explain how they affect the choices we have made in the proposed

approach.

1. Application Domain: The activities of interest and the significance of the fine details could
vary depending on the application domain. For instance, in the case of a surveillance system,
the primary interest is typically in the identification of unusual behavior (e.g. falling down,
jaywalking, jumping over a fence, etc.). On the other hand, in the case of human computer
interaction, the primary interest is typically in the details of specific activities (e.g. waving
with one hand, waving with two hands, kicking with right foot, etc.). Therefore, activity

models should be devised in order to accommodate the application domain of interest.

2. Video Quality: The quality of video is an important factor that should be considered while
devising a robust activity recognition system. The quality could depend on the resolution,
color contrast, frame rate, etc. of the source video. For instance, in higher resolution scenes,
it is possible to extract useful motion signatures of the individual parts of a human body. The
same features would be far less useful when the resolution is very low, like in the case of
video from a far-view surveillance camera. Figurd shows one such example where the
foreground detections capture only a part of the bodies of the two individuals. Hence, the
guality of the source video should be considered when selecting the type of observed feature

(e.g. body joint trajectories, person trajectory, body shape representation, etc.).

3. Learning Paradigm: A learning based approach can be used to recognize different human

activities. It has the advantage of robustness to intra-class variations. The learning can be



(a) Source image (b) Moving foreground detections

Figure 1.1:The quality of moving foreground detections at the coarse level is low. Typically the
image of human body is comprised of only a few hundred pixels. Notice that only a part of the

human body is detected as the foreground.

supervised or unsupervised depending on the type of training data available. In the case of
supervised learning, we can learn a separate model for each type of activity and possibly
assign a semantic label to the class. On the other hand, in case of unsupervised learning, we
do not have the luxury of separating different activity classes and thus can only devise an
“outlier detector”. This can be useful in the case of surveillance system when the goal is to

detect unusual activities in the scene.

Considering the aforementioned factors, we approach the problem of recognizing human activ-
ities by adopting two different approaches for modeling activities attta@seand thefine level.
The coarse level comprises of activities defined by the global motion of the object (person tra-
jectory), low resolution, and unsupervised learning. The fine level comprises of activities defined
by the local motion of body parts (joint trajectories), higher resolution, and supervised learning.

Figuresl.2and1.3 present samples of activities at the coarse and fine levels respectively. In this



(c) Unusual path

(a) Walking on the sidewalk (b) Sitting oﬁ thé sidewalk

Figure 1.2:Sample activities at the coarse level, typically observed from a stationary surveillance

camera.

dissertation, we contend thatome size fits alapproach is not most appropriate and we should

devise two different methods for the two levels.

We first show that we can model an activity well enough to recognize it, in addition, we can also
use the model to recreate ynthesizéhe activity. This has several uses for the underlying task of
understanding human activities. It can be useful for qualitative and quantitative validation of the
learned model being used for recognition. The activity synthesis has wide range of applications
in the area of computer graphics and animation. Predictions are computed in order to synthesize
an activity. These predictions can also prove to be vital for the task of accurately and efficiently
localizing and tracking different parts of the parts of the human body. We also demonstrate the
results of human body parts tracking on a set of periodic action from a standard action dataset.
Next, we highlight the main goals of this research along with the proposed solutions for each
one of these goals. In Sectidn3, we present the descriptions of the proposed solutions and the

summary of our contributions.



(a) Running (b) Diving (c) Jumping Jack

Figure 1.3:Sample activities at the fine level. Typically a human body is covered by a few thousand

pixels and the individual body parts have a few tens or even hundreds of pixels.

1.2 Goals

The goals of this work are to detect abnormal activities at the coarse level and to recognize and

synthesize activities at the fine level. We present following three solutions to address these goals.

1. Statistical scene modeling for unusual activity detection.

2. Chaaotic invariants for human activity recognition.

3. Chaotic modeling for human activity prediction.

1.3 Outline of This Research

In this section we introduce the two different approaches for modeling coarse and fine level activ-
ities. Figurel.2 shows samples of a few activities that are being modeled at the coarse level. In
this case a scene model will be learned which is composed of all the observed activities. On the

other hand, Figurd.3 presents a few examples of the activities that can be modeled at the fine



level. This involves modeling of individuals instead of the whole scene by capturing the details of

the body part motion.

1.3.1 Coarse Level Activity Modeling

We approach this problem by learning, in an unsupervised manner, all the activities in the scene.
Once theusual activities have been learned, the goal is to identify anysualactivities in the

scene. This kind of approach is particularly useful for the security and surveillance application
domain. Such a model can learn the patterns of various types of activities that could otherwise
be too abstract to be distinguished by separate classes. For instance, such an approach is able to
distinguish between a person jaywalking in the middle of the road and a person using a crosswalk,
although both of them are walking. This proves to be useful in identifying semantically meaning-

ful activities because they are unusual considering what system has learned automatically. Other
interesting scenarios that motivated us included automatic detection of: one-way traffic violations,

speeding, illegal u-turns, collapsed individual on the sidewalk, restricted area violation, etc.

In order to learn patterns of object motion in a scene we propose two novel and complementing
models based on statistical learning. The first model is useful for learning behaviors of individual
objects only, while the second one has the benefit of learning the relationship of objects in pairs.
The goal is to learn a distribution that presents typical behavior during the training phase and can
be used to identify abnormal activities during the testing phase. We use a local GMM based pdf
at every pixel in the first model, and a global KDE based pdf for the whole scene in the second

model.



The models presented here have following novel contributions:

e We propose a new and intuitive approach to model object parameters (motion and size) by
using a pdf at every pixel location. Stauffer and Grimso®9] [approach has been used
for modeling appearance for several years, but the proposed model of motion and size at

pixel-level is novel.

¢ In addition, we present a second novel model that captures the relative relationship of objects
in pairs. Saleemet al.[95] have presented a similar single object model recently, but the a

model for object pairs is novel.

e Unlike most of the previous approaches, our models do not require extraction of major paths

in the scene and is learnt directly from the individual tracking observations.

e The motion parameters are used to capturelabal velocity of an object, as well as the
globalvelocity through the track. This helps in detecting the anomalous motion patterns that

cannot be captured by local analysis only.

e The presented models can be used to perform online learning of the evolving motion patterns

in the scene.

e We utilize this model to provide pixel-level parameter feedback to the background subtrac-
tion module in order to improve object detection. Instead of constraining the object detection
module by having fixed parameter values throughout the scene, we present a method to pro-

vide different pixel-level parameter values using the learnt scene model. Two parameters:



Minimum size of the foreground objects and the background learning rate, have been used

to improve object detection by our approach.

1.3.2 Fine Level Activity Modeling

Our model for fine level is based on non-linear dynamical systems. We use key concepts from
chaos theory which enable us to create models of dynamics without actually having a parametric
form of the dynamical system. This is particularly useful when working with the experimental data

and the underlying model of the dynamical system is unknown.

Input to a dynamical system is a sequence of time series observations. In our model, the time
series data is received from trajectories of human body joints. Observed time series, in this case,
can be embedded into a higher dimensional phase space without the knowledge of an exact model
of the underlying dynamics. This embedding warps the observed data sttargye attractor
in the phase space, which provides precise information about the dynamics involved. After the

embedding, one can extract invariant features for recognition or perform regression for prediction.

1.3.2.1 Chaotic Invariants for Human Activity Recognition

The representative shape of the strange attractor is captured through a set of features that will be
useful to identify the underlying dynamics uniquely. The properties of the reconstructed phase
space are captured in terms of dynamical and metric invariants which include the Lyapunov expo-
nent, correlation, and correlation dimension. We use a composite feature vector of invariants for

classification.



Our contributions in this work include:

Investigation of the appropriateness of the theory of chaotic systems for human activity mod-

eling and recognition.

A non-linear dynamical system based representation of an action that without assumptions
about the mathematical form. Previous models have assumed a linear model or assumed a

linear combination of non-linear basis functions.

A new set of features to characterize nonlinear dynamics of human activities.

Experimental validation of the feasibility and potential merits of carrying out activity recog-

nition using methods from the theory of chaotic systems.

1.3.2.2 Chaotic Modeling for Human Activity Prediction

Once the training time series data has been embedded into phase space, we extract the information
about the underlying from the strange attractor and utilize it to predict future observations. Given
an initial condition, the predictions in the phase space are computed through kernel regression.

The predicted points are then warped back to the observed time series.

Our main contributions in this work include:

e Predicting dynamics without making any assumptions about the exact form (linear, polyno-

mial, radial basis, etc.) of the mapping function.

e Multivariate phase space reconstruction for human activities.



e A deterministic approach to model dynamics in contrast to the popular noise-driven ap-

proaches.

¢ Video synthesis and action tracking from kernel regression in the phase space.

1.4 Organization of Dissertation

The rest of the dissertation is organized as follows. In Chdptez cover relevant research in the
related areas. We also explain how the proposed research contributes to the literature in perspective
of the previous work. Chapted presents our approach for learning object motion patterns in a
stationary camera. We present results of anomaly detection and scene model feedback to improve
object detection. We present two complementing models for learning object motion patterns of
single objects, as well as object pairs. Chagtpresents the details of a novel chaos theory based
approach for human activity recognition. We provide the details of representing actions through
phase space embedding and chaotic invariants for recognition. Clagptesents our approach

for predicting dynamics through kernel regression in phase space also used for recognition. We
also provide the multivariate extension of phase space embedding for better predictions. We show
the application of these predictions for human action synthesis, human body parts tracking, and
dynamic texture synthesis. We present experimental results of the three approaches using the
published data sets. Finally, in Chapanve conclude this dissertation with discussion and review

of future directions.
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CHAPTER 2: LITERATURE REVIEW

In this chapter we cover the most relevant work in the research literature. We cover the topics of
scene modeling for anomaly detection, activity recognition, dynamical systems based models as
used in activity modeling, and activity synthesis. We present the merits and demerits of many of
these approaches while referring to other similar ones. We also explain the contributions of our

work in the context of the previous work.

2.1 Scene Modeling for Abnormal Behavior Detection

Scene modeling, in this dissertation, refers to the modeling of normal object motion in the scene.
Such a model is typically used to learn the typical behavior in the scene and differentiate this from
any unusual object behavior. The term “scene modeling” is not used here in context of scene

content matching in domain of video matching and retrie8hl [

Analysis and modeling of motion patterns for surveillance scenes has been studied by several
researchers. Buxtorl§] provided a detailed review of the models that have been used for learn-
ing scene activity. Johnsaat al.[57] presented a vector quantization based approach for learning
typical trajectories of pedestrians in the scene, but they require entry/exit points to be marked man-
ually. Grimsonet al.[47] used location, velocity and size to classify activities. The activities are

classified using a B-tree based approach called Numeric Iterative Hierarchical Cluster method and
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the co-occurrence statistics in the quantized feature spac89]iremagninoet al. use velocity

and aspect ratio to classify different tracks into vehicle or person. They utilize a Bayesian classi-
fier for this task and an HMM model to capture common events in the scene. Malkaig 73]

have presented a technique in which different regions of the scene are labelled as entry/exit zones,
junctions, paths and stop zones. This model provides a set of scene attributes but lacks the ob-
ject size-based anomaly detection. Saleetal. [95] proposed a single Kernel Density Estimate
(KDE) model for the whole scene, which requires to save all training data. Their approach does
not address anomalies due to object size and only focuses on the object velocity. In comparison,
we present a more compact GMM based model when modeling the motion of single objects. We

rely on KDE model only in the more complex case of object pair motion.

Hu et al. [53] present a recently published technique in which the tracks are spatially and
temporally clustered into different motion patterns. Each of these motion patterns is divided into
several segments; each segment is modeled by a Gaussian model of speed and size. Anomaly
detection and path prediction are the two applications of this approach. &aaig 106 have
presented another approach in which the tracks are clustered into vehicle and pedestrian paths.

Their model provides the source/sink information along with capability of abnormality detection.

Morris et al[ 79] have recently presented a catalogue of various approaches for trajectory clus-
tering in the domain of scene modeling with the goal of activity detection. They cover six different
distance measures that have been used before for this task. They experiment with six different
clustering approaches including direct, divisive, agglomerative, hybrid, graph, and spectral. If one

chooses to follow the route of clustering the trajectories, this can serve as a good starting point.
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We present a model here that avoids the errors related to clustering of trajectories. Instead, we
approach this problem by using a pdf model that can either represented by GMM at every pixel or
one global pdf through KDE. The risk involved in the parameter selection of the former model is

avoided by using an automatic EM approach by Figueiredo and 3gin [

In the past year or two there has been an increased interest in detection of unusual activities
in crowded situation§f4, 75, 5, 65]. Kim et al[64] proposed a space-time Markov Random Field
(MRF) model for detecting abnormal activities in the scene. They learn the distribution of local
optical flow using a mixture of probabilistic principal component analyzers. For testing the learnt
model and MRF graph is used to compute a maximum a posteriori estimate. They create models at
the local spatial neighborhood level. Mehmtral [ 75] have presented an approach based on social
force model with particle flow field to model the motion of individual in crowded environment.
The model of the normal crowd behavior is extracted from the spatiotemporal volumes represent-
ing reasonable particle interaction. A bag of words representation is used for detecting abnormal
behavior in comparison to the scene model. Ali and Sihdd initially utilized flow fields as
advection of the optical flow computed at every frame and integrated through time. Their approach
was based on Lagrangian particle dynamics for crowd flow segmentation. The Finite Time Lya-
punov Exponent was used in order to determine coherence of particle dynamics through the flow.
Our use of Lyapunov Exponent as a part of chaotic invariants for human activity recognition is
relevant to this work. They have also shown the identification of new crowd segments as a way to
perform abnormal behavior detection in crowds. Lastly, Kedtal [65] presents aimed at address-

ing crowded situation and the goal is to identify regions with unusual activity in the scene. They
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use GMM based models of spatiotemporal gradient in video cubes. The cuboids are compared us-
ing the symmetric Kullback-Leibler divergence. Temporal relationship is finally captured through
Hidden Markov Models. The decision about the normal vs. abnormal behavior is taken based on
the likelihood of an observation sequence in an HMM, using the traditional forward-backward al-
gorithm. A common theme in these, and other, crowd analysis approaches is that they do not rely
on object tracking. The observed feature is typically optical flow or a derived flow field. The scene
modeling approach presented in this dissertation would not be directly applicable to such crowded
scenarios. However, the first proposed scene model based on GMM can be modified to learn the
distribution of local optical flow instead of the tracking data. The new model would then closely

follow the behavior of other statistical learning based approaches discussed above.

Scene modeling can also be used to feedback the scene knowledge into object detection mod-
ule. In [49], Harville proposed an approach with positive and negative feedback to background
subtraction for adjusting the learning rate and improving foreground detection.efe&n[111]
detected the static regions that were wrongly modeled as the background. In addition to learning
rate, there are other parameters that affect the background subtraction and could benefit from the
feedback. In this approach we use the same scene model to provide feedback in order to update
minimum object size and background learning rate parameters. The unique aspect of our approach

is the use of the same scene model for both anomaly detection and improving object detection.

One common factor in most of the related work is the estimation of main motion paths in
the scene. Techniques presentedi8, B9, 100, 106 use multiple features of observed tracks

for clustering tracks into the main paths of the scene. We argue that the explicit estimation of
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these paths is not necessary for typical applications of a scene model including anomaly detection
and improving of object detection. In addition, these approaches only capture the instantaneous
velocity, however in the proposed approach we integrate larger transition times. This captures the
global properties of the track and therefore does not require the estimation of the main paths in the

scene.

