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ABSTRACT

In this thesis we present a system for detection of eventislgov First we propose a multiview
approach to automatically detect, track, and consistdabigl heads, hands, and other objects
across cameras (zooms). Next a number of features are gedelchich are used by the machine
learning process for event detection. Finally, we dematsta new machine learning paradigm,
TemporalBoost, that can recognize events in video. One aspany machine learning algorithm
is in the feature set used. The approach taken here is todlalge set of activity features, though
TemporalBoost itself can work with all feature spaces useather boosting algorithms. We
also show how multiple levels of zoom can cooperate and cemght each other to help solve

problems related to activity recognition.

Tracking and Labeling Head and Hands: To perform activity recognition the system must be
able to detect and recognize heads and hands in the scenendathod relies on a standard face
detector to find the head. A color model of the found head regidbuilt online. We can find
the hands using the color model, since they are similarlgreol. There can be spurious regions
marked as hand regions, so a multiview constraint is intteduo reduce false positives. We track
these regions using mean shift. Detecting and trackingctdje time and consistently labeling

these objects across zoom levels are two necessary tassclomactivity recognition. Thus, we



provide a novel method that is able to determine the comgitdbeling of arbitrary tracks across

multiple zoom levels.

Features for Adaboost: We provide a rich set of features (weak classifiers) that ate &
distinguish between various actions. The type of featurescreate fall into three categories:
Multizoom features, temporal features, and frame-wiséufeas. We go over all the features in
more detail in the relevant chapters, and here we summasizeat subset of them. Three features
that we present use multiple zooms simultaneously in casghich a single zoom might not have
been sufficient. The features developed are: 1) segmemirmipject in the hand 2) determining
number of hands in head region 3) localizing the hand in faegion. These features have in
common the use of the epipolar geometry and use of multipter@itions coming from different
sources to improve results. Another temporal/framewiatufe that we develop has the ability to
segment the hand against complex or cluttered backgroBulsing the problem of segmenting
the hand over cluttered backgrounds such as the face istied$@nmany problems in the domain
of computer vision such as, Human Computer Interaction (H&ijyeillance, and virtual reality
(i.e., augmented desks). The similar colors and texturé@fhtand and face make the problem
particularly challenging. Our method is based on the uydegiconcept of an image force field.
In this representation each individual image location @ia®f a vector value which is a nonlinear
combination of the remaining pixels in the image. We introgland develop a novel physics-
based feature that is able to measure regional structuheimtage thus avoiding the problem of

local pixel-based analysis, which breaks down under ouditions. The regional image structure



changes in the occluded region during occlusion, whilevdigee the regional structure remains
relatively constant. We model the regional image strucatr@l image locations over time using
a Mixture of Gaussians (MoG) to detect the occluded regiothenimage. We have tested the

method on a number of sequences demonstrating the veysatithe proposed approach.

Machine Learning for Activity Recognition: We also propose a new boosting paradigm to
achieve detection of events in video. Previous boostinggigms in vision focus on single frame
detection and do not scale to video events. Thus new conoeptsto be introduced to address
guestions such as determining if an event has occurredidmgathe event, handling the same ac-
tion performed at different speeds, incorporating presiolassifier responses into the current de-
cision, using temporal consistency of data to aid dete@mhrecognition. The proposed method
has the capability to improve weak classifiers by allowingntito use previous history in evaluat-
ing the current frame. A learning mechanism built into thediog paradigm is also given which
allows event level decisions to be made. These two coniibsiimake extensive use of temporal
continuity of video at both the weak classifier and deteawels, respectively. This is contrasted
with previous work in boosting which uses limited higherdetemporal reasoning and essentially
makes object detection decisions at the frame level. Weiatsaduce a relevant set of activity
features. Features are evaluated at multiple zoom levéisgmve detection. We show results for
a system that is able to recognize 11 actions. Our systene i&r¢h that we know of which uses a

boosting methodology to perform activity recognition, i@#img temporal invariance.
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CHAPTER 1

INTRODUCTION

Activity recognition is an active research area in comput&on, and there has been an increasing

amount of research done in this field in recent years [AC99VPBh[SHe04]. The task of de-

tecting and localizing events in video is a challenging prob There are many different contexts
where activity recognition would play a major role. Applicas ranging from gesture recognition
to Homeland Security to multimedia retrieval rely on a rabugthod to detect actions in video.

Other applications being studied are those related to Blarvee.

Indeed a growing number of surveillance applications ailezing forests of sensors for in-
creased monitoring over large areas. These cameras dgrena a low zoom to cover as much
area as possible, yielding valuable tracking informatiod averall scene context. Other work in
activity recognition has focused on facial expressionysigsland gesture recognition using highly
zoomed cameras of the face and hands. By sacrificing overtlescontext the higher zooms
gain valuable detailed, subtle cues about specific evenseirscene. There is currently a gap
between the surveillance class of applications, wheredhgecas generally have a low zoom and
subjects are tracked simply as blobs, and the gesture @analyglications which analyze highly

detailed images of faces, hands, and eyes. Several reseshave hinted at the possibility of com-



bining multiple cameras with different levels of zoom forgroved activity recognition [Pen00]
[GLS03]. Therefore, this thesis proposes an approach fontgaecognition to capitalize on the

complementary strengths in coarse views, mid level views fme views.

In many problem domains there are certain regions in theeseere detailed (highly zoomed)
monitoring is needed. In other areas only a coarser vieweo$tiene is needed. Consider an office
environment where someone is working at a desk. Many actioasvould perform in this envi-
ronment involve the head, such as talking, using the phoog&irng at something, eating, coughing,
putting on eye glasses, etc. A coarse view of the scene canrgmmation about the origin and
destination of hand-held objects and about such mattersvasdst the hands are approaching the
face. A finer view around the facial region would be able tovte more detailed information
such as where on the face the action occurred, where therpisrkmking, whether the person is
talking or not, what kind of object is being brought to thedamd so on. In this context it would
be helpful to have multiple cameras employing varying degref zoom to accomplish activity
analysis. We focus our attention on the problem of actiongaion in an office environment as

this gives us arich set of actions to recognize.

Section 1.1 Overview of the Thesis

The thesis is presented in the following form. The introdrcand related work is discussed in the
remaining part of Chapter 1. Chapter 2 presents a method dftaggetracking, and consistently

labeling the heads and hands after introducing prelimin@ayhematical notation. Chapter 3 dis-



Figure 1.1: Example of scene showing zoom 1, zoom 2, and zoaews.

cusses a subset of features designed for TemporalBoost. eClagitves the details of the current
training methodology along with details on more featuresdus the machine learning process.
Conclusions and directions for future research are predent€hapter 5. We now give a brief

introduction and background work into the main problems #ere solved in our work.

Section 1.2 Detection, Tracking, and Consistent Labeling Across Camas

In Chapter 2 we lay the necessary foundation for multizoonviactecognition in the context of
an office environment. To achieve this goal the followingljdeons need to be solved. 1. The
head and hands need to be automatically detected and tracleth view. 2: Objects need
to be consistently labeled across views. 3: The cameras toeeabperate to perform activity
recognition. We have experimented with a camera configamati which there is a hierarchy of
N > 3 zooms which give various degrees of detail in the scene,@srsm Figure 1.1. The non-
planarity of the environment requires the above problentetsolved using the epipolar geometry.

We assume that the epipolar geometry of the scene is knowit dould be learned as in [WFZ03].

We first present a method which is able to automatically finappeEs head and hands in video

sequences. Our approach utilizes dynamic color models attil camera cooperation to achieve



better recognition than was possible with independent casnelhen a method for consistently
labeling objects across multiple cameras (each cameradpavilifferent zoom) is presented. In-
novations of our algorithm include incorporating not onpjipolar, spatial, and appearance infor-
mation, but also integrating trajectory matching. Finallg show results on a number of sequences

to demonstrate the versatility of the proposed approach.

Section 1.2.1 Previous Work

A key element of any multi camera activity analysis systerthéconsistent labeling of objects
across cameras. An obvious option would be to compute th8Bualignment using stereo. Basic
stereo methods will fail because the assumption of the atdnstereo setup is violated [SKO1].
Even after applying polar rectification [PKG99] to our imamers and then attempting the methods
in and [BVZ98], these direct methods fail because poégtification cannot resolve the

ambiguities in occlusion and illumination changes acrbsscameras.

In [Ste98a], a feature based method is used, in which theregtoint matches are picked
randomly. Then a homography is estimated and an error fumetiminimized which allows the
best guesses to help contribute to a better estimate in titeraiend. In our case however, we
do not have a ground plane to work with, which they requirel &e have a full 3D scene. As
noted in [AT01] the approach is also sensitive to noise anttimambiguities. Work presented in
[CSI02] attempts to find the fundamental matrix and estalitisjectory correspondences in 3D

scenes. However, their method does not take full advantagppearance, trajectory, and spatial



properties, which we have found adds more robustness to{rtie consistent labeling across

cameras.

In [RYSO02], the rank constraint is used to find linearly degmt trajectories. In this way
similar trajectories can be grouped together for classifina While they achieve good results,
if multiple trajectories in multiple views move similarlyxén there is ambiguity between which
trajectories are most similar. Further, the method coutdeaextended to our trajectory matching

because it cannot handle matching degenerate trajectiikeestationary objects.

A method is presented in [CGO01] to track across wide field ofvgieThey use epipolar, ho-
mography, landmark, apparent height, and apparent coloesmlve ambiguities. However the
system assumes common illumination across the camerass&\&ehetter appearance comparison
using energy minimization. They neglect to use trajectotieemselves, which also provide us
a valuable cue to alignment. Further, their approach woaig lproblems without ground plane

calibration.

Work done by [KHM00] show how depth and color information eoenbined to track multiple
people in a scene using a pair of stereo rigs. Appearancepatidlanformation are both used to
acquire matching trajectories across views. In [DDCO01] eaghata is acquired from stereo pairs to
match trajectories across views. Pixel data from multipdevs is integrated in a late-segmentation

strategy. Each pixel is checked against all trajectorigmased over time.

In [MDO3], correspondences are acquired using segmentatid epipolar geometry with in-

formation combined from multiple cameras. Their methodtesebn ground plane calibration and



will not work as we have no ground plane. Multiple views witidely different zooms are not

considered.

While there has been much work done in multicamera survedlamegrating multiple zooms
simultaneously has not been well studied. Our work provatealgorithm for making high level
inferences about activities using multiple zooms. Furthecause no consistent labeling (i.e., cor-

respondence) algorithms were successful in our test cas®as enethod needed to be developed.

Section 1.3 Development of Features for TemporalBoost

One of the main tasks when using a boosting methodology islélielopment of a meaningful
set of features (weak classifiers). Until now it has beenearclvhat types of features should be
used for activity recognition in a boosting framework. Ihigped that our development of activity
features will serve as a basis for others. The features wseptdnave widely different levels of

complexity.

The type of features we create fall into three categoriedtikbom features, temporal features,
and frame-wise features. In Chapter 3 we explore some of fleesares. In Chapter 4 we give
details on the remaining features. The reason we split Hitefes into two chapters is that features
in Chapter 3 are computationally involved and are significanttributions in their own right.
The features in Chapter 4 are simpler though nonethelesslu3éfe idea behind the multizoom
features is that certain events require multiple levelsoaine detail. We might wish to track

someone coming into an airport, maintain his identity tottbleet counter, and to the destination



airport. To do so requires multiple levels of zoom that musbperate to achieve the needed
recognition. We outline types of features that can be usea nmultizoom setup and show that
these features can help in cases where using only a singleoiexoom would be prone to error. It
is also shown how the individual zoom levels can be combio@tdate a basic activity recognition

system.

The final feature we develop in Chapter 3 resolves occlusigdheohand over complex back-
grounds such as the face. The difficulty lies in the fact thatitand and head are similarly col-
ored/textured regions. A necessary step for many HCI agmita such as gesture recognition,
pointing interfaces, hand pose recognition, and eventctieteis a reliable hand segmentation.
Sign language recognition methods also need to first segtmemand over complex boundaries,
such as the face. Some events like coughing, eating, ambtakedication could be more easily
recognized by segmenting the hand from the face. In shar gne many applications that could

benefit from having a robust segmentation of the hand ovept®abackgrounds.

In light of these considerations, we develop a new featusedban the force field image
[HNCO02]. The force field image is a physics based image reptaen. Each image location
is represented by a vector value which is a nonlinear contibmaf all other pixels in the image.
The approach in [HNCO02] focused on a possible feature spacedognition of faces and uses sin-
gle frames. The feature we develop is the distance traveleedb pixels placed in the force field.
Our novel feature is able to model regional structural cleang the image over time. Local meth-
ods (pixel based) cannot resolve the occlusion because ithéttle change in local color when

similarly colored objects occlude each other. Regionalkstine in the image does change when



the hand occludes the face, although local pixel colorseéndttcluding region remain largely the
same before and during the occlusion. By quantifying theoreistructural change in an image

over time we can resolve this kind of occlusion.

We also present a method that is able to model our newly desdlteature response over time
and capture where and when occlusion is happening usingtaMigf Gaussians (MoG) modeling
paradigm. We also clarify several concepts from [HNCO02] amd more details regarding the use
of this image representation. An extension of the force fealthputation to video data is also

given.

Section 1.3.1 Previous Work

We first cover previous work in features related to multiphenera activity recognition systems.
Then we present previous work done in the area of resolvinlysion involving the hand and face.

Activity recognition is an important problem in computesian, and there has been an increasing

amount of research done in this field in recent years [AC99Vf0& The problem of integrating
multiple levels of detail (MLOD) to improve activity recogion is not as well studied. Chapter 2

provides a formulation for studying MLOD in the context otigity analysis.

In [NBVO3] multiple cameras are used to cover non overlappaggons to recognize activities.
They introduce the Abstract Hidden Markov mEmory Model talgme activities, which allows
them to utilize the inherent hierarchical structure ohatiis. Their approach is used to cover large

spatial environments, however they do not attempt to usépteilevels of detail to perform finer



action recognition. In [CLFO1] a large scene is monitored padple and vehicles are tracked
automatically. Three dimensional world coordinates arterde@ned for all objects. Though the
system does not make any inferences as to what kinds ofteegiaire occurring. All information

is passed to an operator for evaluation.

An active vision system is presented in [STE98b] using oma¢icsand one Pan-Tilt-Zoom
(PTZ) camera to identify and track multiple people. Thisraagh makes a number of restrictive
assumptions on the color of people’s clothes and numberaflpgresent. No activity analysis

capabilities are demonstrated.

By combining multiple cameras in an active vision system gidreo vision, [HOYO0OQ] is
able to perform head and hand tracking and limited gestwegration. Their correspondence
only considers horizontal epipole line information andembjsize. A multiple camera approach is
given in [MHTOO] to detect events for an intelligent meetimgpm, however they do not use the
high zoomed cameras for activity analysis. In both thesteaysthe camera positions are known
beforehand. We have tried to avoid active vision systeras .TZ and foveating cameras) in our

approach to focus on integrating multiple zooms levels #amneously.

Much of the work in finding the hand in a complex backgroundesebn colored markers

[DS94] on the hands or requires the hand to be the only skiacblj view [CW95]. Contour

based approaches [ATL97] [HSS04] [JKS02] and other edgeddaethods [STT04] rely on good
edges separating the hand and head, which are often nohpneseich difficult occlusion. There
are edges in the occluded region but they are usually weak. aPproach seeks to take a re-

gional approach and not get confused by local edge incemsists. Active contour approaches



[ATL97] [JKS02] require the hand shape change to be smalt.@ethod has no such constraint.
In [HSS04], hand shape is estimated over a complex backdrbymsing a shape transition net-
work with the attributes of contour, position, and velocityhey use a simple template based
approach and skin color segmentation to find the hand duang Face occlusion. Their approach

is sensitive to small changes in lighting, different skitoecs, and requires small differences in the

2D hand shapes. Other color based approaches [BML04] [SG80d]J04] would have similar
difficulties with lighting, etc. in segmenting the hand of@ce. Our method makes no use of skin
color. In [SG00a] body parts are tracked using Bayesian Nedsvout skin color is used to find
the body parts. Further, the conditional probabilitiesspecified manually. In [FR04] examples
are given handling a few frames of occlusion using shape alwl i a Bayesian framework, but
it is unclear if this method can withstand occlusion invotyhundreds of frames (as our approach
does). In [ZHO3] hand tracking is performed using eigen dyiea analysis, but the hand tracking

system uses pretrained hand models. It is unclear how pardependent these models would be.

A method presented in [BLLO2] uses multiscale features tothedand. Color priors are used,
requiring retraining for new people. This method will notrkevhen the face is present because of
the stronger blobs and ridges on the face. Work in [ZYWO0O]grens well on segmenting hands
from complex backgrounds. They have an interesting apprtizat does not use a predefined
color model. Rather it builds skin and background color medet the current image using the
Expectation Maximization algorithm. It assumes that thechis the only skin colored region in

the image. It would not be able to differentiate between thedhand face. Further the method

10



requires that the hand cover a large portion of the image. i@age sequences frequently have

only part of the hand in the image.