2.2 Human Activity Recognition

Human action/activity recognition is an important area of research in the field of computer vision.
The pioneering research efford b0, 52, 68, 87, 92] in this area tried to address the problem in
early eighties by modeling the articulated body skeleton for human activity analysis. For instance,
Akita [3] compared the learned body model with the key-frames of the sequence to test the presence
or absence of the activity, whereas Leeal.[68] employed a 3D configurations of the model and

tried to find the best matching with the 2D motion-based segmentation of the image. On the same
lines, Hogg H2] studied the motion of a walking figure using an articulated model. Since then

a huge body of literature that addresses different aspects of the activity recognition problem has
been published. Comprehensive reviews of this research has been presented in a number of survey
papers over the yearg4, 2, 1, 44, 76, 17, 66]. Readers are referred to these survey papers for
the in depth coverage of the field. In this section, we will limit ourselves to some of the most

influential and relevant part of this literature.

In general, approaches for human activity analysis can be categorized on basis of the repre-

sentation used by the researcher. Some leading representations are learned geometrical models
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of human body parts, space-time pattern templates, appearance or region features, shape or form
features, interest point based representation and motion/optical flow patterns. In early years repre-
sentation based on appearance features was a popular approach. The general methodology was to
learn the appearance model of human body or hand etc., and match it explicitly to a target video
sequence for activity or gesture detectidd,[33, 98, 113 42]. The temporal aspects of an activ-

ity were handled by either training hidden markov models (HMM) or its different variants. But
soon it was realized that this representation is limited in its ability to handle realistic situations as

it is prone to changes in the appearance of the actor. However, some recently published papers
[78, 77, 56] are still pursuing appearance based representation for activity recognition in images
by searching for static postures using the appearance of the whole human body or parts of the
body. An important short coming of these approaches is the localization of body part which itself

is a very hard problem. We believe that use of only appearance based information for activity

recognition is counter intuitive as activities are a temporal or dynamic entity.

Popular shape based representations include e@gparid silhouettes of human bod2§).
The idea behind shape based representation is that an activity consists of a series of poses which
are detectable from a single frame. Each pose can be encoded using the shape features and single
frame recognition in turn can be extended to more than one frame for robust activity recognition.
The silhouette based representation was recently extended to characterize actor’s body outline
through space and timé&14, 11]. This is done by stacking the individual silhouettes detected in
each frame giving rise to a three dimensional volume. Yilmial.[114] used surface properties

of this volume for activity recognition. While Moslet al.[11] used solution of poisson equation
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to extract space time features of the volumes. Note that these approaches can also be categorized
under a volume based representation. Although these approaches have demonstrated robust per-
formance on a number of activities, they lack the ability to incorporate the rich motion information

in their representation as they concentrate on the properties of the surface of the volume. That is

their emphasis is more on capturing floem of the human body.

The approaches based on volumetric analysis of video for activity recognitioet &le[61]
extended the two dimensional Haar features to three dimensions and learned a cascade of boosted
classifiers. In§2], they later addressed action detection in cluttered scenes by using partial match-
ing of action volumes. Shechtma al. [97] employed a three dimensional correlation to match
the actions in the space time volume. Mahmadal. [102 also used volume representation
for activity recognition. One benefit of the volume based approach is that there is no need to build
complex models of body configuration and kinematics, and recognition can be done directly on the
raw video. Another important direction of research that has gained much interest recently is the use
of space time interest points and their trajectories for activity analysis. Work by Lap#\67],
Oikonomopoulousnet al.[82] and Dollaret al.[35] belongs to this category. The main strength of
this representation is its robustness to occlusion as one does not need to track or detect the whole

human body.

The features based on motion information and optical flow, which are more relevant to our
current work, have been used by a number of researcB&r<(, 58, 112. For instance, Bo-
bick et al. [12] introduced motion energy image (MEI) as way of describing cumulative spatial

distribution of motion energy in the given sequence. This description of motion is then matched
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against stored models of the known activities. The MEI descriptor was later augmented with mo-
tion history image (MHI) in L3], where each pixel intensity in MHI is described as a function of

of motion energy. Recently, Weinland et élOf extended this representation to handle different
viewpoints. In optical flow based approach&,[112 10] the idea is to directly use the optical
flow as a basis for deriving a representation that can be used for recognitionet atl¢70] used
spatial distribution of the magnitude of the optical flow for deriving model free features, while
Juet al. [58], Yacoobet al.[112 and Blacket al. [10] proposed PCA based analysis of optical

flow for facial motion and expression analysis.

Chaudhryet al[26] have recently presented an approach where they model an action through
nonlinear dynamical system (NLDS). The are using a histogram of oriented optical flow (HOOF) as
the observation in each frame. The sequence of HOOFs is then used as the input time series of the
NLDS. They use generalization of Binet-Cauchy kernels to NLDS in order to compare two HOOF
time series. They claim to be the first ones to have used a complex descriptor, like HOOF, instead
of a set of trajectories of human body joints or a series of pose descriptors containing the joint
angles etc. This approach uses the kernel for projection to a higher non-Eucledian space in order
to compute distance between to HOOF time series. Such a model is useful for the computation of
action recognition but cannot be generalized to action representation for other tasks like prediction,
tracking, etc. The model presented in this dissertation provides a strong representation in the phase

space.

In addition, we would like to mention that a different paradigm for activity recognition has also

been advocated over the years where 3D information of human postures and dynamics is analyzed
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[34, 18]. The projection of these 3D models are used to test whether desired activity is present in
the given frame or not. Due to explicit construction of 3D models, these approaches are able to
handle view invariance but suffer from the difficulty of recovering 3D structure of the articulated

objects.

Our present work is more related to the approaches of learning dynamical models over the state
space that represent human motio® g1, 15]). Specifically, the method by Bissace al. [9]
used a parametric skeletal model of a moving person and learned a linear dynamical model, while
Bregler [L5] proposed a mixed-state statistical model with a finite state automaton at the highest
level to switch between local linear models to cater for the nonlinear dynamics of human motion.
Later on B6, 66] attempted to integrate the nonlinear dynamics directly into the model, rather than

using an external mechanism to control the switching.

2.3 Dynamical Systems and Video Synthesis

Polana and Nelsor8p| classified visual motion into three classes: motion events, activities, and
temporal textures. Motion events (e.g. sitting, opening window) don’t exhibit temporal or spatial
periodicity. Activities (e.g. walking, jumping) are formed by the motion patterns that are periodic

in time and localized in space. Temporal textures (e.g. waves on water surface, smoke) present
statistical regularity but have indeterminate spatial and temporal extent. We focus on the temporal
regularity of the last two classes. For this we rely on the powerful tools from chaos theory to model

deterministic dynamical system&(].
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In computer vision, dynamical systems have been used in a variety of applications, including
human motion (activity) modelingd| 15, 40] and dynamic textures2p, 36, 45, 71, 115 107,
and tracking 109. Most of these approaches model underlying system dynamics by using linear
systems, while others use nonlinear dynamical systems. In many cases, nonlinear approaches
provide a more accurate model but have to approximate the parametric form of the underlying
system. This parameter learning may be imprecise and that can be a source of error. Our approach
belongs to the category of the nonlinear dynamical systems that use nonparametric model, which

therefore does not require parameter learning.

Many of the previous approaches for dynamical systems rely on stochastic noise-driven linear
[36, 115 and nonlinear dynamical systen®5]. Instead, we show that the typical dynamic tex-
tures can be modeled accurately by deterministic dynamical systems. The detailed experimental
validation proves our argument. 169] and [71], authors present approaches for learning nonlinear
manifold for the observed time series. We have compared our methodAdjtarid show that our
approach generates more realistic dynamic textures, because it does not suffer from the errors due

to imprecise learning.

Time series modeling and prediction has been an active area of research due to the wide variety
of applications in the financial market, weather, biology, etc. The initial approaches typically
relied on AR, MA, or ARMA univariate models. More sophisticated approaches rely on nonlinear
modeling R3] and state space projection of the time ser&§.[ Our approach has both of these
properties. Ralaivolat al.[86] present an approach for time series prediction based on kernel trick

and support vector regression. In comparison, our approach is based on delay emhE@ifing [
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and kernel regressio(]. Delay embedding generates the unigtiange attractorthat can be

used for system modeling and classificatids0]]

Wanget al.[40] have presented another strong model for human motion. They propose a non-
parametric dynamical system based on Gaussian processes. This approach is only demonstrated
for human motion and not for the higher dimensional data, such as dynamic textures. The case of
dynamic textures is more challenging than human activity because of the higher dimensional ob-
servations and more irregular variations in the system state. Our approach is general enough to be
applicable to both human activities and dynamic textures. In addition, our method does not require

multiple exemplars for training in order to learn a particular activity, making it more practical.

Huanget al.[54] have recently presented a new approach of human action synthesis in 3D video
using surface motion graphs. Their goal is to allow a user to specify a set of key poses needed in the
output video. Their goal is to use the available poses and in the database and minimize the cost of
transition between the key poses. They construct the novel 3D video by finding the optimal path in
the surface motion graph among the key poses specified by the user along with location and timing.
They use integer linear programming for finding the optimal set of poses. This type of framework is
suitable for building composite activities (like walking and then running) that are based on different
combinations of individual activities (like running, walking, etc.). The activity synthesis approach

presented here focuses on the synthesis of individual activities instead of activity transitions.

A common theme of all these approaches is that they approximate the true motion dynamics
by putting constraints on the type of the dynamical model. In addition, they require very detailed

mathematical and statistical modeling which involves assumptions about the probability distribu-
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tions of stochastic variables of the model, development of inference methods, and algorithms for
learning parameters of the distribution using a large data set. To overcome some of these diffi-
culties, we are proposing a framework that captures the true non-linear dynamics of the human
motion, and generates a more richer set of features by directly working with the experimental data.
In addition, our method is not a statistical learning method therefore does not require large training

data, instead strong discriminative features can be derived just from one example activity.

2.4 Summary

We have presented an overview of the related research in the areas of anomaly behavior detection,
activity recognition, dynamical systems and activity synthesis. We discussed pros and cons of
various approaches in the literature. We also explained how the proposed work is aimed at filling
the void in the literature. Our approach for anomalous activity detection is based on unsupervised
learning, models motion of single objects as well as object pairs, avoids errors related to clustering
tracks, and reuses the same scene model for improving object detection. We have presented a
novel approach to model human activities as a dynamical system in the phase space. To the best of
our knowledge, we have used the relevant concepts from chaos theory and non-linear dynamical
systems for the first time to represent human activities and dynamic textures in computer vision
literature. We have used a new set of features (chaotic invariants) for recognizing activities and
proposed a new approach (kernel regression in phase space) for predicting human activities and

dynamic textures.
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In the next three chapters we present the details of our approaches for unusual activity detection,
activity recognition, and activity prediction. The following chapter presents the details of our

statistical learning approach to detect unusual activities at the coarse level in the scene.
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CHAPTER 3: SCENE MODELING FOR UNUSUAL ACTIVITY DETECTION

3.1 Introduction

Automated video surveillance is crucial for the security of various sites including airports, train
stations, military bases, and many other public facilities. There have been significant advances in
automated visual surveillance systems in the recent y8a8r34]. A modern surveillance system

is expected to not only perform basic object detection and tracking, but also to interpret object be-
haviors. This higher level interpretation can have several applications including abnormal behavior
detection, analysis of traffic trends, and improving object detection and tracking. In this chapter,
we focus on the problem of interpreting the output of the object detection and tracking module in
order to gather knowledge about the scene. This knowledge is used to build a scene model which
can be used to detect abnormal motion patterns and to enhance the surveillance performance by
improving object detection. We present two novel and complementing models here: Se2tion
describes first model that is suitable for modeling single object motion, and real-time applications
[6]. Section3.3 describes second model that is useful for learning relationship between concur-
rently moving object pairs in the scene. The former one is suitable for real-time applications,
while the latter is capable of detecting more complex activities. Both of these approaches produce

encouraging results on the published data set.
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Figure 3.1:Proposed scene analysis approach detects abnormal events and provides scene model

feedback. Traditional object detection is improved by using the pixel-level parameter feedback.

3.2 Modeling Single Object Activities

3.2.1 Learning the Scene Model

In this section, we present the details of the structure and learning of the proposed scene model.
The visual tracking information serves as the input for our framework. We have used the object
detection and tracking system presenteda$|.[ For a given surveillance video, the tracker pro-
duces a set afi tracks{T,...,1;,..., T}, where every track is a set of observations of the same
object. For instance, angh track is a set of: observationd; = {Oy,...,0;,...,0,}, where

0, = (t,z,y,w, h) contains the time stamfpof observation, locatiof, ), width w, and height

h of the object. We also use the sige, h) feature, as it provides useful information for finding
anomalous behavior and improving object detection. For instance, this model assists in detecting
a pedestrian on the road or a bicyclist on the sidewalk, even when the motion is not very discrim-
inative. Using the set of observations, we want to generate a set of transition vectors that will be

used to train the statistical model and provide the details about the motion and size of the objects.
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Figure 3.2: A set of observations with transition (blue) vectors connecting them are shown on a
synthetic trackO; andO,, represent two observations of the same object along the twédk.the

transition vector betweef; andO;,.

For every observation, we compute a set of transition vectors that capture the transition from the
given observation to future observations along the same track. Relative velocity is computed for
the next observation, as well as a set of subsequent observations. In order to keep the problem
computationally tractable, we limit the computation to a temporal window witibservations.
Figure3.2 shows a synthetic track with marked observations and transition vectors from a partic-
ular observatior®;. This provides a means to detect abnormal tracks througglttal analysis.

In many cases mere use lotal analysis would not be sufficient. One such synthetic example is

illustrated in Figure3.4.

For any observation;, relative velocity is computed against &b, 1, ..., O;,,} to generate
a set of transition vectorgy’ ™, ..., 47*7}, where transition vectoy! ™" = (2, yjir, 7, w5, hy).

The destination locatiofw,. ., ;1) is obtained from the observation vector, ,, the duration

between the two observationg andO,.., is 7. (w;, h;) represents detected size of the object in
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Figure 3.3: A subset of tracks used in the training of the scene model. Multiple transition vectors

from each observation contribute towards learning the pdf at that location.

source observatio@;. 7 is the length of the temporal window along the track; in the experiments

we have used = 20.

We model the motion patterns in the scene using the motion and size features, as described
above. We use &dimensional random variablg for every pixel locatiori, wherey = (2/, ¢/, §t, wy, hy)
represents one particular outcomelpf Every transition vector generated from the observations
presents a five dimensional random variable. The probability density function (pdf) over this fea-
ture space is modeled as a multivariate Gaussian Mixture Model (GMM). This pdf is created for
every pixel location in the scene and it models the probability of that location being the source of
a transition. The pdf estimated at every location captures the probability of observing an object of
a given size which is moving to a specific location in a given duration. The pdf at an intersection
of multiple paths can capture the possible transitions in different directions, speeds and sizes of

objects.
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Learning of the model is performed after a sufficient amount of tracking data has been accu-
mulated. The appropriate duration depends on the amount of traffic in the scene and the required
accuracy of the model. For any given locatibim the scene, all the observations of the tracks
through that location contribute to the pdf at that location. The pdf for the random varialsie
created by utilizing the training instance's with [ being the source location. The training method

described below is repeated for all pixel locations.

A multivariate GMM is used to model the pdf of the random varidhleThe probability of an

observationy belonging to the GMM is given by
= 716,) = Zalp 167), (3.1)

wheren is the number of components detected in the mixtéirés the set of parameters defining

the ith component with weight!, and6, = {6},...,0" «},...,al'} defines the complete set

of parameters required to specify the mixture model. Each component is modeled as a Gaussian
distribution of the form

1

) _ _,i\Tyi —1 i
p0Io) = @2m)a2| 52 VRO ), (3.2)
l

whered is the dimensionality of the model affi= {4, >i} are the parameters of the model.