An Elastic Graph Matching approach is given in [TMO01]. Thigeoach also uses color models
to find skin regions and has problems when the illuminaticanges, as the skin color model fails.
Training is extensive as each image in the training set regumanual labeling of at least 15 node
points. Their approach has limitations with regard to getimelistortions of the hand as does
[TMO02]. Our approach is not hand model based, so we do not tiasdimitation. In [SGHO5]
an approach is given to track hand posture and recognizergesn real-time. The approach
makes use of a Markov Model combined with simulated anngétncontinuously update the
hand posture. The tracking works well but the method is testeuncluttered backgrounds where
the hand is usually easily discernible from the backgroutsd.approach that combines particle
filtering and mean shift to incorporate the strengths of liftroposed in [SWT04]. The method
can update its color model over time. However it appearstti@imotion model would fail in
cases of long occlusion sequences. No testing is done onleorbpckgrounds involving the
hand and face or other such cases. In [ALO4] an approach sepied to detect and track hands
through occlusion. It relies on a bootstrapping skin cotaming procedure to first detect the
hands and suffers from the same limitations already spdciféne additional problem is that it
assumes that the hands and head are all detected beforgsiooabgcurs. In our setup the hand
comes into view and is already occluding the face. This aggravould not work in this kind
of scenario. Other methods already reviewed, [SG00a], suéler from this limitation. Work

done in [WCO05] uses Markov Random Fields to more accurately haottacked object. Particle

11



filtering is used as the underlying tracking mechanism. $tsp is able to track though occlusion
of differently colored objects and somewhat cluttered gacknds, but the main limitation is that

similarly colored regions will not track well through ocsion.

In [CW96] an approach is given that segments the hand from a lesniyackground. They
localize the hand using motion information and map thisaedo a fovea vector. No method
is given to extend it to work with other people. There is digant change in hand size which
our method can cope with. Most model based approaches pedsanove fail in the case where
the hand is only partially visible in the image or for gestun®t in the database. Many training
approaches do not generalize well because they usuallyoaietbgnize specific gestures. This is
not to say these approaches are inappropriate. Work sud¢fT@«] reports excellent results on a
limited set of possible detection postures. Whereas in odr@mment it is not required that the
hand make a specific gesture. Other approaches such as [A®08)t directly related as they aim

to only recognize the hand posture. Hands are detected askig model.

Because of the similar colors of the hand and face, segmentakyorithms such as [CM02]
will generally either under or over segment the hand/facduson. In principle, one can do
tracking but then the question becomes how to initializettaeking. Further, tracking methods

generally fail when tracking across similarly colored oatg.

Background subtraction [SG00b] will not work in segmentihg hand over the face because
even a slight movement of the head will trigger a large chasfg®reground pixels. Further,
supposing the head was relatively fixed, the underlying lprabwith the RGB (and other color

spaces) input domain is in the similarity of the head and kamtese methods cannot distinguish

12



between the head and hand colors. Most background subtrangthodologies operate on RGB or
some other color space (i.e. the input space is color infooma When similarly colored objects,
occlude each other the individual pixel values in the regiblocclusion give little information
considered individually because the objects are simileopred. This causes individual pixel
based methods to have difficulty in our context. Methodshgyio circumvent these problems

such as [STWO02] often require fine tuning of parameters. Ouhaakes fully automated.

Section 1.4 Temporalboost Learning

There are many different learning mechanisms proposedgfigm HMM’s to trajectory match-
ing. Often however it is not known precisely which featurat golve a particular task. When
using a large number of features many machine learning rdstsauch as HMM's, require large
amounts of training data or else they will overfit. It is oftest feasible to have and label the nec-
essary amounts of training data in these approaches. Onwowagumvent the problem is to use
a boosting approach where only a subset of the original feaiare selected. Boosting paradigms

have been gaining popularity though they are not well stiitbe recognition of video events.

A number of difficulties arise when using a boosted learniagnework to recognize video
events. How do we determine that an event has occurred? Hovedocalize the event in time?
Is there a way to deal with temporal variation of the sameoagberformed multiple times. How
should the “jump” from single frame object recognition ta@l@o data event detection occur. Is

there any way to use the temporal continuity properties @¢®j so as to be able to use previous
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feature responses in evaluating the current frame? Anptiobtem stems from the fact that in ob-
ject detection the objects can be sized and normalized sthéyaare essentially aligned with one
another; this makes feature design easier as the featuoggeedte on data at the same scale. In the
context of activities, it is not clear how one would normalthe activity to facilitate comparison.
Would this normalization occur in time, space, illuminatior all of the above? More fundamen-
tally, in an approach such as AdaBoost, during training asting each image is independent of
the others. However in video data, if a face was viewed in oamé, it is likely it would be in
the next if it was a true positive. AdaBoost should be able wd#which weak classifiers can
increase their detection rate when allowed to use their awlividual histories. Though a few
boosting methods do operate on video data to conduct tasksasiclassification, they do not use

the temporal continuity of video at the weak and strong diassdevels.

A new machine learning paradigm, TemporalBoost, is intrediand we show how this method
can be applied to recognition of video events. When using BealBoost for events, a number
of new features needed to be developed to handle tempoiahearand other issues relating to
activities. Preliminary results of this method appearef5i&V04] and [SVSO05]. The usual Haar

features, with necessary modifications, could also be usedricontext.

Our contributions are in extending the boosting paradigmmathine learning to address the
above limitations with respect to detection of video evehtsst we present TemporalBoost which
allows features to rely on previous frames to make a decigitime current frame. Further Tempo-
ralBoost automatically learns the optimal number of framesded to recognize each event while

detecting as few false positives as possible. Second, &xidenhd localize events in video one
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must either build specific classifiers that detect begin@ind endings of events or group frame
wise decisions after individual classifiers have been bWk use the latter approach which results
in an additional layer of learning once the strong classifaee built. Our extension allows both

for detection and localization of actions in video.

The third contribution is in designing a set of features whguseful for activity recognition
in an office environment. In the context of object detectmomparison of feature responses was
simple after image normalization. It is unclear how to ndimeaevents, thus we have chosen
the alternate path of more complex feature design. Theresatre evaluated simultaneously at
multiple zooms taken from more or less the same viewpoirteréstingly, many events rely on
features evaluated at multiple zooms. An example of a siingdge from each zoom is shown in

Figure 1.1.

Section 1.4.1 Previous Work

This research touches on many aspects of activity recognsio we review previous work in the
following areas: AdaBoost Learning, Activity recognitioncaevent representation. AdaBoost
was developed first in [FS97]. Work in [VJO1] generated mutkriest in the computer vision
community, and there have been many improvements to AdaBsasih as FloatBoost [LZ04].
Recently many interesting applications have also emergedng those [OAF04]. These systems
all make a decision in an object detection context. Thereokas some recent work in using Ad-

aBoost for speech recognition: In [DB04], a unique trainingrapch using AdaBoost and HMMs
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to sequence learning is proposed; Research in [KLO3] alseldgs an AdaBoost framework to
improve recognition of sequence data. In [YER04] AdaBoossedufor automatic visual feature
formation to boost HMMs for speech recognition. However wstrof these speech based methods
the features are taken to be averages over sgrframe window. This is not good for localization.
In [BLLO4] a method is presented for facial expression analysing Adaboost. However the
method specifically trains on only two frames for each faeigression (a neutral expression and
a frame during the facial expression). That work essegtiles not use video data for training
as our approach does. Temporal features were introduc®&JI80B3]. The features were designed
to operate on two frames, though temporal information isused after feature design. The above
methods do not discover inherent temporal dependenciteefifexist) both between the classifier

responses and between the feature level responses.

In order to recognize activities much previous work hasagd point trajectories or contours

of the objects in question [RYS02]. Work in [HNBO04] and [NZHG8cuses on large-scale activ-
ities and makes use of both object and trajectory propesfiebjects in question. In [EBMO03] a

motion descriptor based on optical flow measurements is taseldssify activities at low resolu-

tion. HMM’s have also been widely used to recognize acggifBOP97] [NH02], though the large
number of features in our context might not be suitable tésurcapproach. Related work can also
be seen in the context of video summarization [ZC04]. Othekwoactivity recognition focuses
on detailed views of persons and faces[IEE04]. A varietyaofdl expression analysis methods are
explored in [DBH99]. We seek to employ features at both thesmand fine level to recognize a

broader class of activities.
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The work in [SHMO04] relies on a representational framewark dctions using various log-

ical and temporal constraints. Results are shown on deteiéyds of hands to analyze actions.

Other approaches in representational models for actvitielude [PA04], [HNBO04], [MTB04],

and [ATK02]. We do not focus on event representations in conkvin this thesis.

[SSV04] gave a method to automatically track the head andacross cameras with different
zoom. We employ [SSV04] to acquire hands and head tracksweals, which we require in the

development of the activity recognition features.

Now that we have presented an overview of our research ancutinent state of the art, we
proceed to the main contributions of the current researdte rémaining chapters will consider
each of our contributions in greater detail, beginning wiéitection and tracking across multiple

cameras.
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CHAPTER 2
DETECTION, TRACKING, AND CONSISTENT LABELING

ACROSS CAMERAS

In many problem domains there is a need to have both highlynedccameras looking at certain
regions and lower zoomed cameras acquiring overall caméxtformation of the scene. Consider
an office environment where someone is working at a desk. Matigns one would perform in
this environment revolve around the head, such as talksigguhe phone, looking at something,
eating, coughing, putting on eye glasses, etc. A coarse ofelve scene can give information
about the origin and destination of hand-held objects anditedch matters as how fast the hands
are approaching the face. A finer view around the facial regiould be able to provide more
detailed information such as where on the face the actiooroed, where the person is looking,
whether the person is talking or not, what kind of object imgdrought to the face and so on. In
this context it would be helpful to have multiple cameras yipg varying degrees of zoom to

accomplish activity recognition.
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Section 2.1 Definitions and Conventions

There are many good references on the details of 3D multigeametry. [HZ00] and [Zha98]
provide good introductory knowledge. Only the minimum fdations needed for our purposes are
presented here. A pair of cameras are related by the fundahmeatrix, so all points in imagé
can then be transferred to their corresponding epipolaiitid’ by [ = p-F, wherel = | , B~ ]

are the coefficients of the line equation
a-r+p-c+v=0, (2.2)

pis any pointin/, F is the fundamental matrix andc are the row and column indices of pojnt
All epipolar lines will pass through the epipole, found dittg from F by taking its singular value
decompositionF = U - W - VT, The epipoles are obtained immediately by normalizing disé |
columns ofV and U respectively. To transfer an epipolar line to image coatéia normalizé,

then, for lines with slopén| > 1 apply equation 2.2:

pr=Ix[g 1 olandp=1x[0o —17v 1], (2.2)

whereY is the height of the image and, p, are the intersection points of the image with the
epipolar linel. The slopen is the ratio of the coefficient%. A slightly modified operation gives

the intersection points for lines with slope| < 1:

pi=Ix[1 0 olfandpy=ix[ _1/x o 1], (2.3)

where X is the width of the image ang;, p, are the intersection points of the image with the

epipolar linel.
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Now considerN cameras (we show 3) zoom 1 through zodngfor us, zoom 1 through zoom
3). LetC; be the camera number with zoamDefine; ; to be a color image at framg, taken
from cameraC;. Define the set of objects in a particular image frameCas = {z; ,..., 2]},
wherei is the camera number anfd 1 < f < Z, is the frame numbernn represents the number
of objects in a particular frame. An object is defined by itsifding box (top left, bottom right
corners). The centroid oiﬁf can be represented as the vect@ﬁf gﬁf]T. We would like to
determine the consistent labeling between all objectsanvérious sequences. For a given frame
f we have the set’ = {X,f, ..., Xy} expanded a8 = {{z1 , ..., 27} }. {5 o 237} o

{zhyro z'v¥ 1}, which is the set of all objects for framfe We would like to find the mapping

w(ah () =A{apl 22, )

which takes a particular objeétin frame f viewed from camera, and finds the corresponding
objecta; with 1 < a;, < m,, for all camera9;,1 < b, < N,b; # n, if the object is visible.m is

subscripted to stress that the number of objects can vaneeetframes and/or cameras.

Section 2.2 Detection and Tracking of Heads and Hands

For activity analysis the heads and hands first need to betddtetracked, and labeled across
cameras. This section deals with detection and trackingeatls and hands. Our approach first
finds the head regions and then builds color models of the&gen® which are used to find the
hands. The head regions are detected independently forceackra,C,, employing the object

detector described in [VJO1].
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Using the RGB pixel values of the head region, a color mobgl,is built for each,C,, as
in [KK96]. However in [KK96] the remaining color pixel valgeare treated as negative samples.
This will not produce a good color model in our case becausd#md regions will count as neg-
ative samples. To overcome this limitation, after buildarginitial color model using the positive
sampled regions, the final color model is only negativelyghigd by those samples which did not
show up positively in the initial color model. This preveite hand regions from contributing
adversely to the final color model and provides better se¢gtien. An appropriate threshold can

be chosen to make a binary decision,

1 ha(r,g,b) >a
Hy(r,g,b) = (2.4)

0 otherwise

which can then be used to segment the images.

Since the head detector is for frontal head regions onlyctier model will be helpful for
detecting hands and heads with small variations in viewtpoifigure 2.1 shows the input images
in column one. Color segmentation output and head deteciondolumn two. Detected heads

were drawn with rectangles around them.

Once a detected head given by the head detector has beentgogsaore than four frames,
a mean shift [CRMOQ] tracker is initialized around this heagior, which will provide tracking
information in subsequent frames. There is no limitatiohdaw many heads can be in the scene at
one time. An alternative approach would be to initialize mehift trackers around head regions

whose centroids project to epipolar lines that interseahéhead regions in all other views.
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Figure 2.1: Output from the head detector and color segrtientdound head regions are marked
by rectangular boxes, and color pixels belonging to the lsedat model are marked as white. The
first row is frame 3 in zoom 1. The second row shows frame 162anzl. Though no explicit
color model has been generated for the hands, they showiaplyetven for multiple people. In
row 1 both heads are found, but later in the sequence (rowe)élad detector misses one head,

though the color segmentation still finds both head regisrskan regions.
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Next the hands must be found and tracked in each view. We cdulply track all skin col-
ored regions that were found from the head color model, bstths problems as there are many
spurious skin regions marked. Better detection is poss#ileggumultiple cameras. First for frame
f, all possible hand candidates are independently labele@&ch camera;’,, using H,. Hand

candidates are those connected components that have size

Z Ha(Ia,f(LL’i, yz)) > 0 - (I)l

where ®, is the average head size in this camera= .05, and ), occurs over the connected

component. The computation is performed at all levels cditet

Once all candidate hand regions are labeled, the epipotengey is used to confirm or reject
the presence of a hand on an epipolar line in another viewr€&ig.2(a) represents a lower zoomed
image, and Figure 2.2(b) represents a higher zoomed imafeseTobjects (one head and two
hands) and the corresponding epipolar lines of the objeats the other view are shown in each
image. For each hand candidatedf) its centroid is projected to an epipolar line @. The
epipolar line is searched for a region with size®,, where®, is the average head size in this
camera andis a small positive constant. If only one region is found and¢brresponding epipolar
line in C, then a mean shift tracker is initialized around these regjioboth views, and the regions
are tracked. If there are multiple hand candidates alorgjitie, the search is deemed ambiguous,
and no mean shift trackers are introduced. This can be se€igiume 2.3. This method is able
to successfully detect and track the head and hands. Figukgs7 show automatic initialization
of the hands. In all cases subfigures (a) and (c) are the same ff, taken from zoom 1 and 2,

respectively. Subfigures (b) and (d) are the same frgfnéaken from zoom 1 and 2, respectively.
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v\\_.—/T .
centroid in (a) teepipolar lire in (b)
(@) (b)

Figure 2.2:Unambiguous Hand Labeling. Three blobs are shown in (a). Blstihe head and
has already been identified in the first stage. It is showm(plwith its epipolar line projections
in both views for completeness). Blobs u and v are hand catedid&lob v in (a) has its centroid
projected to its epipolar line in (b). This line in (b) is sefaed for a matching, unambiguous hand
candidate. It can be seen that there is a single hand caedfdab y) on this epipolar line. This is
an unambiguous match. Since the match is unambiguous, ashdtinacker would be initialized
around blob v in (a) and blob y in (b). This process starts theking for the matching hand
candidates in both views. Similarly the hand candidate blob(a) has its centroid projected to its
epipolar line in (b). This line is then searched and sincenglsihand candidate, blob x, is on this

epipolar line, mean shift trackers would be initializedward each of these blobs in both views.
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blob u & _*

centroid in (a) teepipolar lire in (b)
(@) (b)

Figure 2.3:Ambiguous Hand Labeling. Three blobs are shown in (a). Blabthé head and has
already been identified in the first stage. Blob v in (a) hasdtgroid projected to its epipolar line
in (b). This line is searched and it is found that there are lnand candidates, blobs y and z on
this epipolar line, thus a mean shift tracker would not b&ahzed around any of these regions.

This is so because there is an ambiguity as to which handdatedin (b) corresponds to the hand

candidate in (a).
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It often happens that the hand partially overlaps or ocdule face. When one or both hands
overlap with the face the mean shift tracks will find the samedidate region (Shown in Figure
2.8). In this case the algorithm will use one of the tracksalbthe overlapping regions. Once the
regions separate, the proposed initialization procedultdimd and reinitialize the regions. The
algorithm then can continue tracking these regions usiogngérical domain knowledge based on

which side of the face the hand was on.

When there are multiple head and hand regions and when threraer objects that need to
be tracked, a consistent set of labels across cameras fasjadits will be necessary. A method to

establish these consistent labels across cameras is {@e sext.

Section 2.3 Establishing Consistent Set of Labels Across Cameras

In order to allow the cameras to communicate object infoionato one another, a method to
determine the consistent set of labels across cameras tebdsfound. For simplicity we will
describe our method using two cameras. The ideas can easiiytbnded to work with additional
cameras. Given two cameraS,andC, we want to determine the consistent set of labels for

objects between cameras for fragnésee Section 2.1 for a precise definition).