The computation of the GMM parameters is performed through an improved Expectation Max-
imization (EM) based algorithm, which was proposed by Figueiredo and 3g|inTfhis particular
approach provides a solutions to three major limitations of the basic EM algorithm. First, the
number of components does not have to be fixed. This algorithm estimates the number of compo-

nents by removing the components that are not supported by the data. Second, this approach does
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not require careful initialization and starts with a large nhumber of components which are spread
throughout the data. Third, this algorithm also avoids convergence towards a singular estimate
near the boundary of the parameter space. The details of the algorithm are avail&Sle louf

important points are included here for the sake of completion. The E-step is given by

Wi = kaf(t)JP(’ﬂef(t)} , (3.3)
Sl (0P (1)

wherew! captures the conditional expectation of the missing dgta) and®;(¢) are the parameter

values at the iteratiohof the EM algorithm. The M-step is given by

o maa{0, (5., wi(m)) — §}
04; t+1) = iz m - , 3.4
e+ -1 maz{0, (251:1 wi(m)) — %} &4

fori=1,...,n,

03 (¢ + 1) = arg max Q(01,01(1)), (3.5)

form: ai(t+1) >0,
whered is the dimensionality of each mixture component, S is the number of training samples

used in E-step, and th@-function estimates the log-likelihood given the current model estimate.

After learning of the complete scene has been performed, the GMM parameters for every pixel
location are stored as the scene model. For a given observation, if we only update the pdf of
the pixel at the centroid of the bounding box, then the created models could be spatially sparse.
To achieve better spatial smoothing of the motion models in the neighboring pixels, we update
all the pixels in the bounding box. Note that unlike most of the previous approaches, learning

of the proposed scene model does not rely on merging track to estimate the main paths in the
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scene. This reduces possible sources of error due to incorrect path estimation or ambiguity of track
membership between two or more paths. Another strength of the proposed structure of the scene
model is the ability to perform online learning of motion patterns and adaptation to the changing

object behaviors in the scene.

3.2.2 Abnormal Behavior Detection

The training phase generates a scene médasing the observed motion patterns. This model is a

set of GMM parameter® = {6,}, wherel is the location of all the pixels with sufficient training
observations. We use this scene model to detect abnormal motion patterns which conflict with the
trends observed in the training data. We propose an online approach for detecting anomalies in
the latest observatiof; from the test track’. This observation is analyzed as soon as it becomes
available after a set of previous observations in the tilaek {Oy, ..., 0;_1, O;}. For the task of
anomaly detectiorlpcal andglobal analysis of these observations is performedotal analysis,

we conduct the comparison of the current observatipwith the previous observation, ; only

(first order). This captures many typical anomalies based on instantaneous velocity and size of
the detected objects but, it has a limited capability for detecting more complicated anomalies. The
global analysis, however captures maremplicatedcases by analyzing the current observation

O, with respect to a series of previouobservationd” = {O,_.,..., 0,1} (higher order). The
transition between any source observatign, € 7’ and the current observatiap, is defined

by the transition vectoy}_, = (xy, ys, i, w;—;, hy—;), which contains contains destination location,

transition time, and the object size at the source location. Th&(df,_,)) of transition vectors at
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the source locatiot(t —i) from O,_; is used to determine how normal the current transitionis.
A very low probability value fromP(I',,_;) = ~;_;) is interpreted as representative of an atypical
transition. Our goal is to determine if the current observatipms abnormal or not by analyzing

the trail of observations in the track. Therefore, we use the minimum transition probability

By = ml.in{P(Fl(t—z‘) =%} (3.6)
fori =1,...,7 and the observatio@; is declared abnormal if following condition is true
By < A\, (3.7)

where threshold\ is applied to the least probable transition. This provides a means of detecting
atypical transitions that originated from any one of these higher order transitions. Hence, both
local and global anomalies can be detected through this framework. Our approach performs online

analysis of the motion patterns to detect anomalies as soon as they occur.

We use this framework to detect various types of anomalous behaviors. RBigupeesents
various types of detected anomalies in a real video. These include pedestrians on the road and
grass, skateboarder and bicyclist on the sidewalk, pedestrians sitting down, etc. In addition, we
can also catch anomalies like violations of one-way traffic, which is important on the road and
in some airport hallways. Figurg.4 presents a synthetic scene to illustrate the case of global
anomalies. Randomly generated tracks (Figiidéa)) were used for training completely follow
one of the four paths. Our goal is to detect the tracks whose behavior is normal locally but not
globally. This is important, for instance at the airport where pedestrians from one path are not

allowed to switch to another intersecting path. Another example could be of cars that are not
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(a) Training Tracks (4 Paths) (b)Normal Tracks (c) Unusual Object Size d) One-way Violation

-- i€

e) Fast Motion f) Stopping Incident (g) Unusual Path ) Unusual Path (by global analysis)

Figure 3.4: Global anomaly: when the tracks are not allowed to change paths, global analysis
detects the violations. Every observation is labelled either normal (blue diamond) or abnormal
(red circle). Gray background is the region without motion model. (a) Training set of random
unidirectional tracks (along four paths). (b) Local analysis fails to identify anomaly, while (c)

global analysis highlights the observation that take an unusual path.

allowed to turn on an intersection. Figuded(b) and (c) show the outcome of the local and the
global analysis respectively. Local analysis the first order transition between observations is not
sufficient to detect such anomalies. Instead we use higher order transitions to capture the global
structure of the track. This type of analysis can also be useful for detecting cyclic motion or

repeated U-turns which can be abnormal.

3.2.3 Improving Object Detection

An important application of the proposed scene modeling approach is to improve object detec-

tion utilizing the patterns in the observed tracks. The knowledge of object parameters (size and
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speed) at every pixel location is used for this purpose. There are certain components in traditional
background subtraction algorithm@9 38] that could benefit from this scene knowledge. These
parameters are traditionally considered consistent throughout the scene, but this limits the perfor-
mance of object detection. The scene model provides the feedback information (see3Figure
for every pixel to update the parameter values according to the scene information. The use of the
proposed scene model is presented in the following for two parameters, minimum object size and

background learning rate.

3.2.3.1 Minimum Obiject Size

The minimum size ) of the detected objects is the first parameter which benefits from our scene
model. Sizes is defined as the area of the blob detected after background subtraction. If this value
is set too high, then detection of valid small objects in the far view camera fails. On the other
hand, if this value is too low, then some noisy segments and broken parts of larger object blobs
are reported as separate objects. Instead of a fixed global value for the parametgresent a

method for automatically obtaining the appropriate value ofstharameter at different pixels.

In order to improve the accuracy of object detection, we use the proposed scene model to
estimate the probability of observing an object of a given size at the current location. In the learnt
scene model, the pdf at every pixel location captures the joint probability of motion and size. For

size-based analysis, we extract the marginal pdf for the size parameters

m n

P(w, h) = ZZZP(z,y,t,w,h), (3.8)

z=1 y=1 t=1
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wheren rows & m columns is the size of the image and the maximum transition duration modeled

in the pdf ist. As mentioned in§3], this marginal pdf for,, = (w, h) can be represented as
P<th) = Z Oéip(XWh‘ezNh)? (39)
=1

whered! represents the parameters o bivariate Gaussian with meari® and covarianc&}™

1
p<XWh|9;}Vh) = CeXp{—§<th - M;‘Nh)TZth<XWh - :u‘iNh>}7 (310)
where
1
C=——=a
27T|ELEi "2
Eiwh is Schur's decomposition &f; with respect ta=}'?, andy; is 5 x 5 covariance matrix from

original joint pdf.

The marginal pdf is created at every pixel location and it captures the density of observed object
sizes at that location. For illustration purpose, we use this pdf to generate the size map shown in
Figure3.8. The mean value of width and height from the Gaussian component with highest weight
is used in the computation of the most probable size at a given pixel location. This value of size is
used as the intensity of the corresponding pixel location in the size map. Note that the size values
on the road region are much higher than those on the sidewalks. The size values can be observed

to be gradually reducing as the objects move away from the camera.

The parameters of the marginal pdf at every pixel are passed to the object detection module as
feedback. Figur&.1shows the feedback flow of the pixel level parameters representing the size

pdf at each pixel. The background subtraction algorithm generates a set of foreground blobs of
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different sizes. For each of the foreground blob at location) with size (w, h), we compute the
probability P(w, h) using the marginal aft, 7). A very low value means that the current blob is
most likely a false observation. Suppressing valid objects at unexpected locations can be avoided

by defining thes parameter at the current location as

s = Sminp<wv h) + 3max<1 - P(wv h))’ (3.11)

where ..., Smaz] SPECIfy the range fas value. This range does not greatly affect the sensitivity of

the detection module. In our experiments we use#d [50] range for two different scenes. Pixels
locations with missing models or unexpected object size produce low probability values, which
generate a high value for that pixel. This approach assures that very small noisy observations
are not approved as valid objects. High probability values result in smallue which assures

that even small sized valid objects are not missed. This provides a means for the object detection

module to have different values for different pixels based on the learnt scene model.

3.2.3.2 Background Learning Rate

The background learning ratg)(is used to update the learnt background model in order to adapt

to slow changes in the scer@9. For instance, if a table is moved in the room, the new setting is
learnt as a part of the background. However this feature can cause a problem when the goal is to
consistently track an object that briefly becomes stationary. For instance, if a car stops briefly on a
traffic light, it can be quickly learnt as a part of the backgroundiff too large. On the other hand

if pis too small then the valid changes in the scene would not be incorporated in a suitable time.
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(b) Unusual Path (c) Bicycle on sidewalk
(abnormal size and speed)

(d) Sitting on sidewalk (e) Skateboarder (f) Pedestrian on road
(abnormal speed) (abnormal size and speed)

Figure 3.5:Scene 1. Detected abnormal observations are labelled red and normal observations are
blue. (a) All normal observations of a typical pedestrian (b) The pedestrian follows an unusual path.
(c) The observations of a bicyclist are also classified as abnormal, because of the abnormal speed
and size of the object. (d) A person stops in the middle of the sidewalk and sits down. Note that
the observations were correctly labelled normal before the person sat down. (e) A skateboarder,
whose observed size is the same as that of the pedestrian but the speed helps in distinguishing
them. Some of the observations are detected normal because of only a slight difference in speed.
() Unusual size and speed prove to be useful in case of a pedestrian walking on the road. All of

the above mentioned tracks are part of the testing video, which is different from the training video.

This dilemma suggests that we locally tweak the valug dépending on the behavior of objects

in the scene.
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The proposed scene model captures different speeds at a particular location. We identify the
regions in the scene where objects become stationary, including the exit zones. The learning rate
is lowered only for the pixels belonging to these regions. Similar to the approach for the minimum

object size, we extract the marginal pdf that captures the motion information. The marginal pdf
P(z,y,t) = Z Z P(z,y,t,w,h), (3.12)
w h

is extracted at every pixel. The GMM component parameters are updated in a manner similar
to the minimum size. The object detection could fail because of the higdlue, therefore we
identify the regions where objects stop and reducehis is done by analyzing the smallest object
speed {) captured at every pixel. The difference between pixel location and the GMM component
mean is used to compute this speed. The interpolated valueaf be computed using following
expression

P = pmznpv('&) + pmaz(l - Pv(@))a (313)

whereP, is a zero mean normal distribution used to signify reducing speedpand p.....| are the
two extreme values of the learning rates to be used. The aim for this formulation is to automatically
choose a value of for every pixel depending on the type of object behavior observed during the

training phase.

3.2.4 Experimental Results

The performance of the proposed framework was tested on real sequences captured from three dif-

ferent surveillance cameras. A typical scene observed from the first camera is shown irBFgure
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Figure 3.6:Anomaly detection performance on the scene shown in Fi@ube(a) ROC curve for

the 30 mins test video. (b) Table with ground truth number of tracks used in training and testing.

Realtime object detection and tracking was performed using the UCF KNIGHT sys&niritial
training is performed off-line and testing for anomalous behavior detection was performed using
the tracking results from a 30 minute test video. Figgu&b) shows the details of the training and
testing sets used for this experiment. Matlab implementation runs at approximately 26 fps for this
module on a 3GHz Pentium D PC machine. FigBrgpresents the output of abnormal behavior

detection in the test sequence.

The proposed approach declares an observation abnormal as soon as it is received from the
tracker. Figure8.5shows a set of detected abnormal behaviors in addition to a normal track. The
first one is an unusual path, where a pedestrian is tracked through a region where not enough
training tracks were observed. Next, a bicycle is on the sidewalk, which was not present in the

training video. The unusual speed and size of the bounding box provides evidence of such anoma-
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lies. Another similar anomaly (e) shows a skateboarder going faster than pedestrians. Most of
the observations are labelled as abnormal even when the observed size is very similar to that of a
pedestrian. (d) shows a case where a pedestrian sits down on the sidewalk and (f) shows a case
where a pedestrian is detected on the road. This particular anomaly is captured by difference in
speed and size of the observed object and the scene model. The results show only a small number
of observations are misclassified. The majority decision for the complete track keeps the results

accurate. Figur8.6(a) presents the ROC curve depicting the accuracy of anomaly detection.

Figure3.8(a) presents the object size map extracted from the learnt scene model scene 1 shown
in Figure3.5. The high intensity values along the road are generated by the vehicles. As the objects
move away from the camera the observed sizes reduce, which reflects here as reducing intensities

along the sidewalk. Similarly, Figui28(b) shows the size map for scene 2 shown in Figuie

The experiments of improving object detection are performed on video from two other surveil-
lance cameras. Results of the improvement in the object detection using the size parameter feed-
back are presented in FiguBe7. Two real scenarios are shown here that support the claim that
the proposed size map outperforms the case with fixeadue. In the case of (b), the lowest value
of s = 50 is chosen and in both scenarios, false positive objects are detected. In the first scene, a
small broken part of the pedestrian’s shadow is detected as a valid object and in the second case, a
noisy observation on the lamp post is declared as a valid object. In the case of (c), a comparatively
higher value ofs = 150 is chosen and it clearly misses the pedestrians that are farther away from
the camera. Finally, (d) presents the improved object detection using the proposed size map which

provides a different value at each pixel location. All the actual objects are detected without any
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(a) Ground Truth "~ (b)s=50 . (€)s=150 (d) Using the size probability

Figure 3.7: Scene 2. Improvement in object detection by the proposed size model. Each row
presents an instance in the same video. Column (a) shows the manually extracted patches of the
objects currently present in the scene. Column (b) is the output when a uniform global value of
s = 50is used. Noisy foreground blobs are also detected as valid objects (red ellipses). (c) presents
output whens = 150 is used throughout the scene. Individuals are not detected (red ellipses) when
the object size is small. (d) presents results of the proposed size model. In both scenarios the valid

objects are detected and the noisy observations are avoided.

noisy detections. The automatically learnt size map proves to be very useful in accurately capturing

the perspective distortions in the scene.

Figure 3.9 presents results of automatic feedback for pixel-wise update of the background
learning rate. This camera covers an intersection with traffic lights where cars may stop up to
approximately 40 seconds. The scenario shown in this figure contains a black car arriving, stopping

for a red light, and then driving away. FiguB9(a) shows the output using a typical value of
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5500

(a) Scene 1

(b) Scene 2

Figure 3.8: The object size maps are computed for scene 1 (Figpeand scene 2 (Figur.7).
Intensity at every pixel location is the most probable size of the object observed at that location.
The highest intensity is observed for the vehicles along the road. Note the gradually reducing sizes

due to perspective effect.

learning rate 4 = 0.01). The target of continuously tracking the stationary car could be achieved
by increasingp, but this can induce spurious detections where the background changes rather
quickly. Using the proposed parameter feedback approach, we can isolate this incrgase of
only the regions where it is required (i.e. where traffic stops). In the experiments, we have used
[Pmin, Pmaz] = [0.005,0.1] as the extreme values of the learning rate. Figli8éb) shows the
detection output by using the proposed feedback approach for learning rate. The new detection

through this approach have been highlighted.