Our approach uses the following constraints:

e epipolar line projections for each object

e spatial constraints
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(c) Frame 1 at zoom 2 (d) Frame 31 at zoom 2

Figure 2.4: In (c) Labels A and B indicate the found two hamdidates. Each hand candidate has
a box around it. Since no matching hand candidates have beed fn (a), these hand candidates
are not tracked in subsequent frames. For frame 31 in (d) &l ltandidates, Labels C and
D, are found. In (b) a single hand candidate Label E is alsmdouLabels C and E are not
ambiguous (according to the detection method), so meantsduks are initialized around both of
these corresponding regions. Since Label D in (d) has nesponding hand candidate in (b) no

mean shift tracker is initialized around Label D.
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(c) Frame 10 at zoom 2 (d) Frame 101 at zoom 2

Figure 2.5: In frame 10 there are no hand candidates in eftf)eor (c). In frame 101 in (d)
the hand candidate labeled A is found. In (b) a hand candidateel B, is also found. These
hand candidates are not ambiguous so mean shift tracksiaaéized around both of these hand

candidates in both zooms.
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(c) Frame 360 at zoom 2 (d) Frame 364 at zoom 2

Figure 2.6: In (c) Labels A and B indicate the found hand cdaidis. Since no hand candidates
that match have been found in zoom 1 (a), these hand canslidegenot tracked in subsequent
frames. For frame 364 in (d) Labels C and D indicate the fowsmtblihcandidates. In (b) a single
hand candidate, Label E, is also found. Since Labels D an@ EHreambiguous, mean shift tracks
are initialized around both of these corresponding region®) and (d). Since hand candidate
Label C in (d) has no corresponding hand candidate in (b) nannshift tracker is initialized

around Label C in (d).
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(c) Frame 10 at zoom 2 (d) Frame 52 at zoom 2

Figure 2.7: In frame 10 there are no hand candidates in eftheor (c). For frame 52 in (d)
hand candidate, Label A, is found. In (b) Label B is also fauiitiese hand candidates are not

ambiguous so mean shift tracks are initialized around bfotinese hand candidates in both zooms.
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(c) Frame 190 at zoom 2 (d) Frame 226 at zoom 2

Figure 2.8: In (c) the Label A is found as a hand candidateyghdhis hand candidate cannot be
seen in (a). Since there is a partial overlap occurring withtiead and other hand, this hand is
not considered a hand candidate in either (a) or (c). Sinageatohing hand candidates have been
found in (a), the hand candidates are not tracked in subséfraenes. Frame 226 occurs after the
occlusion. In (d) hand candidates Labeled B and C are founfh)la single hand candidate, Label
D, is also found. Since Labels B and D are unambiguous, matrirslcks are initialized around
both of these corresponding regions. Label C in (d) has nesponding hand candidate in (b) so

no mean shift tracker is initialized around it.
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e trajectory constraints

e appearance constraints for each object

The algorithm starts by transferring the object centroid§j to their corresponding epipolar
lines inC,. The distance between each epipolar line and each centréiglégan be accumulated
and thought of as a matching error between the object,ithat generated the epipolar line and
the object inC,. A distance of zero indicates a good match. This is done feryeframe in the
sequence. The best match can be selected as the epipoleetitieid pair with the lowest error.
This leads to the following algorithm.

1. For thef"" frameVm objects: X, ; = {z; ;,...,z)';} make a set of all centroid®, =

{25 Gagl’s .. 127, 924"} in cameraC,. Transfer these centroids using the fundamental

matrix to get the setA, of corresponding epipolar lines

{t, bt =Ty Goy Wanh - AlE0, G0y 1Fapl}

in camera’, that correspond to the centroit?g from C,.

2. Make a set of centroidBy, = {[z, ;9" ..., [#), up,]"}incameral, Vn objects:
Xoy = {x} ..., x};}. Thereis no requirement fer=m. If the " object ofC,, z, , is visible in
Cy it will lie on some epipolar lingy. SoV[i{;J ggyf]T € P, andV] € A the error for this match

is the Euclidean distance between the centroid and the lepiljpte

o lo &)+ 159 +1
Wi, g, 1=t Gyt 25)
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This distance is the error to match the objexj;;f, in C, (whose epipolar line i§) with the object,
xif inCy. 1o, 15, 1, are the coefficients df the epipolar line with parameters described in Equation
2.1. We can compute the accumulated distance error for @enyoidp € Py, in C;, with every

epipolar line for every frame and match the objects that haddwest error.

More formally given an object’ in C,, to find the corresponding object in all other cameras
C, compute:

%)
a,b

. 1 . : . ,
Vb # a obtain argmin——> " d([&}, ; G.; UFaw, [#1, G, 1)), (2.6)
J a:b f=1
whereb is the index of thé" cameraNj;’j; is the number of frames for which objectg had valid
tracks in cameras, b respectivelyF, , is the fundamental matrix between camerasdb. The

functiond is given in Equation 2/5. We have verified that slightly betésults can be achieved by

modeling the error measure as a gaussian zero mean randle/ar

v v 1 N
d0l5, Gy M= () (2.7)

whereg is the value of Equatian 2.5. We used Equation 2.7 in our exygats.

In the above algorithm a method was presented that finds biedéing going fromC, to C,. It
is desirable for the matching to be commutative (If the nunddeobjects differ across cameras,

i.e. n # m, then the matching occurs only in the direction with lesoty ), so that
(z"in C, matches’ in () < (27 in C, matches:” in C,,)

Unfortunately, if the algorithm is computed fro6y, to C, the labeling might not be the same.

Equation 2.6 can give different minimums going in differelitections. This can happen, for
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example, when multiple centroids (i, lie on nearly coincident epipolar lines i@,. The next
three constraints provide additional restrictions on medcobjects to help reduce the incorrect

labelings due to these ambiguities.

Section 2.3.1 Spatial Constraints

When two object centroids in one view project to nearly caleai epipolar lines in another view, it
is difficult to determine which line belongs to which objesing solely a Euclidean based distance
criteria. In the case of coincident epipolar lines, theatise metric described in the previous
section might not match the correct objects. In our camegpshe spatial ordering of objects
across cameras must be preserved. We can use this fact toartadtter determination as to
which match is correct. The difficulty is in determining whiobject matches are to be penalized.
Consider Figure 2.9(b) to illustrate the difficulty. The remkbndicates the hand track. The white
box indicates the head track. The small blue circles inditta centroids of each of these bounding
boxes (the lower centroid corresponds to the hand). The mddndoite lines correspond to the
similarly colored bounding boxes in 2.9(a). Using the dist criteria both blue centroids are
closest to the white epipolar line (corresponding to thedhe&.9(a)). Which match is the correct
one and which should be penalized? To aid in resolving thisiguity, we consider the two cases:
in the first case, the bounding boxes of the objects inteesach other in both views, shown in

Figure 2.9. In this case the object matches to be penalizedeaasily identified.
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(@) (b)
Figure 2.9: One type of spatial inconsistency. The head amdl lbounding boxes intersect in
both views. The first spatial constraint tests for intenisgcdbounding boxes. If the boxes intersect
in one view, then intersecting boxes in other views are cbeédkr consistency and penalized if

necessary.

Figure 2.10: A second type of spatial inconsistency. In thse the bounding boxes of the skate-
board and book do not intersect but the epipolar lines arestleoincident. This could result in
incorrect labeling. The second spatial constraint peeslizbel matches that overturn the order of

the centroids.
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Concretely, we proceed in the following manner. Given twaeoty inCy,: xif, z;, » and two

objects inC}: a;gﬁf, x£7f, check the following condition

xl /\ g p andxy /\ xp p with 2 U pa implieszj ;¥ Py

where/\ represents intersection between bounding bo¥e®presents an operator that compares
the ordering of the bounding boxes along the axi®o( y) that the bounding boxes are furthest
apart on, ang is the parity indicating the direction of the comparisonmaper V. If this condition

is not met, the spatial constraint has been violated and gembetweeny ; andz{ , is penalized

by the Euclidean distance between the centro{g@:;j”f Uy 12y ¢ g 7. It will be shown later in

this section how to integrate this penalty into the origieabr minimization.

In the second case, shown in Figure 2.10, the bounding bdxbe skateboard and book do
not intersect but the epipolar lines are almost coincidehich will result in the epipolar distance
minimization possibly selecting the incorrect labels. &salve this, recall that every epipolar line
was generated by a known objectify. The two objects i, nearest the coincident epipolar lines
and the original centroids iV, that generated the coincident epipolar lines are checkespttial
consistency. The object matches to be penalized can, teusadily identified. Concretely, the

minimum distance between the two epipolar lines
[i’g,f Qif 1]Fap and[fﬂi,f Z?g,f 1Fap

is computed. The minimum distance between points on thenlih@ccur at one of the end points
of the image, which can be found from Equations 2.2 and 2.3niff < ¢, then the lines are

nearly coincident and the respective centroid§’jrthat are closest to either of the epipolar lines
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(2 92 s 1Fap or [25 45 ; 1]Fa ) are identified. Only the situation where two centroid<’in
have as their closest epipolar line eith&f ; 77 ; 1/Fap or [2§ ; 45 ; 1]Fay is considered because
it allows us to unambiguously identify which objects to carg andz; .) and penalize.

t all t b ly ident hich objects t 2.; andzy ;) and I If
the condition

d h
T sV pra s — Ty Py

does not hold then the match betwe@r} and:c;‘)”f is penalized by the Euclidean distance between

the centroidS\/[:igyf Uy @y, vy ] Again, it will be shown later in this section how to integrat

this penalty into the original error minimization.

Section 2.3.2 Trajectory Constraints

The spatial constraints may not resolve all ambiguitiestdueaccuracies in the tracking or fun-
damental matrix. The spatial constraints work well, buhgent requirements must be satisfied to
make use of them. Therefore a more broadly applicable tajgconstraint is introduced. From a
high level, the trajectory constraint looks at all possitérs of objects across views and penalizes
them according to how dissimilar their motion is (based anphevious 30 frames). We address
the following three cases: 1. If the motion of both objecteagligible, no penalty is assessed as
the motion vectors cannot be reliably obtained. 2. If theiomobf both objects is large, then a
penalty is assessed based on the relative direction of thiermegectors. 3. If the motion of one is
negligible and the other is large, a penalty is assessedi loaisthe current match score (as one of

the motion vectors cannot be reliably obtained).
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The correct correspondences across cameras will be petiddiast since their motion is most
similar. This constraint ensures that moving objects in viegv match with similarly moving

objects in another view.

Formally, the trajectory constraint penalizes objﬁi;]t in C, matching objectcif in C, by

adding toS(i, j) the amount; ; =

(

0 for M} , < 1andMj, <1
AG; .S (i, ) * (.00001) for M; , > 1andMj, > 1 (2.8)
S(i,7) *.00001 otherwise

\

where

!
SGij) =) (d(#, G UFap [, G, 1D+

s=1

ad N ~hg ~hg
Can/lid, gLl T + Ty (29)

is the current cumulated un-normalized match score betwbjettsz’ andz]. T'4(s) is an indi-
cator function,A is the set of frames in which the spatial constraint is med,/an is the index of
the centroid that violated the spatial constraint. It isssuipted byl to emphasize that it is possible

for a single object pair to be involved in multiple spatiahstraint violations.

M, ;= \/[-’fi,f U | AT

represents the maximum motion in a 30 frame sliding windavafty single objectin a particular

cameraC, for a particular framef. Mé,f = () when, there is no bounding box information fdy
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in this 30 frame window. To fingd compute

j= argmax\/ %5, Do )% g5 apsl”
J
Ab; ; s represents the difference between the angle of the maximotiomvectors for each object

M;7f * Mi,f
[V, IV

Ab; j § = arccos H
7f

M, ; is the maximum motion vector computed fron, ,:

~0

af = Tar = Tase; Yoy = Yasril

Since(0 < arccos(Af;;¢) < m VY A#b,;, there is no issue of angles becoming imaginary or

wrapping aroun@r.

Section 2.3.3 Appearance Constraints

Previous methods have considered color similarity of dbjeetween views to increase the ac-
curacy of the label assignments. This is important whenretlage small errors in the track data
or epipolar geometry which cause the objects to be matcharectly. Directly comparing the

appearance of objects can present difficulties especidlgnvthe cameras are not color calibrated.
Relative color similarity between objects still can give fusenformation. At an abstract level we

can consider all permutations of object matches from onescano another. Suppose there are
two objects,A, B in Camera 1 and two object$’, B’ in Camera 2. One permutation would be

A matches tad’ and B matches toB’. Another permutation would bd matches toB’ and B
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matches tod’. Given a permutation we can find the appearance score of ttishnby computing

the average intensity difference between the correspgrabyects in the permutation.

Concretely, after applying the previous constraints toralifes, if there are still ambiguous
matches (i.e., those objects for which there is not a 1-1 mgppthen collect these ambiguous
objects into two lists. The ambiguous objectsipare A = {z.,... 2%} and those inCj are
B = {x},...,z}}, whereq is the number of ambiguous objects. To get the correct majdimel

the permutation of superscript indicesito minimize the relative error:

1Al M N
. 1L AN
p = argmin ;:1 (M;Gx I(z) — N GE ) Iy(z)) (2.10)
B €T,

whereP is the set of all permutations of the indices of ambiguousgctsjin B. Eachy is a set
of indices of objects irB. I(x) represents the image intensityatigures 2.11 - Figure 2.13 show
some results of the labeling algorithm. The tracks that alered the same were matched across
views. In Section 2.2 the method automatically finds the beadl hands. To test the accuracy
of the labeling algorithm, we have manually introduced &ddal bounding boxes around other
objects. The algorithm correctly labels all objects acatsiews. More results are presented in
Section 4.8. We show the final function that needs to be mienhto satisfy all constraints. Given

an objectz’ in C,, to find the corresponding object in all other camefagompute:
4,7
a,b
. .1 i y NI
Vb # a obtain ar?mln—w E (d'([zh, do; UFap, lE, G, 1)+

a,b f=1

CaiW I, Gl ST + Tg) + To(haa)Q(P) (2.1)

whereb is the index of thé' cameral' 4(f) andl'¢ are indicator functions4 is the set of frames

in which the spatial constraint is met aqds the set of objects for which the appearance constraint
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is met. hy, is the index of the centroid that violated the spatial caistr It is subscripted by
to emphasize that it is possible for a single object pair towelved in multiple spatial constraint

violations.(P) is the penalty amount found from Equation 2.10.

Section 2.4 Quantitative Results

The proposed overall method has been formulated in the xdooft@ctivity analysis for cameras
with multiple levels of zoom. The guidelines for experimedrdesign and evaluation are discussed
next. The cameras were placed so that all were facing the seene with different levels of zoom.
The successively higher zoom levels each viewed a subdat stene taken at lower zoom levels.
There were no strict camera placement protocols. Datasets tat different times did not have to
have identical zooms/placement as the initial experimértie zoom and camera placement were
different for most of the tests. Because our method uses tigafuental matrix, we did not need
strict camera placement protocols. We wanted this flexybib make the system less restrictive
and more useful to others. To compute the fundamental madrigoint correspondences were
used. This was sufficient calibration for our purposes. Tkmeements were all in a normal
office environment and no special illumination calibratammmoss cameras was performed. We first
present results of the correspondence algorithm (Sect®nadd then show results for activity

analysis (Section 3.1).

In evaluating our consistent labeling algorithm the magkt® evaluate was how many objects

were correctly labeled across the video sequences. A nuaoiflmenstraints were used (see Sec-
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Figure 2.11: Output of consistent labeling. Each row is ai@aar time unit in the sequence. For
each row zoom 1, zoom 2, and zoom 3 are shown respectively.piedweous object trajectories
are superimposed on the current frame in the sequence. Tichedarajectories across views are
shown in similar colors. All objects were labeled acrosswgi€orrectly. Row 3 shows a frame
after the head has moved. Notice that this generates a virgtesimilarly the white line appears

in the other zooms indicating it is the same trajectory.
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Figure 2.12: Output of consistent labeling. See Figure 2ot Inore information. The matched

trajectories across views are shown in similar colors. it lsa seen that all objects were labeled
across views correctly. In Row 1 only the head has moved, and sther trajectories can be seen.
In Row 2 the hand is scratching the head (trajectory is mankeeld across zooms). Row 3 shows

the other hand approaching the head with a mobile phone.
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Figure 2.13: Output of consistent labeling. This figuresnshthe same sequence as that shown
in Figure[2.11. The difference is that every’3€rame is shown to get a better flow of the video

sequence. The frames go from left to right and top to bottom.
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Figure 2.14: Other Camera Configurations that we tested tledihgbalgorithm on (Section 2.3).