3.3 Modeling Object Pair Activities

The approach presented above models the motion patterns of each object independently. The

scene model accumulates observations from multiple tracks but each sample in the pdf represents
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(b) Prosed Ieaning rate using feedback

Figure 3.9: Scene 3. Improvement in object detection using the proposed feedback approach
for updating learning rate. Video sequence progresses from left to right. (a) Using the uniform
background learning rate € 0.01) for the whole scene. (b) Detection results using the proposed
approach for updating background learning rate. Red ellipses highlight the car that was not de-

tected by the regular approach but was later detected by our approach.

motion of a single object independent of others. This type of model lacks the ability to capture
interactions between two or more objects. For instance, when a car drops off a person, there is
useful information in the two tracks about the mutual interaction of these objects. We are interested
in exploring the possibility of creating a statistical model of pairs of objects that are concurrently
observed in the scene. This would complement the approach proposed above by adding the ability
to model object interactions. Such a model will be able to capture the functionality of the current
single object model, as well as the new functionality of modeling object pairs. This could prove
to be useful in detecting more complex abnormal behaviors, such as illegal drop-off/pickup, traffic

light violations, etc. In this section, we present a new composite model that captures the interaction
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of object pairs in the scene to detect such behaviors. We show that the novel model presented here

is useful for identifying abnormal object interactions, as well as single object anomalies.

3.3.1 Learning the Scene Model

The observation vectadr:, y, w, h, 7) of each object consists of bounding box centraidy), width
(w), and height h) along with the time of observatiofr). For a pair of objects andb tracked

concurrently in the scene, we can build a composite transition vector

Yap = (Yar M), (3.14)
Ya = (xaaya>$;7y;>waaha>7_a)> (315)
T = (xbaybax;)ayllvahhbvﬁ))v (316)

where~, represents the transition of an objecfrom a source locatioifx,, y,) to a destination
location («/, y.) in time 7,. Similarly, -, represents the transition of objéct Note thatr, and

7, could be different if considering two transitions of different degrees. If one of the objects is
occluded for a few frames, two different transition times can be used. This scenario is handled
seamlessly by the model. FiguBelOillustrates several transition between three objectsand

¢, concurrently present in the scene.

The composite transition vector holds the semantically holds the commutative property, (i.e.
Yab = Vb.a)- IN Order to reduce the complexity of the KDE, we only use one of the two possibilities
(Vap OF Y0). LetI be al4-dimensional random variable whose observations)age We use

KDE to learn the probability density of this random variable. A multivariate distribyti@n is
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Figure 3.10:Modeling track interaction between the objects tracked concurrently.

formed through the set of joint object transitiomdé,b,yg’b,yib, --- observed during the training

period. The estimated probability density is computed as

WU =)= —= S k(). 317)

whereH is a symmetric positive definitézd bandwidth matrix, and( is a14-dimensional kernel
function. In our experiments we use a Gaussian kernel. The bandwidth of the kernel is one of the
parameters that can affect the accuracy of the model. It is estimated through the minimization of
the mean-squared error between the estimated and the real depsity — px(7)]?>. We use a

likelihood-based search for bandwidth selection, 4&&|[for more details.

The proposed model represents the joint transition of an object-pair concurrently observed in
the scene. We can also obtain a derived model to test a single object transitiof ifs#ye scene.

This is done through obtaining marginal distributions of the two parts of the learnt pdf, given by

p(la) = /b P(Lap)db, (3.18)

p(ly) = / p(Lap)da, (3.19)
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Table 3.1:Algorithm of mean shift based local refinement to estimate best joint transition vector.

Objective: Given the initial joint transition vector, ;, use mean shift to compute a refined

transition vectory, ,. Algorithm:

1. Letv), = Yap.
fort =1toT do

(a) Generate a set oV samples by usingV(v/,, ¥}, ;) and compute mean statg,
by Equations3.22and3.23

(b) If |75, — ymll < threshold
then break for

otherwise lety, , = Y.

end for

2. Refined estimate of the transition vectar, = 7, .

wherel', ; is the full 14-dimensional random variable with the transition vectors of both objects
andb, I', is the random variable with first 7-dimensions of the original composite transition vector
', andl', is the random variable with last 7-dimensions of the original composite transition vector
I'.,. The representative model for the single object transiias then selected by choosing the
best candidatenax(p(I's = ), p(I'y = v)). Such a representation for the single object transitions

holds when the goal is to identify the outliers from the learnt model.
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3.3.2 Abnormal Behavior Detection

We define the behavior of an object as a set of transition vectors generated from the track. Each of
the transition vectors can be tested against the learnt pdf individually, as well as a part of the joint
transition vector with other objects being observed. For a comprehensive test of a given object, we
perform both individual and joint test for a transition using the learnt pdf. In principal, we could
identify the outlier by applying a threshold on the computed probability density against the object
transition under consideration. However, in practice, the higher dimensionality of the pdf makes it
sensitive to noise and sparsity. To address this problem, we propose a local sample refinement step
based on the principal of mean shi®l]. For a given joint transition vectoy, , between objects

a andb, a refined transition vectoy, ; is estimated through an iterative approach summarized in
Table3.1 We start with generating a set 6f samples from a normal distributiok(~; ,, >, ;)
around~, , with covarianceX,, = diag(c!,,), wheree!, , is the joint transition error. This error

can be computed through the mean of the absolute erhy at every iteratiort of the refinement

algorithm as follows:

AW’Z,b = |%tz,b—%,b|> (3.20)
e, = —leb : Tap (3.21)

Similar to the mean shift algorithn8]], we use/N weighted samples; in the neighborhood

of the original sample. The refined mean at every iteration is computed as

YL GO = ww(r)
Zij\il G(7 - %)w(%)

o : (3.22)
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Table 3.2:Algorithm for abnormal behavior detection in object pairs.

Objective: Given N objects in the scene, identify set abnormal object behaviorsi(set

Algorithm:

1. Initialize Vv« v voting matrix to O.

2. Populate voting matrix for all combinations of objects
fori =1to N do
for j =ito N do
(a) if p(~; ;) > threshold (using Equatiod.25
thenV,; =V, +1
otherwiseV, ; =V, ;, — 1
end for

end for

3. Identify abnormal behavior
A=g
fori =1to N do

(a) positive_counts : count(V; n > 0) + count(Vn,; > 0)
(b) negative_count : count(V; y < 0) 4 count(Vy,; < 0)

(c) if negative_count > postive_count

thenA = AU1

where we use normal distribution as the kernel around each sample. In addition, weight-
puted from the density is used in order to include the likelihood of each samplesed on the

training data, and is defined as

w(y) =p(l'=7). (3.23)
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The refined joint transition vectoy,;, can now be used to detect abnormal behavior of the
single object transitions, and~,, by utilizing the marginal densities as explained in the last
section. However, in order to effectively utilize learnt scene model for anomaly detection among

object pairs, we have to evaluate both density using the combinations of object pairs:
ﬁ(r = ’Aya,b) = m&x(ﬁ<r = ;)/a,b)aﬁ(r = ’A}/b,a))' (324)

This may increase the computational complexity of the anomaly detection step. Another option
is to build a more complex model by using both forms, and~, , as a part of the training data.
This implies increasing the amount of training data in the KDE model by a factor of two, which

would also significantly increase the complexity of density computation as given in Eq@atibn

In order to decide whether a particular object is presenting a normal or abnormal behavior, we
can use the history of the object to handle noise and consolidate the decision over the life of the
track. This is done by fusing the computed probability densities through a Markov Chain. In the
case of the track pairs, the duration considered would be the duration of frames during which both

of the objects are observed. L'gfgb be the joint transition vector at franye

F2
P =73 = H p(I' = %’f,b, (3.25)
f=F1

where[F'1, F2] is temporal interval where the two tracks co-exist. In the case of evaluating a single

track anomaly, this interval can be the full or partial duration of the track.

The final stage involved in deciding the abnormal behavior in the presence of multiple objects
is the consolidation of decisions from several object pairs into a final decision. The main purpose

is to declare an object presenting abnormal behavior when most of the objects in the scene support
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Figure 3.11:Synthetic scene with three pairs of interacting paths (group of tracks) generated to

train the scene model. The small arrows show the direction of motion along the path.

the decision. Such an approach is useful in making a robust decision that could otherwise be
misleading due to measurement noise or lack of training data. We propose to use a simple majority
voting scheme for this purpose, where all the combinations of object pairs are evaluated to make a

decision about object behavior.

3.3.3 Experimental Results

In this section we present the results of the experiments performed on the toy example using syn-

thetic data, as well as two real scene with various abnormal behaviors.

The synthetic data used to create a KDE model is shown in Fgydte The tracks generated
for this experiment were randomly generated from a normal distribution with pre-specified param-
eters for the respective path. The KDE model is generated from these training tracks using the
approach mentioned in Secti@3.1 The test data used to demonstrate the results contains one

normal event and four abnormal events, which include unusual path, unusual direction of motion,
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Figure 3.12:The sample output of testing pairs of synthetic object tracks is shown here in case of:
(a) normal pair of tracks, (b) one track with unusual path, (c) unusual tracks in opposite direction

to the training tracks, (d) a track with unusual size, and (e) a track with unusually high speed.

unusual object size, and unusually high speed. Figutg presents the output of the test phase
where the objects pairs are used for testing. The observations of the tracks labeled as normal are
shown in blue, while the observations labeled as abnormal are in red. The objective here is to
analyze the test tracks in light of the training tracks and identify the parts of the tracks that deviate
from the normalcy model. Note that in FiguBel2b) both the tracks have been labeled abnormal
after one of the object takes the unusual path. This shows that by using the object pairs we can
identify the relationship between objects. The independent decision based on single object will be

eventually used to identify the only object which is abnormal out of the two.

In case of the real scene, we recorded videos from two different sites. Video fromisisshe
hours and0 minutes long while that from scenias 2 hours30 minutes long. Each video is divided
into training and testing portions. There wai@ 6 tracks in scené that were used for training,
while 193 tracks were used for testing, with .94% testing to training set ratio. Similarly25

tracks in scené were used for training, whil&7 tracks were used for testing, wigB2% training
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(c) Close proximity of moving person and vehicle

Figure 3.13:Sample results of anomalous behavior detection. Normal and abnormal detections are

shown in blue and red, respectively.

to testing set ratio. Training was performed using the approach presented in Se8tibrThe

KDE model was created using the likelihood-based bandwidth selection approach.

The events used for testing in scehéclude person drop off by vehicle, person pickup by
a vehicle, and close proximity of moving person and vehicle. The results of scareshown
in Figure3.13 The portions of the tracks highlighted in red are labeled as abnormal, while the
portions in blue are labeled as normal. We are detecting the vehicle drop off and pick up events as
abnormal because there were not many examples of this in the training data in those regions. The

third case of close proximity is particularly interesting because it re-emphsizes the importance of
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(b)

Figure 3.14 Examples of correctly detecting normal events. (a) Person on a crosswalk, (b) vehicles

driving straight, and (c) vehicle turning.

using the proposed model to detect dangerous situations on the road. Another interesting aspect
of this event is that it was detected as normal when using only the single track model. There were
quite a few examples of pedestrians jaywalking in that region and it was learnt as normal behavior.
If the vehicle and the person are analyzed in isolation, they are detected as normal, however we are

able to identify unusually close proximity by using the object pair model.

Similarly, there are some interesting events in scene 2 that have been identified by the proposed
approach as abnormal. We first present some of the normal events in the scene, as shown in
Figure3.14 The person crossing the road on the crosswalk, while the vehicles are stationary, is
correctly detected as normal. Similarly, vehicle following the usual traffic pattern learnt in the
scene are also labeled as normal. Fighifes however shows examples of the abnormal behavior
detected in this scene. The first event is the violation of the red traffic light. One can notice
other vehicles still parked while the red and black cars go through the traffic light. It is possible
that the stationary cars would have moved late. If that happens while the violating car is still in

the field of view, then the decision has a chance to be changed provided there is sufficient time
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by black and red cars.

(a) Red light violation

(e) Two individuals jaywalking.

Figure 3.15:Examples of anomalous behavior detection
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Figure 3.16:Runtime comparison of anomaly detection when using three variants of the KDE
model: the originall4-dimensioal KDE, reduced t@-dimensions after PCA, and reduced to

5-dimensions after PCA.

available. Other than this, there are examples of people jaywalking either on the crosswalk or
away from it. The case of walking on the crosswalk when it is not allowed is quite interesting and
shows the effectiveness of the proposed object pair model. When only single object model is being
used, such subtle anomalies are missed because the relationship between objects’ behavior is not
captured. Notice that a golf-cart is also detected crossing the road illegally. There are two reasons
for this event being detected as abnormal. First, the other vehicles on the road are still moving
when the golf-cart crosses the road. Second, the size of the golf-cart is unusual for this part of the

scene because we only typically observe humans crossing the road in that region.

We performed an experiment to study the issue of the high dimensionality of the model. The
originally proposed KDE id4-dimensional and there are hundreds of thousands of samples that

are stored in the model. This results in a high computation cost when this model is used for
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computing kernel bandwidth, as well as the probability density for a test samples. To address this
problem, we present the use of reduced dimensionality through the use of principal component
analysis (PCA). This is done at the training stage when the training data is used to evaluate the
principal components. We have experimented by reducing the dimensionality to dinst then

5 dimensions. Thé4-dimensional test samples are then projected into the reduced feature space
using the principal components obtained during training. We noticed a significant speedup in the
performance of both the bandwidth selection and the testing stage. Bigéshows the reduction

in the runtime when using and7 dimensions, as compared to the origih&ldimensional feature
space. In thé-dimensional case the speed is almost double. This speedup is achieved without the
loss of performance accuracy, as shown in Figifel. The three abnormal events shown earlier

are still correctly identified when using the redudear evens dimensions.

3.4 Summary

In this chapter we have presented two novel approaches for coarse level activity modeling in a
scene. The first approach models and learns the motion patterns of individual objects in the scene,
while the second one also models the interactions between objects pairs. While the first approach is
more suitable for lightweight real-time applications, the second one is more powerful for detecting

relatively more complicated and useful behavior in a scene.

In the first approach, we adopt an unsupervised learning based approach, which models object
motion and size at every pixel location. The proposed framework provides a means of performing

higher level analysis to augment the traditional surveillance pipeline. The pdf of motion patterns at
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Figure 3.17: Anomaly detection performance comparison between different model dimensions.
The results are presented with KDE models with (a) original 14-dimensions, (b) reduced 7-dimen-

sions after PCA, and (c) reduced 5-dimensions after PCA.

every pixel is modeled as a GMM, which is learned through EM based approach. Experiments on
real videos have proven the effectiveness of the proposed approach for local and global anomaly
detection. Furthermore, by using the scene knowledge, we also show the improvements in object
detection by using the feedback for the minimum object size and the background learning rate.
This framework does not require explicit extraction of the main paths in the scene. This approach

can easily benefit from online learning and can also be used for conventional applications like
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predicting object path and scene exit points. In summary, the proposed framework is novel, robust,

and can be generalized to more features than just motion and size.

In the second approach, we extend the first approach by modeling the distribution of motion
patterns of object pairs. This is done through defining a composite random variable that combines
transition vectors of two object concurrently present in the scenel1ZHtemensional probability
density is learnt through KDE. The sparseness in higher dimensionality is handled through mean
shift based sample refinement. Finally, Markov Chain is used to integrate the evidence over time.
We present further improvement in the runtime by dimension reduction through PCA. We present
encouraging performance on two different real scenes where we detect abnormal behavior like red

light violation, illegal jaywalking, unusual person pickup, etc.

In the next two chapters we present our proposed models for human activities at the finer level
in contrast to the models for coarse level presented here. The forthcoming chapters focus on the
articulation of human body parts and utilize the trajectories of the body joints to model an activity.
Chapterd describes the approach for recognizing activities of individuals and Chapiersents

the approach for predicting behavior of an individual.
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CHAPTER 4: CHAOTIC INVARIANTS FOR HUMAN ACTIVITY
RECOGNITION

We present a novel approach for classification of human activities in videos by using representa-
tive chaotic invariant features for each activig] [ Human activities are modeled as nonlinear
dynamical systems that are responsible to generate the observed time series data in videos. We
utilize the trajectories of human body landmarks/joints (two hands, two feet, head and belly point)
as the time series data. The observed data is then transformed to its respective higher dimensional
state phasé space through delay embedding. Dynamic and metric properties of the reconstructed
phase space are used to determinectiaotic invariantsincluding Lyapunov exponent, correla-

tion integral, and correlation dimension. This set of features is then used to represent the original
time series observed in the video. We prove the feasibility of our approach by recognizing human

activities in standard video and motion capture data sets.

4.1 Introduction

Human activities consist of spatio-temporal patterns that are generated by a complex and time
varying non-linear dynamical system. A complete description of this system will require enumer-
ation of all independent variables, their interdependencies, differential equations controlling their
evolution and a set of boundary conditions to be satisfied by the system. Ideally, one would like to

have this complete description so that it can be used to control, predict, and extract features of the
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dynamical system in a deterministic fashion. However, in practical scenarios obtaining a complete

analytic description is extremely hard.

In computer vision literature, the problem of obtaining the description of a dynamical system is
often overcome by selecting a set of variables defining the state space, and a function that maps the
previous state to the next state. The type of the mapping function determines whether it is a linear,
non-linear or stochastic dynamical system. For instance, human activities can be represented in
terms of state variables defined as the image locations of body joints, followed by assuming that a
linear [9], non-linear B6] or stochastic dynamical mode3]] is controlling the evolution of these
state variables. The unknown parameters of the dynamical model are learnt using a training data

of human activities.

Our contention in this work is that by constraining the dynamical system to be of a particular
type, one onlyapproximateghe true non-linear physics of human activities. In other words, by
making assumptions about the type of the dynamical model, one tries to fit the experimental data
to the model by finding values of the parameters that best explains the data. Rather than letting
the data speak for itself about the type of the dynamical system, number of independent variables,
degrees of freedom of the system, and values of unknown parameters. An analogous example of
this type of approach from the field of probability theory is to assume the type of the probability
distribution generating the data, say Gaussian, and then computing the mean and variance of the
Gaussian. Rather than allowing the data to determine the actual shape of the probability distribution

using kernel density estimation.
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The aim of this approach is to derive a representation of the dynamical system generating the
human activities directly from the experimental data. This is achieved by proposing a computa-
tional framework that uses concepts from theory of chaotic systems to model and analyze nonlinear
dynamics of human activities, by using trajectories of body joints. There are few important points
to note here: First, by proposing dynamical system generating human activities as a chaotic system,
we are making the statement that there eterminisnpresent in the seemingly stochastic dy-
namics of human activities. Thaeterminismif exploited, can be used to derive richer features for
activity recognition. Second, the proposed approach of modeling human activities directly from
experimental data is superior to approximate modeling, since no assumptions have to be made

about the type or form of the dynamical model.

Next, we present some of the relevant concepts from chaos theory that can be useful in under-

standing the forthcoming contents in this dissertation.

4.2 Chaos Theory Preliminaries

In this section we present the background material related to the theory of nonlinear dynamics
and chaos. We believe that this quick overview will be helpful in understanding the rest of this
dissertation. A dynamical system can be represented as a set of functions which describes how
variables change in time. A dynamical system is termed nonlinear if the function defining the
change in the system is nonlinear. A dynamical system may be stochastic or deterministic. In a
stochastic dynamical system, new values are generated from a probability distribution, while in a

deterministic dynamical system a single new value is associated with any current value.
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Dynamical systems can be represented by state-space models, where state \Efigbtes
[21(t), x2(t), ..., x, ()] € R™ define the status of the system at a given tim&he state variables
are often considered to be in subspaces of Euclidian spaces, but they more generally-are in
dimensional manifolds. The space of the state variables is often call@thtise spaceThe state
of the system evolves in accordance with a deterministic evolution function and the path traced by
the systems states as they evolve over time is referred toragatory or orbit. The collection of
all trajectories from all possible starting points in the phase space of the dynamical system is called
aphase portrait An attractoris defined as the region of the phase space to which all the trajectories
settle down to as time limit approaches infinity. If the attractor is not stable it is testregtje The
invariantsof system’s attractor are measures that quantify the properties that are invariant under
smooth transformations of the phase space or control parameters. Invariants fall into three classes:
1) Metric 2) Dynamical and 3) Topological. Metric invariants include dimensions of different
kind and multi-fractal scaling functions, while dynamical invariants include Lyapunov exponent.
Topological invariants generally depend on the periodic orbits that exist in the strange attractor.

Embeddings defined as a process of mapping one-dimensional signal-dimensional signal.

Chaos theory is one of the ways to study nonlinear phenomena. The name ‘Chaos Theory’
comes from the fact that the systems the theory describes are apparently disordered, but theory
is really about finding the underlying order in apparently random data. In other words, a chaotic
system is a deterministic system which is globally stable, exhibit clear boundaries and displays
sensitivity to the initial conditions. When applying chaos theory to a given a problem, the goal

often is to extract information required to identify and classify strange attractors of the dynamical
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system from the experimental data. The procedure can be broken down into a few relatively easy
steps. These are: find a suitable embedding of the data, verify the existence of deterministic
structure, compute dynamical, topological and metric invariants of the periodic orbits, and finally
use the invariants for the identification purposes. The proposed framewaork for activity recognition

is built around these basic steps. Intuitively speaking, for a computer vision practitioner chaos
theory provides a way of determining the description of a dynamical system from a time series
data. As long as one has the time series data, analysis steps described above can be applied. Few
examples of the time series data that we come across in the field of computer vision would be

trajectories, pixel intensity over time, flow vectors etc.

4.3 Framework

This section describes the algorithmic steps of the proposed activity recognition framework (see

Figure4.1). The main steps include:

1. Given a video of an exemplar activity, obtain trajectories of reference body joints, and break

each trajectory into a time series by considering each data dimension separately.

2. Obtain chaotic structure of each time series by embedding it in a phase space of an appropri-
ate dimension using the mutual informatieti], and false nearest neighborhood algorithms

[94].

3. Apply determinism test to verify the existence of deterministic structure in the reconstructed

phase space.
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Figure 4.1:0verview of the chaotic invariant features extraction framework starting from an input

video with tracked body joints (two feet, two hands, and the head).

4. Represent dynamical and metric structure of the reconstructed phase space in terms of the

phase space invariants.

5. Generate global feature vector of exemplar activity by pooling invariants from all time series,

and use it in a classification algorithm.

Next, these steps are explained in detail in the following subsections.

63



Figure 4.2:A sample set o8-dimensional trajectories generated by head (blue), two hands (red &
green), and two feet (red & green) are shown for the running activity from the motion capture data
set. The stick figure with green landmarks depict the first frame, and the one with blue landmarks

represents the last frame.

4.3.1 Activity Representation

A trajectory corresponding to a body joint represents a deterministic nonlinear dynamical system.
In our framework six body joints corresponding to two hands, two feet, head and belly are taken as
the reference joints. To make the representation scale and translation invariant, trajectories of the
first five joints are normalized with respect to the belly point. Hence, for any given activity we use
five trajectories to represent the activity. We choose these reference joints as they provide sufficient
information about most of the activities. Another consideration is that these joints are relatively
easy to automatically detect and track in real videos, as opposed to the inner body joints which are
more difficult to track. Figurel.8 shows examples of set of trajectories for different activities in

the case of real videos (2D trajectories), while Figdi2shows trajectories for a running activity
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from the motion capture data (3D trajectories). Note that, we are not solving the tracking problem
in this section, therefore, we assume that the tracks are available to us. Formally, we represent
the normalized trajectory corresponding to a jdimis a sequence of location$ = (28, 75, ..., 2],

wherez € R* with k = 2 for image based measurement, and- 3 for the motion capture data.
Finally, we have: x Ng scalar time series for each exemplar activity, wh&geis the number of

the reference joints.

4.3.2 Embedding

Embedding, as defined earlier, is a mapping from one dimensional spadedicn@nsional space.

It is an important part of study of chaotic systems, as it allows us to study the systems for which the
state space variables and the governing differential equations are unknown. The underlying idea of
embedding is that all the variables of a dynamical system influence one another. Thus, every subse-
quent point,z?, of a given one dimensional time series results from an intricate combination of the
influences of all other system variables. Therefafe, can be considered as a second substitute
system variable which carries information about the influence of all other variables during time
interval 7. Using this reasoning one can introduce a series of substitute variabjes.., z; -,

and thus obtain the whole-dimensional phase space, where substitute variables carry the same

information as the original variables of the systegd][

Formally, the embedding is achieved by using theorem of Takedd,[which states thaa
map exists between the original state space and a reconstructed state $padbeorem assures

that one does not have to measure all the true state space variables of the system, as in fact almost
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Figure 4.3:Depicts the embeddings of the time series corresponding to the right foot of the actor
shown in Figuret.2 The first column shows the time series corresponding ta: tiiedy dimen-

sions of the right-foot trajectory. The second column shows the plot of mutual information which

is used to determine. The first minima value, marked by the green bar, reflects the optimal values

of 7. The third column shows the plot of a measu#te(d) [19], which can be derived from the

false nearest neighbor algorithm, against different values ®he value ofi, after which the plot
converges to a stable value, is chosen as the optimal embedding dimension. This happens to be at
m = 5 in the current case. The fourth column shows 3hdimensional projection of the recon-
structed phase space for the chosen valuesarfdd. This embedding is used to extract invariant

features.

any one of the variables will be sufficient to reconstruct the dynamics. It also states that the
dynamical properties of the system in the true state space are preserved under the embedding

transformation. Thus, for a large enough embedding dimensighe delay vectory’(i) =

[bb b

23 25y By o zZ’.’Jr(d_l)T], generate a phase space that has exactly the same properties as that
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formed by the original variables of the system. Over hefes?, ., 2%., ...z}, ,), represent
scalar time series, belonging to one dimension of the trajectory, of the body mtitimest = idt

tot = (i + (d — 1)7)dt. Here,7 is known as the embedding delay. However, the embedding
theorem does not provide a method to find the optimal valuesaidd. For estimating these
values, we use the mutual informatigtl] and the false nearest neighbor algorithmg [ In order

to make this dissertation self-contained and readable, we are re-stating these algorithr8djfrom [

4.3.2.1 Estimating Embedding Delay

The estimation of delay parameter is based on the idea, that the mutual information b&taeen
Y . can be used to estimate a proper embedding deldhe algorithm considers two criterion:
First, the value of should be large enough so that value'bét timei + 7 is measuring something
significantly different from the value of’ at timei, and thus providing us with a new information
which we do not have up till now. Second, the valueraghould not be larger than the time in

which system loses memory of its initial state. The algorithmic steps are:

1. From the given time series, 25, . .., 2!, computez,;,, andz,,q..

2. Compute absolute value of their differendex |z,.:, — zmaz|, @nd partitiond into 5 equally

sized intervals.

3. Compute:

I(r)=-Y7_,>7 . Phk(r)ln%, whereP, and P, denote the probabilities that the
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variable assumes a value inside ttth andkth bin, andP; ; is the joint probability that?

isin binh andz?, _isinbink.

4. Chose that as the embedding delay parameter for whi¢ch) gives the first minima (Figure

4.3.

4.3.2.2 Estimating Embedding Dimension

For finding the optimal embedding dimensidwe used the false nearest neighbor method pro-
posed in f2]. The idea of the algorithm is to unfold the observed orbits from self overlap arising
from the projection of an attractor of a dynamical system on a lower dimensional space. The algo-
rithm makes use of the assumption that the phase space of a dynamical system folds and unfolds
smoothly, and there are no sudden irregularities. This translates to the observation that if points are
sufficiently close in a reconstructed phase space, then they should remain close during a forward
iteration. If a phase space point has a neighbor that does not full fill this criteria then that point is

said to have a false neighb@4]. The steps for finding optimal are:

1. Pick a pointp(i) in ad-dimensional space from the time seri¢’s
2. Find a neighbop(7) so that||p(i) — p(j)|| < &.

b2t :
3. Compute a normalized distanég = ﬁ betweend + 1)th coordinates of(i) and

p(j)-

4. If R;is larger then threshol&,;, thenp(i) is marked a having a false nearest neighbor.
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5. Apply the equation in step 3 to entire time seriesifoE 1,2, . . ., until the fraction of points

for which R; > R;,is negligible.

Figure4.3 pictorially shows the process of finding optimaandd for two time series. It also
displays3-dimensional mapping of the reconstructed phase spaces. Once the vati@xidfare
known, we slide a window of lengtththrough the time series, and stack théimensional vectors

row-wise into a matrix

b b b
20 Froo- o Fd-1)r
b b b
1 Rl4r 0 AFli(d-1)r
Xt = (4.1)
bo.b b
Ry Royr - - Roi(d-1)r

Note that each component of tHedimensional vector is separated by an intervaEach row
of the above matrix is now a point in thiedimensional reconstructed phase space. We repeat the

process for each time series, thus obtairkng Nz reconstructed phase spaces for each activity.

4.3.3 Determinism Test

The purpose of this test is to get the evidence in support of our assertion, that there is a structure
present in the trajectory data that can be exploited to obtain the representation of the underlying
dynamics of human activities. It is performed on each of reconstructed phase space to distinguish
irregular behavior resulting from deterministic chaos and the one appearing due to the noise. For
this purpose, we employ a determinism test proposed 16]] where the idea is that neighbor-

ing trajectories in a small portion of the reconstructed phase space should all point in the same
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Figure 4.4: The determinism test is performed by checking the convergence of the correlation
dimension for the embedding dimension larger than In the case of a stochastic system, the
value of correlation dimension (y-axis) increases monotonically with the increasing embedding
dimension (x-axis). We show that the data under consideration indeed converges to the value of
correlation dimension at the computed valued (the green line) for the two time series shown in

Figure4.3.

direction, thus assure the unigueness of solutions in the phase space which is a property of de-
terminism. The outcome of this test (as shown in Figil® on our data validates the existence

of determinism. That is, it reveals that the trajectories of the body joints indeed are generated
by a deterministic process, and this justifies further analysis of the data by using the phase space

invariants.

4.3.4 Invariant Features

Metric, dynamical and topological organization of orbits associated with a strange attractor of

the reconstructed phase space can be used to distinguish different strange attractors representing
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Figure 4.5:The computation of maximal Lyapunov exponent (for the right foot trajectory shown
in Figure4.2) from the plot ofS(An) againstAn. The slope of the line fitted to the curve provides
a robust estimate of the maximal Lyapunov exponent. The estimated values hefd étdor (a)
and0.0109 for (b).

different human activities. This organization is quantified in terms of phase space invariants. In
this dissertation, we limit ourselves only to metric and dynamical invariants that include Maximal

Lyapunov Exponent, Correlation Integral, and Correlation Dimension.

4.3.4.1 Maximal Lyapunov Exponent

Lyapunov exponent is a dynamical invariant of the attractor, and measures the exponential diver-
gence of the nearby trajectories in the phase space. If the value of maximum Lyapunov exponent
is greater than zero, that means the dynamics of underlying system are chaotic. In order to com-
pute maximum Lyapunov exponent of reconstructed phase space, we employ algorithm given in
[84]. The algorithm tests the exponential divergence of trajectories directly from the phase space

trajectories.
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To estimate the maximum divergence around a reference pginin the phase space, we
start by finding all the neighbors(k) which are within distance. Herep(i) is theith row of
the reconstructed phase space makfx The neighboring points are used as the starting point of
nearby trajectories. The average distance of all the trajectories to the reference trajectory can be

computed as a function of relative tirde: as follows:
1 T
Di(An) = - Z | Z£+(d—1)T+An - Zf+(d—1)r+An B (4.2)
s=1

wheres counts the different pointg k), and there are total efsuch points. Finally, the average of
the logarithm ofD,(An) is obtained for several reference points to get the effective expansion rate.
That is we comput&(An) = 1 37 | in(D;(An)), wherec is the number of reference points over
which the process is repeated. ValuesS¢f\n), computed for differenfAn, and the maximum
Lyapunov exponent is taken as the slope of the line fitted to the grapfhot) againstAn. Figure

4.5shows this graph for the two time series shown in Figufe

4.3.4.2 Correlation Integral

The correlation integral is a metric invariant, which characterizes the metric structure of the attrac-
tor by quantifying the density of points in the phase space. It achieves this through a normalized

count of pair of points lying within a radius Formally, correlation integral'(¢) is defined as:

N N
OR3P I EE 43)

where© is the Heaviside function. Note that; in this case refers to a point in the phase space i.e.

it corresponds tath row vector ofX°. In our experiments, we computéti¢) for a fixed values of
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Figure 4.6: Computation of correlation dimension for the two time series shown in FigL8e
With increasing values of neighborhood radiy(ghe horizontal axes), the values of the correlation
integral (vertical axes) also increases. The slope of the line fitted to the curve provides an estimate

of the correlation dimension.

e and used it as a feature vector. Figdréshows the plot of the correlation integral for increasing

values ofe.