There were two cameras in this setup. One input image frotm e@mera is shown.

tions 2.3.1 + 2.3.3) to make the matching more robust. A \@liéstion arises: is there any benefit
of the constraints. We show in the following tables how theegpondence matching performed
with various combinations of constraints. Results usingy ¢iné epipolar distance minimization
(Equation 2.6) are presented in Table 2.1. Table 2.2 shasvsffhct of using Equation 2.7 for the
error instead of Equatian 2.5. Results using only the epipditance minimization and spatial
constraints are presented in Table 2.3. Results using oalgpipolar distance minimization and
trajectory constraints are presented in Table 2.4. Nextliesare presented, in Table 2.5, using
only the epipolar distance minimization and appearancstcants. When we combine all four
constraints together we achieve 100% accuracy as presientedle 2.6. Table 2.7 lists a sum-
mary of the average score for each algorithmic setup. Thesaae was obtained by summing the
individual percentage scores for each sequence and diMdithe total number of sequences. The
appearance constraints did well overall. However in secgi@nthe appearance constraints failed,
and this was a sequence that the spatial constraints pediowell on. Though in sequence 2, it
was only in combining all the constraints that the algorithachieved 100%. Thus we can see how
the various constraints work together to achieve bettaritsesData Sets 1-7 are multiple level

of zoom sequences. Data Set 8, shown in Figure 2.14, is aseguwdth partially overlapping
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Table 2.1: Only Epipolar Minimization using Equation 2.5

Sequence # | Objects in| Objects in| Objects in| % Matched # Matched
Camera 1 Camera 2 Camera 3

Sequencel |7 7 3 85 17/20
Sequence2 |7 7 2 72 13/18
Sequence 3 |9 9 2 91 20/22
Sequence4 | 6 6 2 100 16/16
Sequence5 |7 7 3 85 17/20
Sequence 6 |11 10 2 100 24/24
Sequence 7 | 4 4 2 100 12/12
Sequence 8 |6 6 0 67 8/12
Sequence9 |6 9 3 100 18/18

FOVs as found in many surveillance papers [CA99]. Data Setftisee camera sequence with
partially overlapping FOVs. This labeling algorithm wastezl on a number of different camera
configurations to show the robustness of the proposed apiprdde proposed labeling algorithm
has been tested on eight such three camera sequences, ana @aenera sequence for a total of

over 18,500 video frames with over 160 objects corresporde@ctly with 100% accuracy.
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Table 2.2: Only Epipolar Minimization using Equation 2.7

Sequence # | Objects in| Objects in| Objects in| % Matched # Matched
Camera 1 Camera 2 Camera 3

Sequencel |7 7 3 90 18/20
Sequence2 |7 7 2 83 15/18
Sequence3 |9 9 2 91 20/22
Sequence4 |6 6 2 100 16/16
Sequence5 |7 7 3 85 17/20
Sequence 6 | 11 10 2 100 24/24
Sequence7 |4 4 2 100 12/12
Sequence 8 | 6 6 0 75 9/12
Sequence9 |6 9 3 100 18/18
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Table 2.3: Epipolar and Spatial Constraints

Sequence # | Objects in| Objects in| Objects in| % Matched # Matched
Camera 1 Camera 2 Camera 3

Sequencel |7 7 3 80 16/20
Sequence2 |7 7 2 89 16/18
Sequence3 |9 9 2 91 20/22
Sequence4 |6 6 2 100 16/16
Sequence5 |7 7 3 85 17/20
Sequence 6 | 11 10 2 100 24/24
Sequence7 |4 4 2 100 12/12
Sequence 8 | 6 6 0 67 8/12
Sequence9 |6 9 3 100 18/18

48




Table 2.4: Epipolar and Trajectory Constraints

Sequence # | Objects in| Objects in| Objects in| % Matched # Matched
Camera 1 Camera 2 Camera 3

Sequencel |7 7 3 90 18/20
Sequence2 |7 7 2 83 15/18
Sequence3 |9 9 2 91 20/22
Sequence4 |6 6 2 100 16/16
Sequence5 |7 7 3 85 17/20
Sequence 6 | 11 10 2 100 24/24
Sequence7 |4 4 2 100 12/12
Sequence 8 | 6 6 0 75 9/12
Sequence9 |6 9 3 100 18/18
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Table 2.5: Epipolar and Appearance Constraints

Sequence # | Objects in| Objects in| Objects in| % Matched # Matched
Camera 1 Camera 2 Camera 3
Sequencel |7 7 3 100 20/20
Sequence2 |7 7 2 83 15/18
Sequence3 |9 9 2 100 22/22
Sequence4 |6 6 2 100 16/16
Sequence5 |7 7 3 100 20/20
Sequence 6 | 11 10 2 100 24/24
Sequence7 |4 4 2 100 12/12
Sequence 8 | 6 6 0 100 12/12
Sequence9 |6 9 3 100 18/18
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Table 2.6: All Constraints

Sequence # | Objects in| Objects in| Objects in| % Matched # Matched
Camera 1 Camera 2 Camera 3
Sequencel |7 7 3 100 20/20
Sequence2 |7 7 2 100 18/18
Sequence3 |9 9 2 100 2222
Sequence4 |6 6 2 100 16/16
Sequence5 |7 7 3 100 20/20
Sequence 6 | 11 10 2 100 24/24
Sequence7 |4 4 2 100 12/12
Sequence 8 |6 6 0 100 12/12
Sequence9 |6 9 3 100 18/18

Table 2.7: Summary For All Algorithmic Setups

Algorithm Setup

Average Sequence Sco

e

Only equation 2.5

Only equation 2.7

Epipolar and Spatial Constraints

Epipolar and Trajectory Constraint

[92)

Epipolar and Appearance Constraints

All Constraints

88.8

91.5

90.2

91.5

98.1

100
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Section 2.5 Conclusion

In this chapter we have developed a robust multizoom framewmenable activity recognition.
The presented framework is able to combine information fe@meras in multiple ways to in-
crease overall system performance. Heads and hands amaiiatally found and tracked using
multiple levels of detail. We have presented a method wihs@hble to incorporate epipolar, spatial,
trajectory, and appearance together into a unified franeteoachieve consistent object labeling
across multiple cameras. In the next chapter we build orfébisdation and design features using

these primitives. The features, in turn, will lay the foutidia for using TemporalBoost.
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CHAPTER 3

DEVELOPMENT OF FEATURES FOR TEMPORALBOOST

In order to motivate the kinds of features we designed we biagiving a high level view of

what we want to compute. In Figure 3.1(a) we introduce a nosptesentation of the Hand

And Face Interactivity Space (HAFIS). It is a four-dimemsbfeature space. The first feature
is based on how many hands are needed for the given actioreziBgeor talking require no
hands, while putting on eye glasses can require two handsngialrinking, scratching one’s
face, using a phone, are head and hand interactions regjoin@ hand. Of course there is some
overlap between the classifications. The second featusasesd on how long the head and hand(s)
interacted (temporal extent). Swatting a fly off one’s faadeet considerably less time than putting
a phone to one’s ear and talking to someone. The third fe&uhe spatial location of the hand
relative to the head. The face can be broken down spatiallydtactivity recognition as in Figure
3.1(b). For instance, when using a phone the hand stays méixetear and the phone rests by
the ear. Drinking requires one to bring a cup (or straw) tortioeith region and open the mouth.
Scratching the ear actually looks very similar to talkingtbe phone. To resolve this ambiguity,
we can differentiate the activities based on whether the@niobject in the hand, which is the

fourth feature. Other object information, such as whergace an object came from and where it
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“Region 3.

(a) See Text for Description of the Axes (b)
Figure 3.1: HAFIS Space and Face Graph

was placed after it was used, could be acquired as well. Ttnegtartitioning represents a natural
way to classify actions and lends itself to a probabilistamiework. This representation gives us

much generality to express a broad class of activities uirglthe face and hands.

From the above high level description of feature types wiavddithe following three categories

of features:

e Multizoom Features

e Temporal Features

e Single Frame Features

Multizoom features are those that simultaneously requukipte levels of zoom. They generally
rely on using feature responses in one zoom to conditioreaiffuate features in another zoom.
Temporal features are those that require some kind of fragterir. They are usually computed at
lower zoom levels as they keep track of scene context thatatdre inferred from a high zoomed

image of the face. An example of this kind of feature would figzet detection in zoom 1. Single

54



frame features are those that do not need information atipteitooms or time scales. They
can be evaluated frame wise. All of the features in [VJOL] m simple frame wise (or region

wise) computations. They expand their feature set to irchudlimentary temporal features in
[VJS03]. However, their features do not have the temponalptexity of our features. In our work

we include many kinds of temporal features and show how torparate them into an Adaboost
frame work. In the next three sections we explain the featureeach category and give some
idea of their individual performance. The design of the dead themselves was motivated by

determining at a high level what needed to be computed tardete the actions.

Section 3.1 Combining Multiple Zooms for Improved Action Recognition

After performing tracking and labeling across cameras asrilged in Chapter 2, the next step is to
use the multiple levels of detail for improved activity aysas. We demonstrate with three features

the capability of our system to use multiple levels of scegtitito improve activity analysis.

Section 3.1.1 Object Segmentation

The first scenario we consider is determining whether theamniobject in the hand as it comes
to the face. Using only a view such as zoom 1 will present s¢wrallenges because there is
not enough detail to determine whether the hand had an abjeégtand whether it went to the
mouth or the ear. In a higher zoomed view such as zoom 3, there way to know where the

object originally came from in the scene or where and whenaé& for the object, but zoom 1 and
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zoom 2 both can provide this information to zoom 3. Thus, ipldtzooms need to be combined
in a manner such that each zoom level answers the questiang tk best able to answer. We
show how to combine multiple levels of detail to detect andlyre these objects that are difficult
to detect with a single level of zoom. In previous sectiéhsand C, were denoted as arbitrary
cameras. Here the strengths of each zoom are used, aod (', denote the lower and higher

zoomed cameras respectively. This notation will be usealifftout this section.

To identify if there is an object in either hand, the hand€ jnare analyzed for motion by
computingl,, ;. I; indicates temporal derivative for cameta,and framef. Significant motion
of non-skin colored pixels indicates that a potential obje¢ound. p is denoted as the centroid
of this potential object in the lower zoor@;. If a significant amount of motion generated by non-
skin colored pixels is found i0', near the intersection of the epipolar line, F; 1,, with the image
plane, then an object is assumed to be in the hand. The flow@heluding the auto-correct step
in Section 3.1.1.1) is shown in Figure 3.2. Concretely, fahelaand regiorB; = z¢, in C; found

using the method in Section 2.2 compute:

Z Ft([z,f(p))ft,z,f(p) > Qo (3.1)

PEB;

Where p is an image poinf/; is the negated color model of the head and hand§’fopresented
in Section 2.2.1; ; is the image from camer@, for this framef. ,, ; is a binary valued motion

segmentation produced frofy; ; in the following way:

Vp, ft,z,f(p) =1 5(p) > g (3.2)
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Inputs:
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% els in hand region color model
1

Figure 3.2: Flowchart for Section 3.1.1 (top row) and 3L (bottom row).

If equation 3.1 holds the@', can be notified as to where an object may be present by findeng th

corresponding epipolar line- Fy ;,, wherec is the centroid irC)

. > pen, P ﬁl(fz,f(p))ft,l,f(p)‘ (3.3)

ZZJEBZ' It,l,f (p)

While it is true that the epipolar geometry maps points todifer orthogonal, perspective
cameras), the search for the object can be reduced to twongegirhis reduction in the search
space is possible since we know the hand and object are not gg&t Since we have an object
position inC;, we can find its epipolar linéin C;,. Then intersect this line with the image plane,
and only look at these intersection points, for entering objects. There will be at most two points
because the images are planar. With the predicted inteysgobints P;, regions around these

points, R; are searched using a modification of equation 3.1:

> Hy(Ln g (p) Lins (p) + H Iy (p) Lo s (p) > a2 (3.4)

peER;
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The main differences here are that 1) we have a predictedrrdgyi which gives the probable
location of where to look irC}, and 2) we can usé/, which is the object color model fror@),
transferred ta”),, to find additional moving non skin pixeld] is built (using [KK96]) from the
lower zoomed camerd,;, using the pixel® € B; such thatﬁl(llyf(p))ft”(p) > 0. Since the
cameras are not color calibrated the quality of the transfiecolor modeld, could be increased
by performing a color space transform such as [RAG#;]and H;, are the color models for the
head and hands ii; and C), respectively (presented in Section 2.2). The object colodehof
C; could be updated based on the object color modél;in If inequality/ 3.4 does not hold then
it means no objects appeareddf at locationP;, with the predicted colof{; andC), assumes a
false positive was observed. This allows for a bad segmentat C; to be auto corrected i@,.
The bad segmentation @, will not yet be eliminated but the propagation of the errohadted.

Section 3.1.1/1 details ho®; can then be notified of its error to correct the bad segmemtati

If the object is confirmed i, then segmentation i@}, can proceed. By passing location and
color information between cameras, we can achieve betjeciobegmentation. This allows early
identification of objects it),. By passing this updated color and spatial information back e
can update its color and spatial parameters for the objempti@stion, which will allow for better
segmentation in the lower zooms. Results from our multi careegmentation have demonstrated
that we are able to correctly determine when an object iserh#émd and further, whef, gives
an incorrect result the method is able to determine thi§}jrand notify C;. Results are shown
in Figures 3.3 and 3.4. In Figure 3(3 triggers that an object is present in the hand because the

segmentation is not perfectly correct. This can be seen bgramg the hole in the segmented skin
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image. The}, segmentation is correct and it does not observe any signifioation of non-skin
colored objects, thus it overrid€s’s decision and notifieg’; of the incorrect segmentation. In
Figure 3.4, there is a mobile phone being brought to the hette C; identifies an object and

alertsC, to its possible location and colar;, then correctly verifies that an object is present.

Section 3.1.1.1 Automatically Correcting Incomplete Segentations

As stated in Section 2.2 the color model is built using the R@Bes of the head pixels. This gives
a good color model for the hands, but it is not always complet&igure 3.3 the reason that zoom
2 incorrectly determines that an object is in the hand is beeaf the incomplete color model
that is built using the head’s color information. It was alitg shown in Section 3.1 how the color
models of the object can be transferred across camerasvofall improved object segmentation.
Here we show how the color model of the head and hand$ ran be auto-corrected. This is a
consequence of the multicamera detection scheme. Whartorrectly determines that an object
is in the hand(; can go back to this particular frame (which can be done @ngceotifiesC; of

the error) and put these hand pixels that were detected dgj@ct o the color model for the head

and hands.

Concretely, the following steps must be taken(C},.notifiesC; of the incorrect segmentation.
2. C) then goes back to the frames that it (incorrectly) deterchizn@ object was in the hand. 3.
Any moving pixels in this region are then treated as handlpiaad they are added to the color
model for the head and hands. This process greatly incrdasescuracy of the color model and

Figure 3.5 shows the segmentation using the corrected ouidel.
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Figure 3.3: Zoom 2 images are in column one and zoom 3 imagds aolumn two. Row one is
the input images. Row two is thig; ; images, and the third row is the color segmentation images.
In zoom 2, a poor color model does not correctly segment ah@hand(column one, row three).
Thus zoom 2 incorrectly concludes that an object is presetita hand. However, in zoom 3, the

color segmentation is correct, it can override zoom 2’ssleni
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Figure 3.4: In this case zoom 2 correctly detects an object,zaom 3 confirms that an object is

present in the hand. See Figure|3.3 for more explanationedetails of each row of images.
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Figure 3.5: This figure shows how an incorrect result in onenz@an be used to correct future
bad segmentations. Column 1 shows the input image. Columnwssti® segmentation using
the incomplete color model. This figure is the same as FiglBéc®lumn one, row three). Col-
umn 3 shows the segmentation of the same image after thecatth and update process. This
update of the color model allows for much better segmentaifdhe hand. This is an interesting

consequence of the multizoom cooperation among cameras.

Section 3.1.2 Determining Number of Hands In Head Region

For action analysis another important subtask is detengihiow many hands are at the face.
Certain actions require a certain number of hands to be presrting on eyeglasses requires
two hands whereas drinking a beverage involves one handhgoimithe face. Utilizing multiple
zoom levels aids in the task of determining the number of Bandhe head region. Zooms one
and two cooperate in this task. The flowchart for this scenarshown in Figure 3/6. The first
step is to compute the distance between the head and hanacfozeom as shown in Figure 3.7.
This results indy, do, d3, dy. Then the likelihood of the hand being near the face is coetpas

*(;?) Because the hand tracks are noisy we add the distance betiweeband and head

L e
V2ro
(di+dj)2

for zooms one and twoﬁe‘( 202 ) The plot of this measure over time is shown in Figure
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Figure 3.6: Flowchart for Section 3.1.2.

Figure 3.7: Computing distance between the hand and head.

dy +d3)? (d2+d4)2)
o

3.8. The red plot isﬁé“ 207 )(for hand 1 and hand 3). The green plotj%e*( 207

(di+d;)?

(for hand 2 and hand 4). Whey%—oe‘( 202 ) > a3 the hand is near the face. Results of the

method are shown in Figure 3.9.
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Figure 3.8: Probability of hand in head region.
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Figure 3.10: Flowchart for Section 3.1.3.

Section 3.1.3 Localizing Hand on Face

The final scenario we present is determining where on thetfecband is. Many actions can be
distinguished based on where the hand is on the face, sudirasthe phone and drinking. We
split the head into six regions shown in Figure 3.11a. Themaation is similar to that in Section

3.1.1 with the difference being all moving pixels are useldu§ Equation 3/1 becomes

Y Lusp) > (3.5)
pEDB;
Equation 3.3 becomes
. Z;DEBi p- ft,l,f<p>
ZPEBZ‘ [t,l,f (p)

(3.6)
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Equation 3.4 is similarly modified. The region with the mawim number of hand pixels is
taken to be the location of the hand. Results of hand locaizare shown in Figures 3.11b and

3.11c. The flowchart for this scenario is presented in Figute.

Hand in Region 6 S8 e Hand in Region 1

Figure 3.11: Automatic results of hand localization.