4.3.4.3 Correlation Dimension

The correlation dimension also characterizes the metric structure of the attractor. It measures the
change in the density of phase space with respect to the neighborhooda.adius correlation
dimension can be computed from the correlation integral by exploiting the power law relationship
C(e) ~ €%, whered is the correlation dimension. The computation of the correlation dimension
proceeds by plotting’(¢) ande on a log-log graph. Again, the slope of the linen fitted to this

graph provides a robust estimate of correlation dimension ,because the region in which power law
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is obeyed appears as a straight line in the graph. Figl8eshows this graph, along with the
estimated values of the correlation dimensions for the two time series shown in Bi§urehe

region whose slope is an estimate of the correlation dimension.

Another useful information about the activity can be obtained from the variance of the time

series data, which we employ as a part of the feature vector in addition to the phase space invariants.

4.4 Experiments

Experimental analysis is carried out on three data sets for human activity recognition. FutureLights
data set43] (see Figuret.7), Weizmann data sell]l] (see Figure4.8), and UCF Sports Actions

data set]01]] (see Figured.10 are used to demonstrate the accuracy of the proposed approach.

4.4.1 FutureLights Motion Capture Data Set

The first set of experiments was performed on the data set cont&uaiimgensional motion capture
sequences provided by FutureLigh8]. Figure4.7 shows some typical sequences from this data

set. In total, it containdb5 sequences df activity classes, namelglance jump, run, sit, and

walk with 30, 14, 30, 33, and48 instances, respectively. All five classes have significant intra-class
variations. For example, thein class has variations in terms of speed (jog, run), stride length
(short, long), bounce (low, high), and arm swing (low, high). The sequences in the run class,
therefore, are created by several combinations of these parameters, and also include stopping and
turning events. Similarly, thevalk class contains these variations, in addition to a parameter for

the pelvic swing (high, low). There are other variations like walking in a circle, turning around,
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(a) Dance(30 sequences): includes a large variety of ballet sequences. A subset of these is very
similar to thewalk class.

3

(c) Walk (48 sequences): represents the largest class with many variations of speed, swing, and
events like stopping and turning around during the walk.

(d) Jump (14 sequences): mostly hoppinde) Sit(33 sequences): contains variations in
while walking sitting postures & directions

Figure 4.7:Sample sequences of few activity classes from the motion capture data set. The stick
figures with green joints depicts the first frame of the sequence, while the stick figure with blue

joints represent the last frame.
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Table 4.1:Confusion table for the motion capture data set. We achieved mean classification accu-

racy of 89.7%.

Dance | Jump | Run Sit Walk
Dance | 28 2
Jump 13 1
Run 2 1 22 1 4
Sit 33
Walk 3 2 43

stopping etc. Thalanceclass contains stationary and moving ballet sequences, and some cat-
walk sequence, which in fact resembles closely towtaék sequences. Thgmp class contains
jumping in place as well as jumping/hopping on one foot while walking. Finally,sihelass
contains variations in the execution styles. In summary, all the activity classes contains significant

intra-class variations. and therefore, this is a very challenging data set.

The initial input is in the form of trajectories df3 body joints of the stick figure shown in
Figure4.2 but we only usé reference joints. We extract scalar time series from all five reference
joints, resulting in 3 time series (X,y, & z) per reference joint dAdtime series per activity.

Each time series is embedded separately using the procedure described in 88clch A

four dimensional feature vector is then constructed for each time series by computing Lyapunov
exponent, correlation integral, correlation dimension and variance. After concatenation, for a given
activity sequence this results irc@-dimensional feature vector. For testing, we use the leave-one-

out cross validation approach using tRenearest neighbor classifier witki = 5.
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The classification results achieved by this approach are shown in the4ldbM/e achieved
mean accuracy ¢f9.7% on the entire data set. Foun sequences were misclassified aswiadk,
which is understandable considering the similarity between these activities. Another main source
of error was the confusion between the walking ballet sequences frotatioeclass and thevalk

class.

4.4.2 Weizmann Action Data Set

The second set of experiments was performed on Weizmann action ddtd setiich depicts real

actors performing different activities. Figude8 shows examples of these activities. Specifically,

the data set contairtdl videos with9 different activities performed by different actors. Given

the data, the first step in the algorithm is the extraction of joint tracks for the six landmarks on
the human body (two hands, two feet, the head, & the belly point). We used a semi-supervised
joint detection and tracking approach for this experiment. That is, for computing trajectories for
the reference joints, we extracted body skeletons and their endpoints using by using morphological
operations on foreground silhouettes of the actor. Then an initial set of trajectories is generated by
joining extracted joint locations using the spatial and motion similarity constraint. The broken tra-
jectories and wrong associations were corrected manually. Note that the quality of the phase space
embedding is dependent on the length of a time series, which implies that we need to observe the
target activity for sufficiently long period of time (approximatelyo frames). However, the length

of the videos in the data set varies fr@mto 80 frames. We overcame the problem by up-sampling

and concatenating the original trajectories and thereby increasing the number of observations. Our
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Side Gallop Run Jump in Place

Wave1 Walk Wave?2

Jumping Jack Jump Forward Bend

Figure 4.8:Nine different activities are used from the dataset providedly [Trajectories from
six landmarks (two hands, two feet, the head, and the body center) on human body are used as
input to our method. These trajectories are used to extract invariant features of the reconstructed

phase space that represent the underlying dynamical system.

experimental results have shown we are able to capture variations present in different activities by
employing this approximation. Once the trajectories of five body joints relative to the centroid of

foreground blob are recovered, we decomposed each of them into their two spatial components (
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Table 4.2:Confusion table for the Weizmann data sel][ where our algorithm has achieved mean

accuracy 002.6%.

Jumping | Jumping | Jumping Run Side walk | wavet | wave2

Bend Jack |Forward|in Place Gallop

Bend 9

Jumping
Jack 9

Jump 5 2 2

Forward
i 0
Run 8 1
Side
Gallop
Walk 9

Wave1 9

Wave2 9

& y). This resulted in ten time series in total, which are then used to compute the invariants. After

concatenating, for a given activity this resulted if0adimensional feature vector.

The testing was performed performed by using leave-one-out cross validation. When using
K-nearest neighbor, one sequence is kept as a test sequence while all the remaining sequences
were used as training samples. We obtained a mean classification accugaay/efor all nine
activities. The confusion table is shown in Tadl& It can be observed that onfyout of a
total of 81 videos were misclassified in these experiments. Two of the misclassified videos were
from theJump Forwardactivity, which were incorrectly labelled &unactivity. While two other
videos were misclassified asimping in Place The Runand Side Gallopactivities have one

misclassification each. The observation we would like to make over here is that these are isolated
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100

Classification accuracy (%age)

None Head Left hand Right hand
Missing joint

Figure 4.9:Comparison of classification accuracy is shown in several cases of missing joint trajec-

tories. Head, right hand, and left hand are dropped one at a time from the Weizmann dataset.

errors, mostly for those activities which have quite a bit of similarity with each other, as is the case

with confusing running with walking, or jumping forward with running.

In order to test the robustness of our method with respect to the number of available joint tracks,
we performed a second set of experiments by selecting only a subset of the five reference joints.
First, the head trajectory was removed from the set of joint trajectories used, and we achieved
a mean recognition accuracy 8f.2%. In this experiment most of the errors were observed in
bending and jumping activities. In the second experiment, we removed the left hand joint instead,
which produced a mean recognition accuracy@fi%. Similar performance is achieved when
only right hand trajectory is removed. The classification rates under these different scenarios have

been summarized in Figue9. We consider this as a satisfactory performance, as we were able
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Kicking Riding-Horse Running

Skateboarding Swing-Bench Swing-Side

Figure 4.10:UCF data set was contains a set of actual sports activities captured from a moving

camera. There are a total bf5 video sequences that were obtained from online video archives.

to maintain the activity recognition accuracy up to a reasonable degree even if one of the reference
time series is missing. This shows that the proposed approach is not very sensitive to occlusion of
individual body joints. At the same time, we observed that the classification accuracy for activities
that are heavily dependent on the removed body joint (e.g. head in the case of bending) suffers
more. But for activities like walking and running that involve multiple joints (two feet & two

hands), removing one of these joints does not severely affect the overall classification accuracy.
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Kicking

Golf-Swing_Side

Golf-Swing_Front Running

Figure 4.11:A small set ofl6 sample videos is shown here for intra-class variations. 6Tjoant

trajectories used by our approach have been superimposed on each joint (highlighted by red point).

4.4.3 UCF Sports Actions Data Set

We have also experimented with a more challenging data set containing sports acfidifiest|
contains a set of natural videos from actual sporting events. This includes activities like diving, golf
swing, kicking, running, gymnastic swings, etc. Snapshot of activities in this data set are shown
in Figure4.10 The green trajectories overlaid in every frame show the six (head, left hand, right
hand, belly point, left foot and right foot) input trajectories to our system. The sequences in this

data set are captured from a moving camera and extracting the traditional foreground silhouettes
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Table 4.3: Confusion table is shown for the UCF sports actions data set. Mean classification
accuracy is 85.2%. The biggest confusion is between running and skateboarding actions, which

can exhibit similar dynamics.

N 3 )
'(00 \0(\ %\6 %0 &QQ 6(\
(\Q S (\q é fbﬁ 0(\ .be'
PR PR X O &S
O PG E € E & @ S
ST NS o S
©) o B & &K 9 9 5
Diving 13 1
Golf-Swing-Back 4 1
Golf-Swing-Front 8
Golf-Swing-Side 4 1
Kicking 20
Riding-Horse 2 1 7 2
Running 1 1 7 4
Skateboarding 1 1 7
Swing-Bench 1 15
Swing-Side 13

was not feasible. In addition, the typical activities in this data set had exhibited self body occlusion.
To concentrate on the analysis of the proposed approach, we manually obtained the input joint

trajectories.

There are a total of15 video sequences in this data set that were collected from several online
video archives. These contaid diving, 5 golf swing (back),8 golf swing (front),5 golf swing
(side),20 kicking, 12 riding horse,13 running,9 skateboardingl6 swing (bench), and3 swing
(side) sequences. Similar to the first two data sets the classification was performel ustagest

neighbor classifier along with leave-one-out strategy. The mean classification accuracy on this data
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set was found to b85.2%. The confusion table is shown in Table3. This classification rate is

encouraging considering the complexity of the data set.

4.5 Summary

In this chapter we have presented a new approach for recognizing human activities when the finer
level details of different body parts is available. The main contributions of this work include: a
novel framework that characterizes the dynamics of human activities by using the theory of chaotic
systems, a set of dynamical and metric invariant features of the strange attractor for classification,
and a non-linear dynamical system based representation of human activities. An important re-
sult here is that we can represent an activity as a dynamical system for which we do not have an
exact mathematical form. We have shown that the data-driven embedding and invariant features
computed from it can be powerful for recognizing different dynamics. The mean classification
accuracy on published data sets is comparable to the state of the art in this research area. Exper-
imental validation of the feasibility and potential merits of carrying out activity recognition using
this framework is demonstrated on various different scenarios. One limitation of the approach is
the dependance on the joint trajectories of the human body. Tracking human body joints is outside
the scope of this work. However, for this work, we adopt a a semi-supervised approach as ex-
plained previously. In the next chapter we present a new approach for tracking body parts in case

of quasi-periodic actions.

In this chapter we have used the chaotic modeling of human activities for solving the recogni-

tion problem, however in the following chapter we address the problem of prediction. We propose
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a multivariate extension of phase space embedding and show that a novel prediction approach is

useful for human action synthesis and tracking.
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CHAPTER 5: CHAOTIC MODELING FOR HUMAN ACTIVITY
PREDICTION

We propose a new approach to model and predict time series data observed in different types
of videos [7/]. Such data would comprise of a sequence of observations over time, for instance,
joint location or angle of a particular human body joint, pixel intensity at a particular location, etc.
These time series would typically be generated by a deterministic nonlinear dynamical system with
known initial condition. A good model of the underlying dynamics is important for predictions that
are used in applications like video synthesis. When synthesizing longer sequences from a short
sample video, it is desirable to generate realistic and smooth transitions. A trivial approach would
be to concatenate the sample video multiple times, but this results in non-realistic transitions.
Figure5.1shows an example of a scalar time series signal from running activity. This data is from
one of the three dimensions corresponding to the 3D location of the human foot. The predicted
signal (broken red) generated by the proposed approach creates a smooth transition and continues
to depict the same dynamics as earlier. Such a mechanism could be useful in synthesizing repetitive
human activities for long durations. This can have a variety of applications in computer vision and
graphics including: human motion animation, occlusion handling, prediction for tracking, noise

handling from motion capture data, dynamic texture synthesis, etc.
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Figure 5.1:Abrupt vs. smooth transition: Original time series signal (solid blue) is repeated at the
1600 mark where it shows an abrupt transition. The predicted signal (broken red) shows a smooth

transition and synthesizes the signal persistently.

5.1 Introduction

The observed scalar time series signals are transformed into a higher dimensional phase space
through delay reconstruction (see SecttoR.1). This results in atrange attractoiwhich is char-
acteristic of the underlying chaotic system. Note that a chaotic signal can be irregular and less
predictable in the observed time series space, while in phase space it has a regular structure due to
its deterministic nature. For prediction in phase space, several regression techniques can be used
to compute the temporal mapping function. Many of these techniques often assume a particular
underlying form of the mapping function (linear, polynomial, radial basis function etc.). However,

in case of human activities we are not aware of the exact forms of the mapping functions respon-
sible for generating the dynamics. Hence, instead of approximating a the functional form from the
observed data, we rely on a more general approach. We use a nonparametric data driven model,
based on kernel regressia8(], to predict the future points along the strange attractor. These pre-

dictions are then transformed back into time series of longer duration with continuous motion. In
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order to generate more realistic and synchronized multiple time series signals, we investigate the
use of multivariate vs. univariate reconstruction for prediction. The use of multivariate time series

embedding for human activities is novel. The predicted time series signals of body-pose parame-
ters are used to synthesize and track human motion. In addition, the predicted pixel intensities are

used to synthesize dynamic texture sequences.

The aim of this work is to investigate the relevant concepts from chaos theory and propose a

novel and robust model for video synthesis. The novelty of this work lies in:

e The formulation of phase space reconstruction from the multivariate time series data of hu-
man activities. Previously (Chaptdy), only univariate phase space models of human activi-

ties have been studied for activity recognition.

e A new deterministic dynamical model in contrast to previously popular stochastic noise-

driven dynamical system86, 115.

e A new nonparametric model based on kernel regression in phase space.

We also provide experimental validation of viability of chaotic modeling approach for action syn-
thesis as well as action tracking (see Sectdd). This involves creating longer synthesized se-
guences of human activities using short sequences as a model. We have used standard motion
capture data sets for this purpose. The comparison with few other synthesis approaches is also

presented.
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5.2 Proposed Approach

We investigate dynamical systems that define the time evolution of underlying dynamics in a
phase (or state) space. First task is to find a way for phase space reconstruction from times se-
ries. The time series observatiofs), 1, ...,z ...} are transformed to the phase space vectors
{20,241, ...,z ...} through delay embedding, which is explained in Sectidhl In the case of
deterministic nonlinear dynamical (chaotic) systems, specifying a point in the phase space iden-
tifies the state of the system and vice versa. This implies that we can model the dynamics of a
system by modeling the dynamics of the corresponding points in the phase 6fcEhis idea

forms the foundation of modeling the underlying chaotic system of unknown form and predicting
future states. A system state is defined by a vegtor R™. The dynamics of these states are

defined either by an-dimensional mapping function

21 = F(z,), (5.1)

or byn first order differential equations. The latter approach is typically used for studying theoreti-

cal systems because the exact equations are rarely known for the experimental systems. The former
approach, which is based on the mapping function, is more popular for the experimental systems.
Section5.2.2describes a kernel regression based mapping function that we adopt for predicting
future system states. These new states are transformed back to output time series as explained in
Section5.2.3 Figure5.2 presents an overview of the steps involved in producing synthesized time

series, starting with the model (training) time series that is the input to the process.
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Synthesized time series
Input time series T
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Time series reconstruction
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Zu — [Z07Z17' "77Zt] % Zt_|_1 — F(Zt)

Prediction in phase space

Phase-space embedding

Figure 5.2:Main steps of the proposed approach for time series synthesis.

5.2.1 Phase Space Reconstruction

Phase space reconstruction is performed by the delay embedding of the observed data into phase
space vectors. The details of the univariate delay embedding for human activities are provided in
Sectiord.3.2 however, we include relevant information for completion. Takens’ delay embedding
theorem forms the basis of this approat@4]. It states thaad map exists between the original state
space and a reconstructed state spadde theorem shows that the dynamical properties of the
system from the true state space are preserved through the embedding transformation. Therefore,
the delay vectorg; = [z, iir, ..., Tiy@-1)r) € R?, generate the phase space. The two

parameters to be computed are fagnd embedding dimensieh
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(a) Original time series (b) Mutual information fort  (c) False nearest neighbors for d

Figure 5.3: Steps for phase space reconstruction. (a) The observed univariate time series. (b)
Mutual information plot to determine minimum delay (first local minimurms 9). (c) The em-
bedding dimension is computed by finding the smallest value that gives a small number of false

nearest neighbors (converging tadls 5).

The most popular approach for computing tag based on the amount of mutual information
betweenr; andx; ., pair of observed values. The basic idea here is to look for the minimum
for which the mutual information between observations is lowest. The details of the algorithm are
available in f#1]. Figure5.3(@) shows a univariate time series generated by one dimension from
the 3D location of the foot of a running person. Figbr8(b) shows the plot of possiblevalues
vs. amount of mutual information. The point of the first local minima of this plot is chosen as the
lag 7. The optimal embedding dimensidrcan be computed by using the false nearest neighbors
method proposed ir20)]. The basic idea of this method is to find the smallgsthile minimizing
the number of false nearest neighbors due to dimension reduction. FEdce shows the plot
of possible values off vs. fraction [0,1] of the points that do not have false nearest neighbors.
Note that the fraction converges to 1 (100%j/at 5, so choosingl > 5 would not be an optimal

choice.
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The values of- andd are used to transform the univariate time series into the phase space (or

delay) vector, stacked as

VA i Tr tet [B(dfl)T
zZ T1 Tigr o Ti4(d-1)7

Z = = . (5.2)
Zy Ty Toyr - T24(d-1)7

Note that each observed scalar value is repeated several time in this matrix. The sequence of the
rows in this embedding matrix is important as it generates a trajectory in the phase space. Fig-
ure5.4(a) shows the 3D projection of 5D phase space for the time series presented in 5igure

This blue trajectory forms thstrange attractorin the phase space. The metric, dynamical, and
topological properties of this strange attractor are characteristic of the underlying nonlinear dy-
namical systemd0]. We will be relying on modeling the evolution (flow) of the observed points

along this strange attractor to predict the future locations.

This form of the embeddin@., is feasible for prediction in the case of univariate time se-
ries. However, in computer vision we frequently observe time series generated by a dynamical
system that involves multiple variables (dimensions) simultaneously. For instance, during human
motion directly connected body joints impose certain constraints on the motion of each other. The
trivial solution would be to proceed with performing univariate prediction separately for each di-
mension of the time series. We demonstrate through experiments that this approach breaks down
due to the dependence between joint locations. Hence, a phase space reconstruction is desirable

where prediction is performed for all the dimensions of a multivariate time series simultaneously.
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Caoet al.[21] have shown that a simple yet powerful extension of the univariate embedding can be
useful for the multivariate time series prediction. For a multivariate time series, with observations
x; = [w14, T2y, ..., zpy)T € RP, an appropriate phase spabg = [z, z1, 22, . . .|7 would be

created by a set of delay vectors redefined as

Zy = [xl,ty Titt+ry -+ Llt+(di—1)m1»
xQ,t; x?,t—‘rﬂ'm DR x?,t-‘r(dQ—l)Tzv
o)
RZ?—I di 5.3
IDty TDtdrs -« xD7t+(dD—1)TD] € I ( . )

Here 7; and d; are respectively the delay and the embedding dimension for each one bf the
dimension of time seriez; maps to a point in the higher dimensional phase space and is linked to
the next pointz,,; by the order irZ,, matrix. Figure5.4(b) shows such points highlighted by dots

and connected through arrows showing the direction of evolution.

5.2.2 Prediction in Phase Space

In order to perform prediction we need to compute the mapping fun&i@Bquation5.1). The
exact form ofF is unknown in case of general human motions. The “appropriate” selection of the
model poses a challenge when one is not aware of the exact physics of the underlying dynamics.

One popular form of the model is given by

M
Ziy1 = Z c(m, t)om(z), (5.4)
m=1



300 350 400 450 500 550 600

(a) Phase—spécefcvith original time-  (b) Zoomed-in part with the initial (c) Predictions transformed
series (blue) and predictions (red)  condition for predictions (circled) back to a scalar time-series

Figure 5.4:Predicting dynamics of a time series. Original time series is transformed into a strange
attractor in the phase space. Kernel regression is used to estimate predicted values following
behavior of neighbors. The predicted points in the phase space are transformed into a synthesized

time series.

which is a linear combination af/ possibly nonlinear functions,, with c(m,t) providing the
coefficients.¢,, are usually chosen to be polynomials, radial basis functions, or logarithmic func-
tions while the coefficient valuegm, t) are computed during functional approximation (e.g. least

squares).

We avoid guessing a particular model by using a nonparametric model based on kernel regres-
sion [80]. The main idea is to estimate the mapping function using a weighted average of dynamics

of neighboring points in the phase space. Hence, the mapping is given by

Ziy1 = F(Zt) = (Yk+1 — Y+ Zt)wk(zt7 Yk>7 (5.5)
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wherey, is one of theV,,(z;) nearest neighbors af. Each of these neighbors has a corresponding
next pointy,. in the phase space. As shown in Figbrd(b), the vectors between the consec-
utive points are used in the neighborhood. The weights are computed from the kernel which is

a decreasing function of distance from the reference point. Nadaraya-W&@atefined these

weights as
Ky(l|lz: — y
wk<zt7 Yk) = Nn(zf:f!_(t k_H) 9 (56)
et n(l1ze = yill)
1 b
Kp(b) = =K |- 5.7

where K is the kernel function which can be Guassian, Epanechnikovhascthe bandwidth of

the kernel and can be used for over smoothing. In our experiments w&/ (€ ) kernel and
bandwidths = 0.5. Such a chaotic modeling approach is generally: quite robust to noisy data,
more accurate in experimental systems, and good for prediction while preserving important invari-
ants of the dynamicsp]. Such an approach has the advantage of capturing a desirable balance
between local and global parametric regression approaches. Local models are known to have the
problem of large computational and memory requirements. On the other hand, the global models
over generalize while computing one functional representation that models the whole attractor in

the phase space.

Figure5.4 shows the phase space reconstruction and predictions from the time series shown
in Figure5.3(@). The predictions are shown by red trajectories along with their directions of flow.
Figure5.4(b) shows the starting point (initial condition) of the prediction with closest neighboring

points that contribute the most (through symmetric kernel) to the first prediction. Note that the
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Figure 5.5:Comparison on synthetic data. (a) Sine, triangle, and ramp input time series. (b) and
(c) show the synthesized output by Doredtal’s [36] and Charet al.'s Kernel Dynamic Textures
[25] respectively. (d) Synthesized output of our method provides more accurate reconstruction for

all three signals.

first resultant arrow follows the immediate neighbors very closely. The predicted trajectory keeps

evolving along the strange attractor following the system dynamics.

5.2.3 Time Series Reconstruction

To recover a time series from the predictions in the phase space we have to extract the time series

from univariateZ,, or multivariateZ,, matrices. For the univariate ca&e (see Equatio.?) it is
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Figure 5.6:Visualization of the phase-space embeddings of the original signals (blue) as shown in

Figure5.5and the corresponding predicted signal (red).

simply extracting the first column followed by lastows from the rest of the columns. Foff &d

matrix Z,, this generate$’ + (d — 1) time series observations

T; € {Zu<1ﬁl)7 Zu(kaT _j)},

where0 <i<T,7>j > 0,1 <k <d. Inthe multivariate casé,,, matrix (see Equatios.3)
contains a row o) individual Z,, matrices. The multivariate time series is constructed by extract-

ing D univariate time series from the correspondifigas described above. Figubed(c) shows

an example of a univariate time series extracted from the predictions in the phase space shown in
Figure5.4(a). Figure5.5shows the output of time series synthesis on three synthetic signals where
D = 2. The embedding parameters () are calculated to be (4, 5), (3, 4) and (5, 7) for each
dimension in sine, triangle and ramp signals respectively. It shows that the output of our approach
is very similar to the source signal and is better than the two recent approaches used for dynamic

texture modeling36, 25].
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5.3 Applications

The proposed approach for predicting time series is applied to human activity synthesis and track-
ing. In addition, we also show that the presented model can be generalized to other types of
motion, like dynamic texture. Several experiments were performed to evaluate the performance of
our approach on published data sets and to compare the output with that of some of the well known

methods in the literature.

5.3.1 Human Activity Synthesis

We use motion capture data to acquire source time series representing the position of the body
landmarks during the activity. We use the motion capture data from Futureldghapd CMU

[29] data sets for the human activity synthesis. Every frame in CMU and FutureLight sequences
provides a2 and39-dimensional body-pose descriptors respectively. CMU’s descriptor is com-
posed of bone length and joint angles, while FutureLight is composed of the absolute 3D locations
of the 13 body joints. A part of the sample sequence of the human activity is used to generate
the observed time series € R, where P is the dimensionality of the body-pose descriptor.

The multivariate phase space reconstruction prodédgesmbedding matrix for the sample activ-

ity. For a given starting poink,, the predictions and time series reconstruction is performed as
explained before. This creates a sequeficex; 1, ...} of body-pose descriptors used for final

video synthesis.
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Figure 5.7: Univariate vs. multivariate predictions for human motion. Univariate approach (a)
shows irregular poses and its global transformations while multivariate approach (b) generates a
smooth sequence with all valid poses. (c) Univariate predictions also result in a higher error than

the multivariate predictions.

We have experimented with both univariate and multivariate predictions for this task. In the
univariate case, each dimension of the pose descriptor is used independently to determine the
phase space reconstruction followed by prediction. In the second case, multivariate prediction
approach is used to evolve the predictions in an even higher dimensional phase space (@rder of

dimensional). This provides the combined evolution of different dimensions of the pose descriptor.
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Figure 5.8: Human motion synthesis on CMU data set. Note that the difference between the

walking and running body-poses is maintained after synthesis. (a) Every 100th frames is shown
, (b) Every 50th frame is shown. (c) Quality of our predictions are compared against the ones
generated by the GPDM based approatfl}.[ The ground truth between fran36 and137 is used

to compute prediction error.

Figure5.7 shows the keyframes from the same running sequence synthesized using the univariate
(see Figureb.7(a)) and the multivariate (see Figuse7(b)) predictions. Thes800 frame long
sequences have been synthesized froi3aframes long model sequence. The keyframes in

the multivariate case show normal body poses, however in the univariate case, strange poses are
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(d) Ballet

Figure 5.9: FutureLight data set. Synthesized sequences from each of the four different types
of activities is shown. Here right hand & foot have red trajectories, left foot & hand have blue
trajectories, while head has green trajectory. Faster speed in the running sequence (as compared to

walking) can be noticed by the sparse stick figures that are drawn évérgmes.

synthesized. Towards the end there is an unrealistic global rotation of the whole body.Fffcire
shows a graph of mean absolute error in the fisstframes from both sequences that overlap with
the model sequence. This clearly shows that the proposed multivariate formulation is critical for

human activity synthesis.

Using the CMU data set, we show results on walking and running activities as shown in the
Figure5.8. The model sequences used in our experiments are typicHltp 500 frames long. We
synthesize sequences with up to three times the original length. The highest individual embedding

dimensiond; observed during experiments was We also compare the accuracy of predictions
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with the output of GPDM based approact0]. Figure5.8 (c) shows a graph of mean absolute
error in predictions by our approach (solid blue) and by Wangl. [40]. The sequence (CMU
1d : 09_04) shown in Figureb.8 (b) is used for this experiment, where frarhe- 100 are used for

creating the model and fran¥® — 137 are used to compute the error in predictions.

Using the FutureLight data set, we synthesize walking, running, jumping, and ballet activities,
as shown in Figur®.9. We compute the relative locations of all other landmarks with respect to
the belly (reference) point. This provides us witB%&dimensional time series signal that will be
predicted. The phase space embedding and predictions are computed through the aforementioned
approach. During our experiments, the individual embedding dimensiarould typically fall
betweer8 and6 for these activities. The length of a typical model sequences used is beXeen

and500.

5.3.2 Human Activity Tracking

Prediction in a dynamical system has been shown to be useful for synthesis of periodic and de-
terministic motion. For the same kind of motion, predictions can also be useful for tracking the
corresponding time series. In the case of human activity, the time series data corresponds to the
location of body joints. Prediction of this time series can be useful for minimizing the search space
in the tracking stage. We have proposed A similar, prediction based body parts tracking, approach
has been previouslyf]. In that case, geometric constraints were used to transform trajectories
from a model video onto predictions in the test video. We show that the proposed tracking ap-

proach can be feasible in case of periodic activities. One limitation is that it requires the position
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Figure 5.10:Steps involved in detection and tracking of human body parts through prediction: (a)
Current source image, (b) output of background subtraction, (c) current state of the card-board
body model for detecting right arm, (d) difference between images in (b) and (c), (e) set of predic-
tions used, and (f) best match for right arm. Rest of the body parts are detected similarly, as shown

on the foreground image (g) and source image (h).

of body joints to be known during the training phase. In some cases it can be obtained through a

semi-supervised manner as explained in Chagter

Figure 5.10 shows various stages of the detection and tracking approach adopted here and
is similar to the one used iMf]. The main idea here is to utilize the predicted locations of a
joints in a temporal window in order to find the best location in the current frame. This helps
in significantly reducing the search space in the current frame. We start with the background
subtraction assuming a stationary camera. A cardboard model is used to model the current pose
of the body and is updated at every frame. As shown in the Figur&d), the part belonging to
the left arm is isolated by subtracted the current pose estimate and the the background subtraction
result. The exact location of the left arm is detected guided by a set of predicted locations/poses of

the left arm. The best match if found by maximizing the overlapping are between the subtracted
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Walk Jum Run

(a) 13 body joints: predlcted traJectorles (red) and model trajectories (green

b) Human body parts are tracked, utilizing the predicted trajectories

Figure 5.11:Predictions of body joint locations can be useful for tracking body parts in case of

repetitive human actions.

foreground pixels and the predicted arm location. This process continues for the rest of the body

parts and a complete body pose is generated.