Section 3.2 Quantitative Results

Results from the multiple levels of detail activity analysi®dule are now presented. Multiple
camera configurations were tested with various camerarplaats. The object segmentation mod-
ule was tested on 15 video clips. The method was requiredttoratically determine whether
there was an object in the hand for each sequence. In all dasémnd came to the face either
with an object in the hand (eight times) or without an objecthie hand (seven times). In all the
trials there were only two bad decisions (one in each caygg&ome of the clips were challeng-
ing. For instance the method was successful in determiiagthere was an object in the hands
when eye glasses were being brought to the head. With onedom # would be hard to see the

eyeglasses. Further, unconstrained search in zoom 3 waewtkl tbo many false positives. The
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system was able to successfully recognize when only theshaede coming to the head. Figure
3.12 shows a case in which the user enters the scene, thaigarid is not put to his head. In this
case, there was significant skin (face) and non-skin(hgas,eetc...) in zoom 3, which would have

given a false alarm if the system only looked at zoom 3 or usetesother naive method.

The Determining Number of Hands In Head Region module wasdest 10 video clips. The
method was required to determine how many hands were at¢k€ifaany). Five clips had one
hand coming to the face and five clips had two hands comingetdate. The method correctly
determined the number of hands coming to the face in 9 of tps.cThe system never said there
were hands at the face when there were none. The Localizing Ha Face module was tested
on 10 video clips. In all clips the hand came to one of the sgiaes shown in Figure 3.11a.
The method was required to determine which region the harsdinvalhe method had only two
incorrect decision. That is we made the correct deternonais to which region the hand was in
in eight clips.

In all these scenarios the multicamera formulation is abldiscern thecontextof the scene.
The term refers to the low level tracking information aviiéaand coarse object information in the
lower zooms combined with the object detail present in tigh lziooms. Also present in the high
zooms is more detailed (but spatially limited) trackingoirmhation. Because there is no hand near
the head when the user is entering, which is known from théezoonf zoom 2, the method is able
to disregard the significant non-skin motion which woulddatherwise signaled a false positive

that the hand was near the head.
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Figure 3.12: Multizoom Segmentation. The first row showsitipat images in zoom 2. The
second row shows the input images in zoom 3. Rows three andrfmnthefmf Images in zoom
2 and zoom 3 respectively. Though there is significant nan4siotion, the system is able to infer

from the context of zoom 2 that the hand is not near the head.
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Figure 3.13: Multizoom Segmentation. Continued on next page



Figure 3.13: Column one contains zoom 2 images. Column twagmizoom 3 images. Row one
contains the input images. Row two contaiips; images. Row three shows segmentation using
the object color model. In row four segmentation fusing moi@nd object color is shown. The
final image on the fifth row shows the zoom 3 view of the objegnsented using object color,

skin color, and motion information. Color information frommth zoom 2 and 3 was used.

Section 3.2.1 Other Directions for Integrating Multiple Levels of Zoom

We have given details on three techniques to combine meltgdels of zoom with applications
for action analysis. There are many other possible ways ¢onugltiple levels of zoom. For
instance one technique would be to measure the tempordiatuthe hand was in the head region.
Another technique would be to determine what object a persmlooking at using the detailed
head position in zoom 3 combined with the scene details {jplessbjects) in zooms 1 and 2. We

are exploring these and other methods to combine zoom levels

Section 3.3 Temporal Features

In order to perform activity recognition of actions invatg the hand and head strong features that
determine exactly where the hand is over the face neededdeMedoped. It is intuitive that having
features which determine precisely where the hand is oeefatte is necessary for action recog-
nition. Determining the boundary of the face and hand is & kvelwn occlusion problem that is
difficult to solve. The difficulty lies in the fact that the hdhand head are similarly colored/textured

regions. One feature in particular has proven to be reliablesolving this occlusion problem,
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Region 3

(a) See Text for Description of the Axes (b)
Figure 3.14: Activity Feature Space and Face Map

and we devote particular attention to it because of its beggadication to other areas of computer

vision research.

The goal of this section is to provide a feature that finds wliee hand is at all times during
hand/face occlusion. By reliably tracking the hand acrosddhe at all times, a number of appli-
cations ranging from HCI to video indexing and retrieval tofpeming action recognition can be
performed. To see why such precise localization of the hartdd region of the face is necessary
consider Figure 3.1, reproduced here as Figure 3.14 forezdemce. At the most basic level this
information needs to be captured in some way by any actigitpgnition system. The third feature
is the spatial location of the hand relative to the head. &he tan be broken down spatially to aid
activity recognition as in Figure 3.14(b). For instanceewlusing a phone the hand stays next to
the ear and the phone rests by the ear. Drinking requiresodmnig a cup (or straw) to the mouth
region and open the mouth. The primary focus of this secion measuring accurately this third

feature. Once solved it will allow other aspects of activégognition and HCI to be solved.
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In algorithmic form, a video is input and the segmentatiothef hand over the face is output.
First we compute the potential and force field image reptasens. Then we place unit test pixels
uniformly throughout the image. Next, we compute the distainaveled of each test pixel in the
force field. Each pixel location has its own mixture of Gaassmnodel which is updated every
frame when the new distance traveled observation comes ienWie hand enters the image these
distance traveled observations for each test pixel logatitl change substantially. We compute
(for each test pixel location) the current observation&athce from its distribution. Hand regions

are those that had the largest distance from their disioibsit

First details on the underlying image representation aogiped. Next it is shown how for-
mulating the problem using MoG can aid the task of segmeritiednand/face. Finally results are

presented and then we conclude.

Section 3.4 Potential Images

The potential energy at a given positian, with respect to position;, in image! is given by

I(r;)

r; — 15

wherer; is the image location in question aiitr;) is the image intensity at positian.

Notice that this computation says nothing about the intgrdithe pixel at locatiomnr;. E;(r;)

is a function of other image intensities. This quantity iswaulated for every pixel in the image
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Figure 3.15: Potential Image for Various Input Frames. tnplages are shown in column a: the
left most column. Potential images are shown in column bidddhat the potential image is quite
smooth, due to the large convolutions. Column ¢ shows theteaipotential images so that the

equipotential curves can be more easily seen.

to compute the total potential energy at locatign

By = Y 0 (3.8)

Equation 3.8 gives the potential energy for a particulargenkbcation. This computation is then
performed for every location in the image. This gives theepbal energy image. Two potential

images are shown in Figure 3.15.

Section 3.4.1 Force Fields

The force field (which can be derived from the image potenitialicates the force exerted at each

locationr; by all the other pixels in the image. The force vector at poisjtr;, with respect to
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positionr;, in image/ is given by

I'Z'—I'j I',L‘—I'j

Fi(rj) = Ei(r)) = I(r;)

v — 12 vy — 3
The force,F;(r;), is a vector with two components. These vector fields will beyyvmportant in
the image representation. The units of pixel intensityeation, and force are arbitrary as is the

origin of the coordinate system. To find the force exertedlhyyixels at a particular image location

r; simply compute

I'Z‘—I'j

F(rj) =Y I(r;) - (3.9)
ritr r; —
F(r;) is the normalized vector at computed ag’(z) = \553 Examples of the force fields

are shown in Figure 3.16. Since the force fields are two dimaakthe magnitude and direction
are shown as separate images. The direction was quantmedigplay purposes only) into 10

regions.

Section 3.4.2 Finding Potential Wells

Once the potential and force field images have been compluedéll points(local extrema) are

computed. This is done in an iterative fashion. Unit teselsbare placed uniformly (resulting in a

rectangular grid of test pixels) throughout the image. Té¢aybe placed at every pixel, every other
pixel etc. They are placed in the field and serve to capturédireof the field. Suppose there are

m test pixelsty, ..., t,,. Since the position of each test pixel will change as it tre@s the force

field, we denote the initial location of ast; ,. To find anyt; ; apply the recursive equations:

tio = (i, y;)
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Figure 3.16: Force Vector Fields for various input framegput images are shown in column a.
Column b contains the magnitude of the force field and colunontains the direction (quantized)
of the force field.

tij=tij1+ F(tij-1) (3.10)

ol Given a unit test

WhereF(z) is the normalized vector at, which is computed a8'(z) =
pixel starting pointz; o, it goes through the force field until it stabilizes at a wedirg, denoted
ast; y. Unit test pixels eventually reach stable points. In oumeples convergence was always
reached well beforé/=500 for the 1000’s of image we tested. Iterations neededdnvergence
depends on image size and the number of wells. Larger imageses with fewer wells will need
more iterations. In order to make the method more robust \ireedthe following stopping criteria
for convergence:

(3.11)
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(a) 50 iterations (b) 100 iterations (c) 150 iterations (d) 250 iterations

(e) 500 iterations

Figure 3.17: These images show the test pixel locations &fte100, 150, 250 and 500 iterations
(of Equation 3.10). The black lines are the paths that thepigsls take through the force field.
The black circles indicate where the test pixels currenttylacated. As the number of iterations
increases notice how fewer circles appear. This occursulsecaore of the test pixels reach the
final well locations as the number of iterations increases.

whered can be in the range of 5-10. The convergence test essemtiakgs sure that the algorithm
does not stop until the test pixel stops moving. Since mowveiisedetermined by normalizing the
vector att; ; there will always be at least some minimal movement, whiethg we consider some
finite, small window. This allows the computation to be enddgknever convergence is reached.
Not all £; end up at the same wells. The path that a test pixel takeslé&zl@kthannel. It is easy to

see that once two test pixels reach a common point, they betblthe same path from them on.
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Figure 3.18: Input frame demonstrating concepts of imageesentation. (a) is original image,
(b) is the potential image, (c) is the potential image withlweints overlaid, (d) is potential image
with channels overlaid, (e), (f), and (g) correspond siryléo the force magnitude image. (h) is

the direction of the force field, while (i) is the original ig@ overlaid with the channels and wells.
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Figure 3.19: Input frame demonstrating concepts of imageesentation. (a) is original image,
(b) is the potential image, (c) is the potential image withlweints overlaid, (d) is potential image
with channels overlaid, (e), (f), and (g) correspond siryléo the force magnitude image. (h) is

the direction of the force field, while (i) is the original ig@ overlaid with the channels and wells.
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In practice our representation is similar to a low-passfiltée develop the relationship to force
and potential to give more intuition into the physical megof how test pixels travel through the
force field to potential wells. This design choice will alsecbme more clear in Section 3.5. More-
over with a physical interpretation, it is clear thatr) = VE(r). Some examples of the channels
are shown in Figure 3.17. To get these images, test pixels placed uniformly throughout the
image. For every; the wells are found using Equation 3.10. As said previouBly iferations are
used. We show the intermediate results after various nwsrifdaterations. Before deriving the
distance traveled feature we would like to give some irdnias to what information in the image
the force field is capturing and why it is useful in our probldomain. Equation 3.9 shows that
the force field captures global structure. However sinceeffext on the field is proportional to
% pixels far away will have very small contribution. The nefeef is that regional structure is

captured.

The potential image is a scalar at each pixel and it is a meaduhe brightness of that region.
The force field is a vector at each pixel location. In this esgntation the potential and force
values consist of nonlinear combinations of the remainiixglp in the image. Concretely, the
wells are the local maxima of the potential image. The dioacof the force field indicates the
paths the wells take. The magnitude of the force field shoassttie wells end up at locations of
low force. The channels themselves follow paths perpetalida the equipotential surfaces. It
measures properties related to regional edge strength.ntitian edge detector, but it is related.
The force field measures regional edge like structure inrtiege. The potential wells are those

points in the force field where the net force is zero.
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In order to clarify these concepts we show real images usedridlata sets. Figures 3/18 and
3.19 show two real images with well positions overlaid on plo¢ential, force, and real image.
We further show channel lines superimposed and the diretigtd. One can verify that the wells
are at the local maxima in the potential image traversing@lmaths according to the force field.
Similarly in the force magnitude representation the wedls in places of low force (i.e. zero
force). This too makes sense as only when the test pixel$ leaations of low force will they
stop moving. To the extent that a potential image is affedtezllocal regions will also be affected.

Further, the well movement is directly related to the potdaind force.

Some synthetic images will also help to clarify these coteeplere we demonstrate the it-
erative process of traversing to the well points. Figuré@Jp shows the initial image. Figure
3.20(b) shows the initial configuration of the test pixelgdaid on the image. Figures 3.20(c)-
3.20(f)show the movement of the test pixels through the fler various numbers of iterations.
The black lines indicate the path taken by the test pixelguréi 3.20(g) shows the magnitude of
the force field. Figures 3.21 - 3.24 follow similarly. Thisvgs good intuition into the force field
representation. Finally we show the synthetic exampleslaideat various stages with the wells

and channels in Figures 3.25 - 3.29.

The force field captures regional structure and we can mbdkeregional structure over time
to detect structural changes in the image. Though the hashbdead have similar color and texture,
by analyzing regional image structure we are able to cagtouetural changes that are introduced
when the hand enters the scene. We can see that other metboidsring pixel wise information

are not enough because of the similar texture of the hand aad. hwhen the hand enters, the
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(a) Original Image (b) O iterations (c) 50 iterations (d) 100 iterations
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(e) 150 iterations (f) 200 iterations (g) Force Magnitude
Figure 3.20: This is a synthetic image used to give sometiatuof the force field representation.
(a) is the original image. (b) is the original image with timiial configuration of test pixels
overlaid on it. (c)-(f) show the movement of the test pixéliotigh the force field after 50, 100,

150, and 200 iterations. (g) shows the magnitude of the fioetsk

local structure would not change (i.e. the pixel values iiarf@gely the same), but there is useful
regional structure variation (we will show examples of thinge in subsequent sections). We

now detail how we model this changing force field over time.
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(a) Original Image (b) O iterations (c) 50 iterations (d) 100 iterations

(e) 150 iterations (f) 200 iterations (g) Force Magnitude

Figure 3.21: This is a synthetic image used to give sometiatuof the force field representation.
(a) is the original image. (b) is the original image with timiial configuration of test pixels
overlaid on it. (c)-(f) show the movement of the test pixéliotigh the force field after 50, 100,

150, and 200 iterations. (g) shows the magnitude of the fioetsk

Section 3.5 Developing New Image Feature

The structure of these field lines for a particular image saga are relatively constant until the
hand (or anything else) enters the image. Once the handsentdear disturbance in the channels

occurs in the region of occlusion. This hypothesis has beemdoout in experiments on thousands
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(e) 150 iterations (f) 200 iterations (g) Force Magnitude

Figure 3.22: This is a synthetic image used to give sometiatuof the force field representation.
(a) is the original image. (b) is the original image with timitial configuration of test pixels
overlaid on it. (c)-(f) show the movement of the test pixélotugh the force field after 50, 100,

150, and 200 iterations. (g) shows the magnitude of the fioetsk
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(a) Original Image (b) O iterations (c) 50 iterations (d) 100 iterations

(e) 150 iterations (f) 200 iterations (g) Force Magnitude

Figure 3.23: This is a synthetic image used to give sometiatuof the force field representation.
(a) is the original image. (b) is the original image with timitial configuration of test pixels
overlaid on it. (c)-(f) show the movement of the test pixélotugh the force field after 50, 100,

150, and 200 iterations. (g) shows the magnitude of the fioetsk
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(a) Original Image (b) O iterations (c) 50 iterations (d) 100 iterations

(e) 150 iterations (f) 200 iterations (g) Force Magnitude

Figure 3.24: This is a synthetic image used to give sometiatuof the force field representation.
(a) is the original image. (b) is the original image with timitial configuration of test pixels
overlaid on it. (c)-(f) show the movement of the test pixélotugh the force field after 50, 100,

150, and 200 iterations. (g) shows the magnitude of the fioetsk
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@ (h) (i)
Figure 3.25: Synthetic example demonstrating conceptsafje representation. (a) is original
image, (b) is the potential image, (c) is the potential imadke well points overlaid, (d) is potential
image with channels overlaid, (e), (f), and (g) correspandlarly to the force magnitude image.
(h) is the direction of the force field, while (i) is the originmage overlaid with the channels and

wells. The different colors of the channel lines is for d&ppurposes only
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Figure 3.26: Synthetic example demonstrating conceptsafje representation. (a) is original
image, (b) is the potential image, (c) is the potential imadke well points overlaid, (d) is potential
image with channels overlaid, (e), (f), and (g) correspandlarly to the force magnitude image.
(h) is the direction of the force field, while (i) is the originmage overlaid with the channels and

wells. The different colors of the channel lines is for d&ppurposes only
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Figure 3.27: Synthetic example demonstrating conceptsafie representation. (a) is original
image, (b) is the potential image, (c) is the potential imadke well points overlaid, (d) is potential
image with channels overlaid, (e), (f), and (g) correspandlarly to the force magnitude image.
(h) is the direction of the force field, while (i) is the originmage overlaid with the channels and

wells. The different colors of the channel lines is for d&ppurposes only
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Figure 3.28: Synthetic example demonstrating conceptsafje representation. (a) is original
image, (b) is the potential image, (c) is the potential imadke well points overlaid, (d) is potential
image with channels overlaid, (e), (f), and (g) correspandlarly to the force magnitude image.
(h) is the direction of the force field, while (i) is the originmage overlaid with the channels and

wells. The different colors of the channel lines is for d&ppurposes only
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Figure 3.29: Synthetic example demonstrating conceptsafje representation. (a) is original
image, (b) is the potential image, (c) is the potential imadke well points overlaid, (d) is potential
image with channels overlaid, (e), (f), and (g) correspandlarly to the force magnitude image.
(h) is the direction of the force field, while (i) is the originmage overlaid with the channels and

wells. The different colors of the channel lines is for d&ppurposes only
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Figure 3.30: Channels before and during occlusion for imag#se same input sequence as that
shown in Figure 3.17. Notice that a disturbance in the chiaraaa be seen in the lower left corner

of the image, whereas the rest of the channels in the the iar@gelatively stable.

of video frames. It is consistent with the fact that the folieéd is a measure of regional image
structure. Figure 3.30 shows an example of this phenomeitoran be seen that most of the
channels are stable before and during the occlusion. Wel gbww many more examples of this
phenomenon, but due to space limitations, we will show omlg more instance in Figure 3.31.

We next demonstrate how to measure and quantify this chgrigioe field.

If test pixels are placed uniformly in each image we can meathe variation a certain test
pixel exhibits in the distance it travels to a potential wé8Ince these distances remain relatively
constant when there is no disturbance in the image (i.e. nd/fece occlusion), the distance that
each test pixel travels can be modeled as a random variatlleGaussian distribution. When the
hand enters, the wells and the distances that the test pizetd will vary significantly. These will
be the foreground channels, and they are somewhat analtgtareground pixels in background

subtraction.

The reason this occurs is that when another object is intdiut has its own set of channels

and wells, however, when the two objects merge, the chamamelsvells of both objects interact
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Figure 3.31: Channels of test pixels for another image semue2b0 iterations were used. Notice

the large variation in the channels again in the lower lefheg where the hand enters.

with one another. Although the hand and face are similar lorcthe potential and force structure
present in the image changes when another object entersahe.dJsing the Mixture of Gaussian
modeling technique we are able to measure and localize llaisge, which allows us to find the

boundary between the face and the hand.

The distance from a test pixel start location to its final vpelsition can be measured by com-
puting

d=tjo—t;n]| (3.12)

This is the newdistance traveled in a force fieféature. There are other choices for this distance
measure such as computing the arc length. In any case, tla@ahs these test pixels travel are
relatively constant until the hand enters the facial regidfe model the face before occlusion in

terms of the distance traveled at each test pixel startimtasing a mixture of Gaussian.

Let us assume that in the first video frame for a particularge®! t;: |t;0 — t; x| = Xo. In
the next video frame for the same test pixel location we canpge|t; o — ¢, n| = X;. Given the

distance traveled history of a particular test pixel at tmest;: X, X3, ..., X, we want to model
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this density as a mixture ot Gaussians. The current distance traveled by, at timer, has

probability
K _(XT Mg 7)
1 s —
P(X:) =) wj,———e i (3.13)
p— V2imo; ;

of belonging to the current modek; . is the weight of the’” Gaussian, angd; . ando; , are the

mean and variance of the distribution all at time

If none of the Gaussian distributions match for this paféicipcationt;, the least likely dis-
tribution is replaced by the new distance. The distribusionean is the distance traveled by
t;0 — t;.n|, with the weight of this distribution set low. At each timestant the weights of th&
distributions are updated as

w;r = (1= a)w; -1 + (M) (3.14)
with o set to a constant (learning rate) aff] . being an indicator function which is 1 for the

distribution that matched and O otherwise. The distributidghat matched the current distance

observation has its mean and variance updated as

i = (1= p)ptir—1 + pXs (3.15)

Oir = (1 - p)o-zz,r—l + p(XT - /'Li,T)Q (316)

In our casep is set to a constant. For notational convenience we denpts the mean of the
distribution that matched for test pixgl Using this approach we are able to model the distances
traveled by each test pixel in a coherent manner. The nekidés use these models to segment the
hand from the face. One might object and say that we shoulgdigifimd the zeros of the potential

image and not track the distance to the wells. The probler anty having well information is
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that simply because a well is closer to one test pixel doesneain this test pixel ended there. In
order to determine which pixels are in the occluding regi@n&ed to have information regarding

each test pixel and how it is changing relative to the welifpmss.

Section 3.5.1 Combining Multiple Zooms to Refine Update Rules

Until this point not much has been said of multiple levels efails. As was shown in [SSV04]
all heads and hands in the image can be automatically fourdud#' their approach to find these
objects at all zoom levels. What this means is that we havegthé &ind head regions found in zoom
1 and zoom 2. Usually, zoom 3 only has the head region. Wheileedrand comes into zoom
3, we stop updating all models that do not match any of theiligions. To determine when the
hand has come into zoom 3, zoom 2 looks at its head and handlingusoxes. Whenever a hand
bounding box intersects a head bounding box, zoom 2, noz@iem 3 to stop updating its model
parameters. Specifically we do not replace the lowest masthhkiition with the new distance
parameters. If a particular locatiafy,,,;, does match one of it& distributions then its model
parameters are still updated according to Equation/ 3.15s fds the effect that once the hand
enters zoom 3, the affected test pixels distributions aedfso that these new distances are not
learned. Proceeding in this manner will prevent the haneh foeing merged into the background.
Without this multizoom update rule, the modified backgrosaltraction would fail to segment the
hand as the channel disturbances would be learned and arated into the background model.
It might not always be possible to have multiple camerasr{ztavels). Next we present a simple

method that can determine if the hand has entered using oslgamera.

93



Section 3.5.2 Extracting the Hand

There are two steps needed to extract the hand. We must grgifidwhether or not the frame
has a hand in it. A good measure is when the maximally chartgisigpixel’s distance from its
distribution is much larger than its change in the previoasie. This indicates a large change in

the image. Concretely, we say the hand has entered when

tlu - X, >3- (tl,u.fl — XT—I)y (317)

wherel = argmaxt;, — X, (3.18)
l

t;, is the mean of the distribution fay, and X, is the current distance traveled observation (com-
puted ast; o — t; v| for ¢;. ;, , and X _, are the mean of the distribution and observationtfat

the previous input frame. Thiin Equation 3.17 is essentially saying that the new obsienvat
distance from the distribution should be more than threedstad deviations before the systems
declares that a hand has entered. The goal is to find th¢ wéich is all the hand pixels. Initially
setH «— ¢;,,Vz 51 < 2 < N. This only gives ong, and corresponding channel, which is not a
complete segmentation. To get the full hand, any test pikethvended up at the same well is also
assumed to be part of the hand. Further, any test pixel wheléswvithin 5 pixels is assumed to

be part of the hand. Concretely, set

H—H+t..Vazstiy—ton| <[, 1<2<N (3.19)
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There are a few scenarios that will make the above methoddadh as large illumination
changes. Another scenario would be if the person left theesckn this case the deviation from
the model would be high. If these situations need to be hdndkcan introduce a higher level

analysis and only conclude that a hand has entered whengherhevel process so determines.

These test pixels and corresponding channels taken togeggment the hand region. Once
the hand region enters the head region, the distances thmxels travel will start to vary greatly.
Since we do not want to learn this variation, the models ataipdated after the hand enters the
facial region. One could also simply decrease the learnangmpeterq, to obtain a similar effect.

If it is desired to accumulate objects more quickly into tlekground, this behavior can easily be

accomplished by increasing the learning parameter,

Figure 3.32 shows a few frames of the raw channel lines foynolio method. The final seg-
mentation is achieved by finding the convex hull of this peetiH and drawing the hull (unfilled).
Other methods could be used to improve the resulting contdwe full algorithm is given in Table

3.1. Detailed results are presented in Sectioh 3.6.

Section 3.6 Results

Our method was tested on 14 sequences involving hand/fabesaan for a total of 1800 frames.
Not all of these frames contained hand over face occlusidrcoOrse the non-occlusion frames
were needed in order to build the online distance models. oDtite 1800 frames, roughly one

half contained hand over face occlusion. The method wasesstul under a variety of lighting
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Table 3.1: Overall Algorithm

For every frame

1. Compute force at every pixel using Equation 3.9
2. Place test pixels uniformly; andvt; compute Equations 3.10 and 3.12
3. Vt;Use Equations 3.13 - 3.16 to update online MoG models

4. Check for hand using Equations 3.17 and 3.18

5. If hand present, segment using Equation 3.19, find conuttxahd display result

6. Goto Step 1

Figure 3.32: The hand region is shown with the channel linpesmposed on it. These channel
lines are the ones that varied most from the previous logatimodel. A convex hull algorithm

could be used to fill in this hand region.
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conditions. Further we tested the method on 5 subjects witltriaty of hand pose configurations.
Figures 3.33 and 3.34 show results of the hand segmentatiatiffierent input sequences. We
should note that in Figure 3.33 the head starts out fronthtlaen rotates to a half-profile position.
Our method is able to cope with rotation to half-profile, avtéich the model starts to break down.
We assume that the hand is initially not present (which alow to build the model). In order to
allow translational invariance and to have faster proogssie find the head region using [VJO1]
and only process these regions. During occlusion the hegldtmot be detected thus we hypothe-
size the head region using its most recent position to coetirsing the model. If one is interested
in handling these situations, tracking information couddused for the composite head/hand re-
gion. We show additional results in other contexts in Sec8& operating on full images. We
model every5" pixel in both directions for faster computation. More saespWould improve
segmentation and contour accuracy. Again to obtain thdtsese run a convex hull algorithm
on the seH, described in Sectian 3.5.2, and show the hull (unfilled) tidéothat in the second
image of Figure 3.34 an over-segmentation occurs. Sincpragess models regional structure, it
occasionally happens that some additional region neardtieding region is segmented with the
foreground object. The algorithm was always able to deteemaihen the hand entered the image

using the steps in Section 3.5.2.

Next we show a visual comparison between our proposed metiaarkground subtraction
[SGOO0b], mean shift segmentation [CM02], and mean shifkirec[ CRMOO0] respectively. Fig-
urel 3.35 shows four images from a typical input sequence wd.uResults using the proposed

force field approach are shown in Figure 3.36. Figures 3.338,3and 3.39 show results for
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background subtraction [SG00b], mean shift segmentatiod, mean shift tracking [CMO02] re-
spectively for the same frames shown in Figures 3.35 and 386 method and [SG00b] both
give pixel wise segmentation, so comparison was straightiad and unambiguous. Further, we
felt it would be interesting to compare against general maglbecause our approach does not use
hand color/shape to improve its decision, meaning it coolssjbly be applied in other contexts.

Neither of these two other methods were successful in seymyehe hand from the face.

Additional results are shown in Figures 3.40 - 3.43. Theseeviypical results obtained by
our segmentation algorithm. In Figures 3.40 and 3.43 themtla lines are superimposed on
the segmented hand region, which gives some insight intalwthannels are inl and how the
convex hull algorithm works. Figure 3.43 shows a sequerathifd occlusion lasting for over 250
frames. Even in these cases the segmentation remainedtcdrne algorithm was always able to

determine when the hand(s) entered the image using themtegented in Section 3.5.2.

In order to quantify how well the algorithm performed we malihgenerated ground truth
segmentations for two sequences. Comparisons of our mettbd ground truth and background
subtraction [SG00b] are presented in Table 3.2. Comparissade pixel wise. For our method
each pixel in the convex hull was counted as hand and each @ixgde was counted as non-
hand. The true positive percentages for every frame werechaldd divided by the total number of
frames. A similar method was used to determine the true ivegatte. Our method outperformed
[SGOO0b] in all cases. While [SG00b] segmented part of the hiafmind much of the head region

as hand, indicated by the low true negative rate.
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Table 3.2: This table shows the true positive and true negaggmentation rates for the specified

sequences.

Seq#| # Our Method| Method in| Our Method| Method in

Frames | True Positive| [SGO0b] True| True Negative [SGOOb] True

% Positive % % Negative %
1 44 80.04 72.00 97.11 74.12
9 150 79.53 73.15 96.58 72.19

Figure 3.33: Hand Segmentation Results. This was a chatigrsgiquence due to the large rotation

of the face.
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Figure 3.35: Example images used for the comparison beteeeproposed hand segmentation
algorithm, background subtraction, and mean shift segatient These figures are some of the

input frames from the output sequence shown in Figure 3.36.

Figure 3.36: Hand Segmentation Algorithm results for timuinimages in Figure 3.35. The hand
region is shown with the channel lines superimposed on ies€lchannel lines are the ones that
varied most from the previous location’s model. This case particularly interesting because of

the eyeglasses on the face.
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Figure 3.37: Background subtraction results for the sequien€igure 3.35. The first row shows
background subtraction of the whole image, and the secom@iows background subtraction of
only the extracted head region (found using [VJO01]). It vaoloé very difficult to extract the hand

from these foreground regions.

Figure 3.38: Mean shift segmentation results on the seguémd-igurel 3.35. Here over-
segmentation occurs and region merging in order to coyreetiment the hand would prove diffi-

cult.

Figure 3.39: Mean shift tracking results on the sequencegurg 3.35. Here the main difficulty

is in manual initialization and after prolonged hand/facelasion the tracker starts to drift.
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Figure 3.41: Results of hand segmentation algorithm.
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Figure 3.43: Hand Segmentation results on prolonged adctlug-rames 55, 70, 120, 140, 250,

and 340 are shown. The hand is leaving face in final frame.
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Figure 3.44: Occlusion involving two hands. In this sequetie algorithm correctly finds the
boundary for one of the hands. However because our algotibks for only the one well that

changes most, it misses the second hand.

We have tested the algorithm on one sequence involving tbsimultaneously occluding
the face. This is a particularly challenging case. Figudt3hows the output. The maximum
changing well and associated channels (Section 3.5.2) aotthe right side of the image, so
it misses the second hand. However, by allowing more of theimdly changing wells and
associated field lines, the second hand can be segmented.segmentation using this modified
approach are shown in Figure 3.45. Because there are so mamgeshoccurring in the force field
with two hands, there are some spurious regions marked akregions. The hand extraction
algorithm could be modified to give more weight to the wellatthad the largest percentage of
incoming channels. This would help reduce the effect of tkieaewells seen in the top row
of Figure 3.45. We could also compute the number of channeisupit area and give higher

confidence to channel regions that were more uniform.
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Figure 3.45: Occlusion involving two hands. In this sequetie algorithm correctly finds the

boundary in the initial frames of the occlusion. Though ¢hare some segmentation problems

later in the sequence.

Section 3.7 Application to Other Domains

Though we have chosen as the target problem segmentingriderioan the face, there is nothing
inherently that limits the method from only working for heaahd hands. Here we report results
we have obtained in other contexts and show that the methlgmhisral and has potential to handle
a wide variety of occlusion problems involving similarlylooed objects. The first row in Figure
3.46 shows a white box moving across a white wall. The nextroves in Figure 3.46 show
two separate sequences involving newspapers occludirfgaher. This would present many
challenges for most trakcing/segmentaion algorithms imezaoth objects have such similar color
and texture. In addition to the top newspaper moving, thespawer being occluded is also moving
slightly, which would present additional difficulties foatkground subtraction. The final row in
Figurel 3.46 shows an irregularly shaped brown bag occludibgown door behind it. Figures
3.47 and 3.48 show these same frames segmented using haa#tgrabtraction and mean shift

segmentation, respectively. All these cases would causg tracking or segmentation methods
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to fail, yet using the regional structure of the image and eliad this structure over time, we are
able to resolve the occlusion problem. We could make impnarés to our method to get more

precise boundaries, though we simply wanted to show thigyutil the method for other contexts.

Figure 3.46: Results from our method for occlusion involvotger types of similarly colored

objects.

Section 3.8 Conclusions

We have laid out in detail four of the features that could bedus a boosting framework. They

have been verified to work at an acceptable level. In Chaptee $msent a machine learning
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Table 3.3: Subset of Hand to Face Actions. This table makesithe terminology presented in

Figure 3.1.

Action Zoom Lev-| Location in Feature Space
els Needed

use phone low, mid, | hand to Region 2,4 , with
high object, long duration

scratch chin low, mid, | hand to Region 3, without
high object, short duration

scratch ear low, mid, | hand to Region 2,4, witht
high out object, short duration

cup to mouth low, mid, | hand to Region 6, with

high object, medium duration
fork to face low, mid, | hand to Region 6, with
high object, short duration
talking low,  mid, | Region 6 motion, variable
high duration
rub eye low, mid, | hand to Region 5, without
high object, long duration

rub both eyes | low, mid, | both hands to Region 5

high without object, long dura

tion

put on glasses | low, mid, | both hands to Region 5,

high with object, short duratior
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Figure 3.47: Results from background subtraction for ogotusgvolving other types of similarly
colored objects.

framework which is able to combine many features to perfoctividy recognition. Further in

Chapter 4 we give more details into different features thatiseefor boosted learning.
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Figure 3.48: Results from mean shift segmentation for ogmhusvolving other types of similarly

colored objects.
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Figure 3.49: Results from mean shift tracking for occlusiovolving other types of similarly

colored objects.
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CHAPTER 4

TEMPORALBOOST LEARNING

We now give details on our new machine learning paradigm,pteaiBoost, and show an appli-
cation of detecting events in an office environment. Theesgystecognizes 11 events with good
accuracy. The target actions to be recognized are listedhte®.1. A visual sample of each action
is given in Figure 4.1. Many of the events we recognize ardaiwhich makes the problem quite

challenging. For instance, medication, drinking, and yiagnvith hand are all very similar.

The rest of Chapter 4 is organized as follows: The machinailegalgorithm is presented in
Section 4.1; Details on the features used are presentedtfio®e4.2 - 4.7; Results are presented
in Section 4.8; and finally we conclude. Figure 4.2 presertigyh level overview of the entire

learning and recognition process.