We use Weizmann action data set for this task, where we demonstrate the results on three
sample actions (walk, jump, & run) as shown in the Figbrgl We use the first half of these
videos {4, 36, &28 frames respectively) as the model, where the 2D joint locations af3tbedy
landmarks are available. The predictions for #eedimensional pose-descriptor are obtained in
the same way as those for the synthesis task. As shown in the Eigureéhe predictions are very
accurate when the motion is repeated regularly. To demonstrate the utility of these predictions for
tracking body parts, similar taiB] , we use a card board body model along with the foreground

silhouette feature. The overlap between the candidate locations (around predictions) of the body
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Figure 5.12:Mean-squared error (MSE) is computed against the ground truth of the 13 joints in
jumping and running videos. The tracking error is generally lower than the prediction error, as the

initial estimates by predictions are refined after tracking.

part is maximized with the foreground silhouette to find the best estimate. We found that even with
a simple tracking approach like this, we obtained encouraging tracking results. We observed some
tracking artifacts in case of deviation from the style of action in the model video. We feel that our

approach of generating predictions can provide useful prior for more involved tracking approaches.

Figure5.12shows the quantitative comparisons of the mean-squared error in case of jumping
and running actions. The error plot is computed at the predicted locations of the body joints and
then at the final tracked locations of the body joints. Notice that the error reduces after tracking,
when the predictions guide the search for local best matches for body parts. This shows that the

proposed approach can be useful for tracking body joints in case of repetitive motion.

105



dictions

S‘nthesw b‘ univariate pre

b) Synthesis by multivariate predictions

Figure 5.13:Dynamic texture synthesis from Stripes video. (a) Predictions of many pixels quickly
become unsynchronized from the neighbors causing the noisy pixels. (b) Multivariate predictions

create more realistic and smoother videos.

et A L.
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b) Running water c Fire
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Figure 5.14.Dynamic texture synthesis from UCLA data s&i.frame long model videos are used

to generat@25 synthesized frames.

5.3.3 Dynamic Texture Synthesis

We also demonstrate the synthesis of dynamic textures through the proposed approach of chaotic
modeling. The dynamic textures have stochastic regularity in the spatial and temporal @jftent [

We investigate the determinism in the structure of dynamic textures through the proposed approach.
The sequence of intensity values at each pixel is treated as a univariate time series, which is gener-

ated possibly by a chaotic system. We investigate the feasibility of both univariate and multivariate

106



g0

(a) PCA based approach (baseline used by Liu et al.)

(c) Our approach

Figure 5.15: Dynamic texture synthesis from Flags video. We compare our method with the
approach by Litet al.[71] and the baseline method they used. Results obtained from our method
are crisp and don’t show ghost-like effects, as highlighted by the red box in the last column. Table

5.1shows the prediction errors of these videos.

predictions in this case as well. The multivariate case is applied in small neighborhatids 25

which create$25-dimensional multivariate time series for each neighborhood. The actual dimen-
sionality of the phase space would then be a sum of the indiviiifa@mbedding dimensiong’s.
Figure5.13a) shows the synthesized video in the case of univariate predictions. Noisy pixels be-
come more obvious as the video progresses because predictions diverge farther from ground truth.
The multivariate case Figui13b) applies better spatial constraint and results in a synthesized

video of better quality.

We first present synthesis results using the UCLA data®#t |t contains 50 classes of dif-

ferent types of dynamic textures, including flames, trees, fountains, water etc. Each video contains
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(a) PCA based approach (basellne used by Liuetal)

T_' —

Dy [ |

b) PPCA based approach by Liu et al’s

19 o e

c) Our approach

Figure 5.16:Dynamic texture synthesis from the Stripes video. We compare our method with the
approach by Litet al.[71] and the baseline method they used. Results obtained from our method

are crisp and do not exhibit ghost-like effects, as highlighted by the red box in the last column.

75 frames of a cropped8 x 48 textured area. Each pixel provides a scalar time series, whose
embedding parameters are computed individually. This is followed by multivariate phase space re-
construction and prediction. The individual embedding dimengjdor a pixel has been observed

to lie betweent and9 for typical dynamics of the textures used here. Figufdedshows a few of

the synthesized frames from various types of videos in this data set.

A series of experiments have been performed to compare our approach to some of the pop-
ular approaches for dynamic texture synthesis. These include approaches betGihdi25],
Liu et al. [71], and Yuanet al. [115. All of them provide means for quantitative and qualita-
tive comparison with their approach, as well as the baseline PCA based linear dynamical system

approaches and an improved version by Dorettal. [36]. We performed experiments on the
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Table 5.1:Mean squared error between the original and synthesized frames

Sequence name Stripes Flags | River
(Figureb5.16)

PCA based approach 1119.8 1445.2| 1198.0
(baseline inT1])
PPCA based approacii]] 2117.9 579.5 | 551.4
Our approach 12.2 17.8 8.6

MIT dynamic textures data set()3, in order to present qualitative and quantitative comparison
with these approaches. This data set contains videos that are typitaty 170 with 120 frames.

These model videos were used to produce synthesized videos three times their length. The time
series with pixel intensities is embedded into a higher dimensional phase space where prediction
is performed. Figur®.16presents the output of our method, along with the corresponding output

of the two approaches presented7d][ The first is a baseline approach they used which relies on
simple PCA with AR model. The second is their approach based on probabilistic PCA (PPCA).
In Figure5.16 we also highlight interesting area of the image with the red box. Note that both
approaches in first two rows generate a ghost-like effect due to imperfect projection onto a few
components, however, our approach preserves the quality. Fdlpeesents quantitative compar-

ison through mean squared error. This error is computed by the mean squared difference between
the pixel values of the original and the predicted frames. We analyze the three videos (stripes,
flags, and river) used in/[l] and determine that our approach indeed outperforms both of these

methods.
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Table 5.2:Mean squared error between the original and synthesized frames

Sequence name Fire Smoke-far] Smoke-neatr
(Figureb5.17)

Basic LDS 55264 230.7 402.6

(baseline in119)

Improved LDS B6] 55421 250.0 428.2

Closed-loop LDS 115 1170 21.4 34.4

Our approach 109 16.1 1.9

Similarly, we perform another comparison with the closed-loop LDS by Yeiaal. [115,
their baseline version LDS, and improved LDS by Doredtal. [36]. Due to limited space, we
only include the Fire sequence, which is the more challenging than the other two. The difference
between the outputs of our approach and that from the first two approaches (basic and improved
LDS) is obvious when looking at the figure. Tallle& clearly shows that our results are closer to

the original video as compared to the out put of Yieaal.

5.4 Summary

We have presented a new approach for time series prediction that can be used for fine level human
activity modeling. We have presented application of these predictions for human activity synthe-
sis, human body parts tracking and dynamic texture synthesis. In this chapter we have proposed a
novel approach for modeling multivariate time series and performing prediction through a kernel

regression based approach. We observed that multivariate phase space reconstruction is more sulit-
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(a) Basic I|near dynamlcal system by Soatto etal.

(b) Improved open loop linear dynamlcal system by Doretto et aI

AL
(o] CIosed Ioop dynamlcal system by Yuan etal.

1Y vllt )
b

)
Figure 5.17:Dynamic texture synthesis from the Fire video. We compare our method with the that

(d) Our approach

of Yuanet al. [115 and the baseline they used by Dorettal. [36].

able for the task of prediction, as opposed to the univariate reconstruction used for recognition (see
Chapterd). We also show that the human activities can be modeled very well by a deterministic
model that is inherently different from many noise-driven models. Noise dirven linear dynamical
system has been a popular choice of various approaches in the past. We show the application of the
proposed prediction approach to solve synthesis and tracking of human actions. Viability, robust-
ness, and generalization of this model has been demonstrated empirically on standard data sets.
Comparison with other approaches shows encouraging performance in terms of the quality of the

synthesis.
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We demonstrate the utilization of human body-pose predictions to address the problem of hu-
man body parts tracking. It is possible to use the proposed approach in case of repetitive human
actions like walking, running, etc. Once the body joints have been tracked reliably throughout the
test video, we can then apply the recognition approach (presented in Ciiggui¢omatically. One
limitation of the proposed tracking application is the requirement of the detected joint location in
the training sequence. The use of semi-supervised method (as the one used in Qhagpidye

one possibility to satisfy this requirement.

We conclude this dissertation in the next chapter with discussion and future directions.
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CHAPTER 6: CONCLUSION

In this dissertation we have addressed modeling and recognition of human activities in videos. We
have proposed a two pronged approach that provides different models for activities at the coarse
and the fine levels. We also explained how the proposed work is aimed at filling the void in the
literature. Our approach for anomalous activity detection is based on unsupervised learning, mod-
els motion of single objects as well as object pairs, avoids errors related to clustering tracks, and
reuses the same scene model for improving object detection. For the activities at the fine level we
proposed a strong model for modeling activities of individuals for recognition and prediction. We
have presented a novel approach to model human activities as a dynamical system in the phase
space. To the best of our knowledge, we have used the relevant concepts from chaos theory and
non-linear dynamical systems for the first time to represent human activities and dynamic textures
in computer vision literature. We have used a new set of features (chaotic invariants) for recog-
nizing activities and proposed a new approach (kernel regression in phase space) for predicting

human activities and dynamic textures.

Further discussion and future directions are discussed in SécfoWe briefly summarize the

key contributions of this dissertation in the next section.
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6.1 Summary of Contributions

The main contributions of this research to the literature include:

1. Scene modeling for unusual activity detection

(a) Statistical scene model of single object parameters (motion and size) by using GMM

pdf at every pixel location. Useful for real-time applications.

(b) Statistical scene model of object pair parameters (concurrent motion and size) by using

a global KDE pdf. Useful for detecting more complex anomalies.

(c) Unsupervised learning and avoiding the errors related to clustering tracks into major

paths in the scene.

(d) The use of higher than first order velocities in modeling dynamics is useful to identify

globalanomalies in addition to the simplkrcal anomalies.

(e) The proposed scene model is suitable to perform online learning of the evolving motion

patterns in the scene.

(f) Feedback of learnt scene model to the background subtraction module in order to im-

prove object detection.

2. Chaotic invariants for human activity recognition

(a) Investigation of the appropriateness of the theory of chaotic systems for human activity

modeling and recognition.
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(b) A non-linear dynamical system based representation of an action that without assump-

tions about the mathematical form.

(c) A new set of features to characterize nonlinear dynamics of human activities.

(d) Experimental validation of the feasibility and potential merits of carrying out activity
recognition using methods from the theory of chaotic systems.

3. Chaotic modeling for human activity prediction

(a) Predicting dynamics without making any assumptions about the exact form (linear,

polynomial, radial basis, etc.) of the mapping function.
(b) Multivariate phase space reconstruction for modeling human activities for prediction.

(c) A deterministic approach to model dynamics in contrast to the popular noise-driven

approaches.

(d) Video synthesis and action tracking through kernel regression in the phase space.

6.2 Discussion and Future Directions

In this section we present our final comments and discussion on the three goals of this dissertation.

In addition, we also present some possibilities for future directions to further this research.

6.2.1 Scene modeling for unusual activity detection

In order to address the first goal of modeling scenes and understanding activities at the coarse level,

we have presented two novel approaches. The first approach models and learns the motion patterns
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of individual objects in the scene, while the second one also models the interactions between
objects pairs. While the first approach is more suitable for lightweight real-time applications, the

second one is more powerful for detecting relatively more complicated behaviors in the scene.

In the first approach, we adopt an unsupervised learning approach that models object motion
and size at every pixel location. The use of size feature in addition to velocity is merely for proof
of concept. It provides means to classify objects based on their size. A more sophisticated feature
for object classification can most certainly be used instead. The pdf of motion patterns at every
pixel is modeled as a GMM, which is learnt through EM based learning approach. If the goal is
real-time performance, one can reduce the spatial resolution and create a pdf for a loGak (&.g.
pixels) neighborhood instead of every pixel. Another benefit of using GMM is the convenience
of making the model adaptable to the changing situation in the scene. We have not presented
results in this dissertation with the adaptability but it can be incorporated in the future if required.
The GMM parameters will be updated in an online fashion when the new observations become

available, similar to background modelingd.

In the second approach, we extend the statistical model by modeling the distribution of motion
patterns of object pairs. This is done through defining a composite random variable that combines
transition vectors of two object concurrently present in the scenelZHtemensional probability
density is learnt through KDE. The sparseness in higher dimensionality is handled through mean
shift based sample refinement. Finally, Markov Chain is used to integrate the evidence over time.

We present further improvement in the runtime by dimension reduction through PCA.
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We have shown improvements in object detection by using learnt scene model feedback for the
minimum object size and the background learning rate. In addition to the object detection module,
one can also improve the performance of the multi-object tracking module by incorporating the
scene knowledge. For instance, if a Kalman filtHdg based model is being used, one can make
measurement-noise and process-noise dependent on the most probable velocity in each region. The
idea would be to use larger measurement noise, for instance, in case of faster motion of vehicles
and vice versa. Other useful applications of the learnt scene model can include prediction of object

path, occlusion handling while tracking, and finding source/sink (i.e. entry/exit) points in the scene.

6.2.2 Chaotic invariants for human activity recognition

We have presented a new approach for recognizing human activities when the finer level details
of different body parts is available. Previously we have seen the use of dynamical systems as a
way to model human actions. The approach presented here avoids the assumption of the linear
model or specific form (polynomial, radial basis function, etc.) of non-linearity. An important

result here is that we can represent an activity as a dynamical system for which we do not have an
exact mathematical form. We have shown that the data-driven embedding and invariant features

computed from it can be powerful for recognizing different dynamics.

We have used only three types of features from metric and dynamical groups of invariants.
There are other features/measures that also fall into the same groups and could be evaluated. In
addition, there is another group of invariant features that contains topological invariants. These

features capture the physical topology of the embedded strange attractor and could be used to
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for discrimination purpose. We experimented with two topological features: linking numbers and
relative rotation rate. The limitation of these features was their validity only in low (less than three)
dimensional phase spacets]. In our experiments with human activities, the dimensionality of
the phase space was typically higher than three which made the utility of topological features very

limited.

One limitation of the approach is the dependence on the joint trajectories of the human body.
For this work, we adopted a semi-supervised approach as explained previously. There are several
other approaches that can be useful for estimating human body pose, especially when the camera
is stationary. In case of quasi-periodic actions we were able to obtain good results for body parts
tracking through the proposed prediction based approach presented in Se8tibrin order to
avoid the dependence on these body joint trajectories, one possible direction of future work is to
explore other types of features that can be extracted from images. Such a feature can be a shape
descriptor of the body, so that a series of these features (used as a multivariate time series) can
be used to express different types of actions. Possible candidates could be shape tdnbext [

histograms of gradient directioB2)].

6.2.3 Chaotic modeling for human activity prediction

We extend the chaotic modeling of human activities for solving the prediction of moving body
parts. We have presented application of these predictions for human activity synthesis in motion
capture data and human body parts tracking in videos. In addition, we also show that the proposed

model can be generalized to other types of dynamics, i.e. dynamic textures. In this chapter we have
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proposed a novel approach for modeling multivariate time series and performing prediction through
a kernel regression based approach. We observed that the multivariate phase space reconstruction
is more suitable for the task of prediction, as opposed to the univariate reconstruction used for
recognition (see Chaptd). The multivariate reconstruction results in high dimensionality of the
phase space, which is not a significant problem when the goal is to perform kernel regression. On
the other hand, the high dimensionality could be a problem in other applications depending on
the kind of features to be computed from the embedded strange attractor. The metric invariants,
for instance, depend on the density of the points in the phase space and the quality of features
is expected to deteriorate as the dimensionality increases. Another type of chaotic features is
topological, that have been shown to hold only up to three-dimensional phase stglcetehce,

the choice of multivariate phase space reconstruction should be made depending on the type of

information or features to be derived from the strange attractor.

We demonstrate the utilization of human body-pose predictions to address the problem of hu-
man body parts tracking. It is possible to use the proposed approach in case of quasi-periodic hu-
man actions like walking, running, etc. Once the body joints have been tracked reliably throughout
the test video, we can then apply the recognition approach (presented in Glapitomatically.

One limitation of the proposed tracking application is the requirement of the detected joint location
in the training sequence. The use of semi-supervised method (as the one used in 4 ltapibe

used for this purpose.
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