Section 4.1 TemporalBoost Learning

Figures 4.8 - 4.5 give an algorithmic overview of Temporal8dcoearning. Each figure represents
a classifier for each event. Each event has a separate @asEifus in total we have eleven such

classifiers as seen in the figures. We describe in detail Eigl8. A similar explanation holds
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Table 4.1: Actions recognized by system

ID | Name

a; | Talking on phone

as | Checking voicemail on phone

az | Bringing cup to face

ay | Scratching/Rubbing face

as | Resting hand on face

ag | Taking medication

a7 | Yawning with hand at mouth

ag | Yawning with no hand at mouth

ag | Putting on eyeglasses

ayp | Putting on earphones

a1 | Rubbing eyes
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Figure 4.1: Visual Sample of Target Actions. They are shawimé same order as they are listed
in Table 4.1. From left to right and top to bottom. The five figgiin the lower row right corner

show some “non-action” events.
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Training _ | Evaluate Learn weak | | Temporal | | Strong
video features classifiers Boost classifier
Training phase
Test ——{Evaluate [ Label video |- [ gbeled
video features using classifier |  video
Testing phase

Figure 4.2: Overview of the entire machine learning and gad@n process.

for the other classifiers. Input video frames are input ihi® tideo classifier. Each video frame
goes to a separate strong classifier. Each strong classiftemprised of many weak classifiers,
shown as blue boxes. We show six boxes, but this is generanipmnumber of features. Each
weak classifier itself uses a sliding window of automaticdktermined size. Each of the strong

classifiers then makes a frame wise decision. The strongifitasdecisions can be thought of as
representing different stages of an event. The strongifitxssgecisions are then fed into another
layer of boosting. This layer is responsible for detectiogams of varying length. It is strictly

speaking an optimization process, but it can be thought @f sescond level of boosting. Event

detection then proceeds throughout the video.
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Figure 4.3: This figure presents a visual overview of the TemporalBoaatiag paradigm for

event class A.
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Figure 4.4: This figure presents a visual overview of the TemporalBoaatiag paradigm for

event class B.
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Figure 4.5: This figure presents a visual overview of the TemporalBoaatiag paradigm for

event class C.
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In the TemporalBoost procedure, when choosing the best waakifter for a given stage we
modify the boosting process to allow the weak classifier ® its previous classifier responses
(previous frames in the temporal sense) if it helps decréaseverall error for this classifier.
There are many ways to use previous weak classifier respatse\e consider perhaps the two
simplest. These allow a weak classifier to respond posjtii@l the current frame if 1) any of
the previoust frames were classified as being of the positive class (ORatipaj or 2) if all
of the previous frames were classified as being of the positive class (ANDaijma). Case 1
will allow more true positives at the expense of possiblpwihg false positives. Case 2 will
reduce false positives at the expense of possibly reduniregpositives. Other functions could be
considered. For intuition, suppose a feature classifiestonecorrectly in the previous frames,
but misclassifies the action in the current frame. TemporaéBallows this feature to classify the
current frame correctly based on the fact that the previoframes classified the action correctly
if the overall error was decreasedis learned automatically; it = 0 it means previous temporal

information did not help this feature.

We refer to this step as the DiscoverTemporalDependenpe lsteas a twofold effect. First it
automatically allows for different features to respondiiifedent ways to the input, allowing each
feature to use as much temporal information as it can whil@mizing its error for the current
boosting iteration. Second, it allows temporal smoothimge¢ embedded in the boosting process.
Our search is influenced by the current weights and is diftetfean giving all features temporal

scale.
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Video events happen over multiple frames, but the standaodtimg framework makes a de-
cision as to whether an event is happening in every frame. s@ewnd algorithmic extension to
AdaBoost, provides the necessary extensions to learn theadlle variation in action length while
keeping the false positive rate as low as possible. Suppasé¢hte yawning event is occurring but
for the firstz frames of the event, both the yawning and medication classifespond that their
event is occurring (or only the medication classifier in thatiolass case). Suppose after- §
frames only the yawning classifier responds. Suppose thax Wie medication event does happen
the medication classifier responds foy> « frames. We encountered this phenomenon frequently
in training. If we require that the medication classifiemasds for at leasj frames, it would pre-
vent the same action from being recognized if it were peréatiiaster in the testing data. Further,
if we allow the medication classifier to respond aftedrames we would get many false positives.
Instead the minimum number of frames needed to achieve higlpbsitive and high true negative
rates should be used. This learning process occurs aftetabsifiers are built. We refer to this
step as the LearnEventVariation step. The full algorithin iBable 4.4. The algorithm in Table 4.4
is the one-against-all algorithm. Given a target actioags),a, the algorithm will learn a strong

classifier that can recognize the action. A separate clasifi each target action is built.

By using multiple one-against-all classifiers two eventsuogeg simultaneously can be rec-
ognized, which is not possible in a single multiclass cfessiNonetheless, the method has been
implemented and tested on both the one-against-all and thiclass training approach. Simi-
lar results were obtained in both cases. Due to space lionatve leave out the adaptations to

AdaBoost.M1
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Table 4.2: TemporalBoost Learning Algorithm

For a given clasa:

1. Given labeled video date{, y{, 2{), ..., (2%, ye, 2%): «f represents one video frame. Its label
y? = 0,1. 2 is the unique video sequence index. Tfdabel allows multiple training videos to b

concatenated and trained together. All frames from the same video hasanieesequence index.

is

D

(a) Build the set, for the o' event category by collecting the contiguously labeled frames as

events to obtain the start and end of each event in the video

(b) Eachw € Q, hasw, andw, indicating the starting and ending frames for this event.

2. Setwy; = ﬁ, 21% for y=0,1 wherem?®,[* are the number of negatives and positives respectiv

3. Vi Seth{"" = 0. In this notationh; is the weak classifier that correspondsftph¢ indicates this

8
<

classifier is for actior, andh;"t indicates the temporal extent of the feature, which is initialized to

Zero.

4. Fors=1,...,5:

(a) Normalize weights wi'

a
,S n a
Zj:l Wi s

DiscoverTemporalDependencéSteps 4b-4e)

(b) For each featurg, train a classifieh] which is restricted to using a single feature.

het
. 1 ¢
§ =i (St | T )|
o

k=0

t
R
j

1
Z wy W Z h?(wgfk-[a:'zz‘fk]) — U >
j

i k=0
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Table 4.3: TemporalBoost Learning Algorithm

1. setey,., — €

2. whilee® > €]

prev

a,t a,t
(@) €pren < €5, h;" 7"+ 1

(b)
1 hat
e;:min<zw$ h‘”+1zha S — klw — i
het
3wl hé( ) —yq)
w; at Z Ti_ kzz =zZi_r] {

Z, h 1k — ’

(c) if ¢, > €} goto step 4.d

(d) elsee? — €2, h$" « h$' — 1 goto step 4.e
3. Choose the classifigr? with the lowest erroe?

4. Update weights

1—e%),a . . .
Wi = Wiy § “ wheree; = 0 if examplex! is classified correctly,

el = 1 otherwise, angb; = -
S

1 Zs laa®a<hat+1 Zk 0 ( )) - 225 1a

1. The final strong classifierig'(x) =

0 otherwise

-

where ¢ log —— and ®%(x) is evaluated either asc| or |z | depending on whicheve

resulted in the lower error terrt for the correspondingly selected weak classifier during

stages.
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Table 4.4: TemporalBoost Learning Algorithm

LearnEventVariation (Steps 6a-6b):
1. After the strong classifier has been built, for action

(&) Run the strong classifier over the training data to obtaéncandidate labeling. W
refer to this set of candidate activities@s. By grouping contiguously labeled framg

then eaclv € Q, hasw, andw, indicating the starting and ending frames for this eve

(b) compute argmiarror, (k)
k

whereerror,(k) = Z [We —ws > k] - U(w,w)
weQq

[z] is a true/false predicate that evaluates to 1 or O, resgdgtand

_1 wséwsSwestSweSwestSwsgwe
U(w,w) =

1 otherwise
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For clarity, let us point out that in steps 4.b and 4.d the term= z; ;| is a 1/0 binary pred-
icate that avoids temporal coherence being exploited adyosndaries of training videos. Once
the optimalk is found for actionu in step 6, detection and localization of this action in vidgeo
straightforward. We emphasize that each acti@man have a different optimal temporal extént
The action starts when the action is presentférames and ends when this contiguous detection
ends. By keeping the final decision rule simple it allows usotus on the lower level task of ac-
tivity detection rather than on how to combine frame respenwhich is a higher level task needed
at the semantic level. Of course in individual frames migtigassifiers can respond positively,
but in order for our method to declare an event is occurrimg ctassifier for action has to fire for
k frames. Rarely do two classifiers fire in the same time framis. Handled by taking the action

with the maximum classifier response.

Section 4.2 Guide to Building Features

Our features were selected by first intuitively determimmigat constituted each event. For in-
stance, eveni; requires a hand to come to the face, with an object, and bhagbject to the

mouth region. Further the mouth might open as the event iadgiace. From this high level

analysis for each action we then built features that speein responding positively for each of
these sub tasks. These features compute higher level desma@enerally, all the features com-
pute one of the following: 1) Determining if an object is irethand, 2) Determining where on
the face an action is occurring (i.e., a phone would go to #reegion, whereas a cup would go

to the mouth region), 3) Determining how many hands are umaebin the action, 4)Determining
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[ mlg-

Figure 4.6: Examples of the usual Haar features and vantio

if the face is moving, 5) Determining if the mouth is openifdnese 5 higher level semantics are
referred to in Table 4.5 under the heading Purpose. Theatdithar features are shown in Figure

4.6 in order to illustrate the differences between our festand the usual features.

The whole idea behind boosting is that we can feed it numes@adk classifiers and AdaBoost
will select those that are best. Some of our features migithseappropriate, but AdaBoost itself
will discover which features are relevant and which are fbere is no harm in giving AdaBoost
an overabundance of weak classifiers. It is with this phpbgathat we designed our features. This

is compatible with the original AdaBoost proposal [FS97].

Most boosting approaches normalize size of the traininggasaso that the whole training
image contains only the object to be detected (for a posékample). This allows features to
operate directly on the pixel data. In videos it is uncleaw o perform such normalization since
different parts of the image are needed simultaneouslys fls prevented us from using such

Haar-like features. We now explain how to compute the festur

The feature computation summary is presented in Table 4e5giVé the feature ID in Column
1. Column 2 gives the purpose of this feature. Column 3 contaimgh level description of the
feature. Column 4 gives the steps to compute each featus:nd  are size constraints. These

values are not hard coded because we will have multiplefesiwith varying values for andg.
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In this way AdaBoost itself can select which valuesxadnd 3 work best. Since this table is quite
concise we give more details in subsequent sections on hoanmpute some of these features so

that the reader will have a better idea of the feature contiputarocess.

Section 4.3 EM Trajectory Fitting

We first give a few examples of features that were not selantétke final boosting process. The
trajectory fitting feature is one such feature. The EM tr@pcfitting feature operates with the
following intuition. When the user brings his hand to facehnan object he will need to reach for
the object. Since we have the tracking data of the hands, weetard the centroid location of
the hand in time. For every sequence/fframes two lines can be fit to the data. This reaching
motion can be broken down into two parts: reaching for thedband bringing it to the face.
Each part corresponds to one roughly constant slope linmessig By fitting two lines to these
centroid points we can plot the angle between the two lines tine. Figure 4.7 shows a few
sample images from the sequence where the pen is brougld fadd. Frames 00248 and 00297
are shown for both zoom 1 and zoom 3. The plot of this featues tmne is given in Figure 4.8.
One can see how the angle between the lines goes up afterjdw iskpicked up (frame 00297).
Before the object is picked up, the angle is very small. As aitlour features we do not say that
this is always the case. But if the boosting process detesrtilma this feature can separate the

positive from the negative class it will be chosen.
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Table 4.5: Description of all features and how to computeth€ol. 1 is the Feature ID. Col. 2 is
the purpose of this feature. The purpose values are deddrilibe first paragraph of Section 4.2.

Col. 3 gives a short description of what the feature is conmgutCol. 4 gives details on how to

compute the feature.[x] is a 1/0 binary predicate.

ID Purpose What Feature is Comput-Computational Steps Required
ing
hi 1 Spatial artifact agreement Computed above
ho 1 Relative size agreement | S(B;) — S(B;s) + S(Bi1) — S(Bis) + S(Bia) — S(B;3)
hs 1 Absolute size agreement| >~ .(S(By;) > «) - (S(By;) < 8
hy 1 Artifact distance to face | Distance from each artifact centroid to the face
hs 1,2 Number edges in regioR | Count number of edges iR
he 2 Percent hand head overlaparea of intersection)/(area of head bounding box)
hy 1,2,45 Number moving pixels in > _p[I(z) — I'(x) > ay
R
hg 1,2 Number moving pixels in >° _x[I(x) — I'(x) > aq] - [RGB(x) € C]
R of specified color('
hy 3 Distance hand to head e’ﬁ, whered is the distance between the head and hand
hio 3 Distance both hands tof%;z whered,, d, are the distance between each hand and the head
head
hi1 2 Percentage overlap sidesomputes what percentage the hand overlaps each side otthe fa|
his of face
hia 1 Number Mean Shift Seg- Count the number of unique segments that occur in the givearreg
ments inR
his 1 Number pixels with colort 3~ _,[RGB(x) € C|
CinR
hie 5 Number dark pixels in rer > _,(I(z) < a1)
gionR
hir 4 SSD Based Head Motion| Performing an SSD match on the found head region
his 4 Global flow head motion | Measure global flow estimate of head region.
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Figure 4.7: Sequence showing user grabbing pen in zoom % tNat in zoom 3 there is no way

to determine if the hand is reaching for an object.

Samples points are shown in Figure 4.9a with the correspgrfited lines overlaid in 4.9b. In
this case an object was picked up before being brought tcattee in the case of Figure 4.10 the
hand is brought to the face without picking up an object. @lesthe difference in angle between

two the fitted lines.

Section 4.4 Artifact Features

These features look for artifacts in the background subtmagrocess of the lower zooms to
determine if an object was recently brought to the face. lbbject was recently brought to the
face then the artifact will appear in the background imades ihformation is overall scene context
information that is not available in zoom 3. The artifacttfeas require previous frame history.
They operate by considering an N frame sliding window andtiignthe artifacts that meet certain

criteria.
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Figure 4.8: Plot of the angle between the two line segmertts parameters computed using the

EM algorithm.
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Figure 4.9: EM Trajectory Line Fitting. In this case the marpicks something up with his hand
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before bringing it to the face. Notice the substantial atgteveen the two lines.



Example of EM Line Fitting Example of EM Line Fitting
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Figure 4.10: EM Trajectory Line Fitting. In this case the tas brought to the face without

picking up an object. In this case the angle between the ignesen to be small.

The artifact features correspond to featukgshs. They were not selected in training. We
describe them to show the kinds of feature that were not seledNVe use 1)difference pictures
2)[SGO00b], and 3) [EHDQOQ] to acquire foreground imad&s D,, and Ds. For simplicity let us
consider one particular zoom (or camefa) Connected components d#8, 1, By 1, ..., By, 1) ,
(B12,B22,...,Bn,2),and(By 3, Ba s, ..., By, 3) for Dy, Dy, andDs. For eachtriples; 1, B; 2, By 3
compute the corresponding centrojds v1]7, [z va|”, [z3  ys]”. Size of each i (B, ;).

The spatial agreement among artifacts measures the spiatehce between each centroid of

each method. The lower the score the higher the agreementdethe three methods.

h,: The spatial agreement is computed as

e = (|[z1 yl]T — [z2 Z/2]T| + |[z1 yl]T — [z y3]T‘+

JE 1/2]T—[$3 yB]TD/?) (4.1)
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Figure 4.11: Artifact feature. This figure shows two exanfpenes with one particular method of
background subtraction [EHDOO]. Other methods are alsd aseexplained in this section. The

artifacts used in the computations are all connected copgen

The absolute size agreement considers all triples of etsifasing all methods and returns the
number of methods that returned an artifact that is readps&#ed. The relative size agreement

feature measures the relative size similarity betweemiples of artifacts.

This score for each method/centroid is recorded for evam&. Now when artifacts are ob-
served in zoom 1, there will be a delay between the time theraciccurs. Thus an N frame
sliding window needs to be used to look for the smallest €oothis feature. Figure 4.11 shows
two sample frames and the corresponding background stibtran [EHDOO]. Multiple back-

ground subtraction methods run in parallel and statisticthe artifacts are computed.
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(@) Background subtraction (b) Difference picture motion

motion detection detection
Figure 4.12: Motion Features. (a) The foreground pixelssaseimed to be the moving pixels and
they are counted on a frame by frame basis in various spatgi@ms. (b) The moving pixels are
those above a certain threshold. This threshold could vaddaby having different variation of
the feature with different thresholds.

Section 4.5 Motion Features

Here we show visual descriptions of several motion featufagure 4.12 shows background sub-
traction based and difference picture based motion cortipaga The features simply count the
number of moving, or foreground, pixels. Figures 4.13/aridl4re computed by measuring the
frame to frame head motion using an SSD template and affinsfotianation respectively. In this

case the features are the motion of the head, in pixel units.
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Figure 4.13: SSD based motion feature.

Figure 4.14: Affine based motion feature.
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Section 4.6 Single Frame Features

Single frame features are most closely related to the featiound in [VJO1]. However they are

still quite a bit different. Some of the features are listetbl.

1. Distance from hand to head

2. Percentage overlap of head and hand bounding boxes
3. Number of non-skin pixels in a particular region

4. Number of moving non-skin pixels in a particular region
5. Number of moving pixels in a particular region

6. Number of mean shift segments in a particular region

7. Number of edges detected in a particular region

They are too numerous to describe the computation of eachbomeve describe a subset of

them to give an idea of how they are computed.

The distance from hand to head is relatively straightfodvém any given frame (in zoom 1 or
zoom 2), the distance between the head and hand is computegrdbability of an event can be

distance

represented as ~ 20 . A higher value indicates more confidence in a hand to heaat.eve

Another feature is counting the number of moving non-skkels in a certain region. The ra-
tionale is that moving non-skin pixels in the facial regioight be an object. Using the previously

built color model of the face allows us to determine non-ghxels.
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Figure 4.15: First row: Sequence showing person drinkiogifa mug. Second row: Mean shift
segmentation performed on the above three frames. The ideis feature is to count the number

of segments in each given region. Here the region is the whwage.

A higher level feature we compute is counting the number cimshift segments in a particular
region per frame. The idea is that when there is an objectarhind this number will go up to
account for the new object near the face. To compute this stepiarform mean shift segmentation
on the image. Then we look in a certain image region (perhagsvhole image) and count the
number of segments that occur. This is one of the more usefilifes (Adaboost selected it as
the most discriminative feature in our small training set)Figure 4.15 three input frames and the
corresponding mean shift segmentations are shown. Fra281002897, and 02990 are shown.
The plot over time of the mean shift segments in this imagédé@ve in Figure 4.16. One can
see how when the object comes into view (approximately frag890) the number of mean shift

segments spikes up.

Another feature computed is the number of edges in a paaticabion of the image. When

an object is being brought to the face there will be additi@aes introduced. The frame wise
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Figure 4.16: Plot of the number of mean shift segments inrtteges of Figure 4.15. The jump in

mean shift segments occurs around frame 2897, when thet abjeear the face.

features can be evaluated at any zoom and they can be evhataday region. Since we know
the head and hand regions they can be evaluated at all treles aad regions. This gives a large
number of features from which Adaboost can select the featinat best separate the positive from

the negative data.

In order to provide more insight into the feature computatiee show visually the interpreta-

tion of several of the features in Figures 4.17, 4.18,/anfl.4.1

Section 4.7 Visual Inspection of Feature Responses

In Chapter 3 and in this chapter we introduced a number of featto detect activities. Here
we look at some of the features in more detail to determine well they distinguish between
actions. Figure 4.20 shows frames from a particular trgisi@quence. The frames are shown in

chronological order from left to right and top to bottom. s 00235, 00435, 00545, 00745,
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(a) Distance features (b) Spatial Overlap (c) Number edges

Figure 4.17: Geometric Statistical Features. (a) showdipheilfeatures which measure the dis-
tance between the each hand and different parts of the farshgws how to compute the spatial
overlap between the hand and face. This is computed as tbeofatverlap area to the area of
the smaller object. (c) shows the edge features. The nunileelges is counted in various spatial

regions, such as the head, full image, etc.

(a) Mean shift segments (b) Dark pixels (c) Skin color segmentation

Figure 4.18: Global Features. (a) shows the mean shift sefgwien. The number of segments
is counted in various spatial regions. (b) shows the darklpix the image. The number of dark
pixels is counted in every frame. (c) Skin color is learnetinenfrom the head detection. The skin

color pixels are then counted in various spatial regions.
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Figure 4.19: Number segments feature with arrows corretipgrto the frames in video. This

shows what the feature computation step consists in.

01045, 01245, 01445, 01945, 02045, 02140, 02305, 0234835022845, 02945, 02969, 03130,
03150, 03200 are shown. We list the frame numbers so tha¢tere responses shown below are

meaningful.

Figures 4.21- 4.25 show a few of the feature responses famiége sequence shown in Figure
4.20. By comparing the feature responses with the given fsane can roughly see how well the
individual features perform. In training the features,leaeak learner must determine the opti-
mal threshold (decision boundary) such that the minimumbrmof examples are misclassified

[VJ01]. Each feature has a linear decision boundary condpage

1 if pjfj < pjej
hj(z) =

0 otherwise
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Figure 4.20: Example of images from the training sequenbe. flames go from left to right and

top to bottom. The whole sequence is over 3000 frames long.
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whereh;(z) is the weak classifier which is comprised of a featfirand a threshold;, de-
termined automatically by the Adaboost learning frameworke direction of the inequality is
determined by the parity;. However by only minimizing the total number of errors, theeshold
can be overly influenced by whichever set (positive or nggagkamples) has more elements. In

order to avoid this problem we have developed a better adeclsbundary function in which the

normalized similarity is maximizefizreriaaaine | ComePositive, This gives both the positive and
negative sets equal chance to contribute to the decisiondaoy. The above procedure is roughly
equivalent to drawing a horizontal line at the value thassifées the highest number of training
examples correctly. There is often a tendency to make thsidadoundary a more complex func-
tion, but this increases the chances of overtraining. We kapt the decision boundaries simple to

avoid overtraining. After the thresholds for each featusecnosen the Adaboost classifier training

can begin.

One problem encountered was how to convert the featuresatttaity features. Adaboost
must have labels to train with, and the features must be degitp answer yes or no for whatever
class is being recognized. Our features were designed Bwezing questions about a specific
sub-action. For instance many of the described temporalresdetermine whether an object is
in the hand or not. Determining whether there is an objech@tand is not an action in itself.
To correct this, the features must give an answer as to whitbeiven class is occurring. In the
case of the object in hand temporal features, they would anges for events like phone to face or
cup to face, but would answer no to actions like scratchiog far resting hand of face. Adaboost

requires a large number of features, and while we have appately twenty base features they
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Figure 4.21: Plot of the number of mean shift segments fomthele sequence shown in Figure

4.20.
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Figure 4.22: Plot of the number of edges for the whole sequehown in Figure 4.20.

140



16000 T T T |
'"MNPNW?2.txt’
14000 - .

12000 - =
10000 - =
8000 =
6000 =
4000 -

el LI L

500 1000 1500 2000 2500 3000 3500

o

Figure 4.23: Plot of the number of moving nonskin pixels foe tvhole sequence shown in Figure

4.20.
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Figure 4.24: Plot of the number of moving pixels for the whedguence shown in Figure 4.20.
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Figure 4.25: Plot of the number of skin colored pixels for Wigole sequence shown in Figure
4.20.

might not always be enough to recognize all actions in aneffievironment. By varying the
parameters of the edge detection and mean shift segmemtetican greatly increase the number
of features available. We can vary parameters such as thenhefsliding window of the temporal

features. Other features can be varied in a similar manres. ékpansion of base features would

be analogous to changing the size of the haar like Adaboagtries found in [VJO1].

Section 4.8 Results & Discussion

To test the AdaBoost activity recognition framework we raruanber of experiments. We report
these results and give other implementation details of hieihg process. We have tested the
system on the actions listed in Table 4.1. All results wergioled using a separate one-against-

all classifier for each action. Detailed result on the feasduselected by the classifiers for the
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Table 4.6: Preliminary results showing the features seteot a cascade for the drinking event
classifier. The feature name is shown in Column 1. The trudipesiand true negatives (on a

frame by frame basis) are shown in Columns 2-3 respectively.

Feature Name | True Positiveg True Negatives

Overlap bottom 107/140 3049/3050

Moving non-skin 98/140 2592/3050
Clusters 124/140 2640/3050
Number edges 123/140 1863/3050
Cascade 138/140 2936/3050

drinking, phone, and empty hand events are shown in Tab8s/4.8. Parallel results for the

testing sequences are shown in Table 4.8.

We performed a variety of experiments. Multiple people wesed in the training/testing
phase and the method achieved good success rates. We lih@tegstem to allowing a maximum
of seven weak classifiers for each action because we haverhaytel features. This also prevents
over-training. We trained using the basic features presemt Chapters 3 - 4. Each feature was
computed at all three zoom levels. For those features theg s@mputed in a given region, the
regions we computed these features at were the whole imalgh@found head and hand regions,

respectively.
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Table 4.7: Detailed results showing the features selecteddascade for the using phone event
classifier. The feature name is shown in Column 1. The trudipesiand true negatives (on a

frame by frame basis) are shown in Columns 2-3 respectively.

Feature Name | True Positives True Negatives
Hand at face 245/263 2498/2927
Overlapleft/right 181/263 2912/2927
Clusters 2271263 2212/2927
SSD-Motion 200/263 2087/2927
Clusters head 258/263 240/2927
Cascade 2471263 2852/2927

Table 4.8: Detailed results showing the features selecieddascade for the using phone event
classifier. The feature name is shown in Column 1. The trudipesiand true negatives (on a

frame by frame basis) are shown in Columns 2-3 respectively.

Feature Name True Positives True Negatives
Number moving 95/100 2346/3090
Number skin pixels 43/100 3000/3090
Hand at face 77/100 2493/3090
Number edges (head region) 16/100 2153/3090
Overlap bottom 100/100 482/3090
Cascade 98/100 2738/3090
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Table 4.9: Detailed results for the testing sequences. Qolushows the specific event for which
results are reported. Column 2 shows the best feature namem@d@ shows numerically how

well this feature did. Column 4 shows how well the best classdid on the detection rates.

Action Best Feature | Percentage Cascade

Drinking Overlap bottom| 87.34 97.48

Using Phong Hand at face 81.59 85.54

Empty Hand| Number moving| 73.38 82.17

We now present results obtained by our algorithm. Overahae140 video events to train/test
on totaling nearly 20,000 video frames. Using these eveatpavformed a variety of training and

testing setups. We report results both on detection of estmd localization in time of actions.

In all instances the strong classifier built in training detter than any single feature. Gener-
ating ground truth for start and end of events is somewhétdif, because the start and end of
an event are not easily defined. We had a person not involvidtiaé project annotate the start
and end frames of events and we report results against thatation. Tables 4.10 and 4.11 give
detailed results for each action on the training and testatg respectively. We first compare our
method to the best individual feature for each classifier (@wls 3-4). The features make a deci-
sion on a frame by frame basis. So we count the number of fréna¢she best feature correctly
responded that a given action was occurring and divide biothénumber of frames for this action
to get the true positive rate. We use an analogous procealdete¢rmine the true negative rate. We

compare this result with the results of TemporalBoost’s &dy frame decisions. It can be seen
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Table 4.10: Results on training data. Col. 1 gives the actioridives the # actions and total #
frames for each action. 3-4 give a head to head comparisarebatthe best feature and the strong
classifier. 5-6 (relevant only for TemporalBoost) give theetpositive and false positive action

detection rate. 7 gives TemporalBoost localization peaupes.

Action | Frequency /# Best Feature: True Classifier: TP | FP | Localize True
Frames +ve/True-ve % | True +ve / +ve / True -ve
True -ve % %

ay 2/263 68/96 91/91 2 | 0 |90/91
as 1/46 84/80 100/67 1 | 0 | 99/66
as 6/412 82/98 99/98 5| 0 | 94/97
ay 8/303 80/76 94/93 6 | 0 |91/92
as 11/501 70/85 93/97 10 | 3 | 86/95
ag | 9/348 94/79 95/94 9 | 2 |92/94
a; | 71205 95/79 98/97 7 | 0 |96/97
ag | 6/464 89/94 95/99 6 | 0 | 93/99
ag | 9/136 86/87 97/94 8 | 3 |92/95
ajp | 6/136 97/80 97/96 6 | O |90/86
a;; | 8/336 97/78 99/98 7 | 0 |94/93
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that the classifier outperforms the individual features. Wdgeild get even bigger improvements
if more features were in the strong classifier. Columns 5-6vsihe number of true positive and
false positives and indicate how well the TemporalBoost @doice was able to correctly detect
events. Localization results (Column 7) are computed indHeviing manner. For a given action
classa; the start and end frame of each instance is known via the drvuth. Our method also
gave estimated start and end frames for each action of ¢Jas8e compute the total number of
frames that the proposed method overlapped with the groutidfor actiona;. We divide this by
the total number of frames occurred to obtain the localization true positive rate. Aalagous
procedure is used to compute the localization true negediee The localization results are often
times lower than the frame wise % (Column 4). This is so becéuseéharder to find start and
end of events. If an event is missed then every frame of theriteég counted as a miss, whereas
a classifier can still get some of the individual frames atitr&able 4.12 gives a partial listing of
some of the features selected for a subset of actions. Itasgisting that actions relied most on
color information, while actions, anda;; both made most use of contextual hand information.
Figure 4.26 shows some example detections from the testigqgences. The detection rates for
as andas indicate they were two of the harder events for the systene prbbblem comes from
the fact that these two events are so similar (i.e., handgna face in arbitrary area). This is
true because for both events the hand must move a lot igjtvahlich looks likea, even if it isas.
These results could be improved with the addition of moréufes. Some of our results for action

recognition (about 70 actions) on the testing data set ateded in the supplemental material.
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Table 4.11: Results on testing data. Col 1 gives the action narg&ves the # actions and total #
frames for each action. 3-4 give a head to head comparisarebatthe best feature and the strong
classifier. 5-6 are relevant only for TemporalBoost and dieettue positive, false positive action

detection and rate. 7 gives localization percentages.

Action | Frequency /# Best Feature: True Classifier: TP | FP | Localize True
Frames +ve/True-ve % | True +ve / +ve / True -ve
True -ve % %

ay 4/230 68/94 91/90 3 | 0 90/91
as 2/70 82/80 99/68 2 | 0 |90/74
as 5/400 82/97 98/98 4 | 1 |90/91
ay 9/276 79/79 93/92 7 | 1 |92/92
as 12/468 70/83 93/95 10 | 2 | 89/94
ag | 9/367 94/79 90/89 8 | 1 |87/89
a; | 71268 97/81 97/96 6 | O |96/96
ag | 6/398 89/93 94/97 6 | O |93/98
ag | 9/132 86/85 95/93 7 | 3 |85/86
a0 6/141 95/77 95/96 4 | 1 |85/87
a;; | 8/283 96/79 98/97 7 | 1 |90/91
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Figure 4.26: Example output frames from testing sequertcasiag images labeled automatically

by TemporalBoost. They go from left to right.

149



Table 4.12: This table shows some of the features from toagtclassifiers selected by the Tem-

poralBoost algorithm during training. Action index is froraldle 4.1.

Action | Features Selected

as his, ho, 1o, his, hs

Qy hg, his, hz, hig, hr

a1 hg, hs, g, h7, g

It is interesting to note that in the LearnEventVariatiotimization step similar activities seem
to compete for the correct classification with the correassifier eventually being able to discrim-
inate against the incorrect classifiers. This happens famgke with the events, andas. In
both cases the hand is moving as it is being brought to the fias only when the hand rests
on the face that the event is distinguished. This would naseeadily observed in a multiclass
setup. Though, we have also incorporated TemporalBoostiteamto the multiclass algorithm
AdaBoost.M1 The results obtained are similar to each action having aragpclassifier. We are
able to recognize 11 different activities. A number of expents were performed to demonstrate

the effectiveness of our approach. This is an encouragmgtre
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

We have shown the details of an event recognition systemsladie to recognize complex events
in an office environment. In Chapter 2 we gave the foundatieesled to use a multizoom system.
This required detection, tracking, and consistently lagemultiple objects across zooms. The

presented method is general and is applicable to other tffEsnera configurations as well.

In Chapter 3 a number of features were described that have gotedtial to solve many
problems related to event analysis. We gave details intkithas of features that can be built
when multiple levels of scene detail are present simultasigoWe have also developed a method
that is successfully able to segment the hand from the fate Agh level the method succeeds
because we developed an image feature that is based onakgitormation. Although during
the occlusion of head and hand the local pixel regions wendasi, the regional image structure
was different before and during the occlusion. Our methagds this change and is able to
recover the occluding region. Our main contributions aréh&)development of a novel feature:
the distance traveled of a test pixel in the image force fieti in modeling the distance traveled
of test pixels using a Mixture of Gaussians, which allowedaisapture occlusion information

that is very difficult to extract. We demonstrated a methad b general and extensible to other
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contexts. In the future we would like to explore more deeply force field representation of
images, and determine its limits in resolving occlusion theo kinds of images. More exact
methods of segmenting the hand using the MoG model could plerex as well. It would be

interesting to test how well the method resolves occlusith other types of objects.

In Chapter 4 we have introduced a new boosting paradigm td@aadous difficulties arising
when using boosting for event detection. Most researchigatea has focused on HMM’s and
low-level trajectory analysis. We have demonstrated asbmethod to perform activity recog-
nition in an office environment. The presented frameworkbie & combine information from
cameras in multiple ways to increase overall system pedooe. The method selects the best
features and zooms necessary to recognize a variety ohactictivity features were developed
and used in a boosting framework, which we call TemporalBdd&t have developed a large fea-
ture set, and this direction shows good promise of extditgibd other actions. A more complete
analysis of the features used would be useful to gain morghthsto what kinds of new activity
features, unrelated to the current set, would be usefulreTaee many possible directions to ex-
plore here regarding more generic features. These codlddiegeneralized Haar features in time

or classic HMM features, such as shape and motion features.

Currently we have about twenty base features and about twdrédractual features. This
number could be increased to between 40-50. Once this isrguished, we can vary the pa-
rameters, spatial scale, and temporal scale of these ésaturich will result in approximately
1000-2000 features. We then hope to achieve better clagficon a larger set of activities. An-

other issue we want to explore more is the interrelationskigveen the features at various zooms
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and time scales. Making these relationships more explititgive us more insight into how the
various zooms and time scales interact together. Since wedtwsen to use a machine learning
framework the methods should be extensible to more actiothsia increased numbers of features.

Recognizing more events and increasing system robustreegead directions of future research.

There is no reason why our algorithm, TemporalBoost, caneatded in other kinds of video
data. That is, though we demonstrate our method in the cbafevents, many things can be
looked at as video events. Object detection, for instancéhe context of video events, would
see each “event” to be a series of video frames in which aqodeti object was present. It would
be interesting to use TemporalBoost to detect faces in vileatures such as the standard Haar
wavelets could be used. TemporalBoost would be able to disa®pendencies in the video data
at the weak classifier and detector levels. We plan to exjiove other classes of problems can
fit into our learning framework. Designing more generic feas is another direction of future

research.
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