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Abstract

Due to increasing demand on deployable surveillance systems in recent years, object

tracking and activity recognition are receiving considerable attention in the research com-

munity. This thesis contributes to both the tracking and the activity recognition components

of a surveillance system. In particular, for the tracking component, we propose two different

approaches for tracking objects in video acquired by mobile cameras, each of which uses a

different object shape representation. The first approach tracks the centroids of the objects

in Forward Looking Infrared Imagery (FLIR) and is suitable for tracking objects that appear

small in airborne video. The second approach tracks the complete contours of the objects,

and is suitable for higher level vision problems, such as activity recognition, identification

and classification. Using the contours tracked by the contour tracker, we propose a novel

representation, called the action sketch, for recognizing human activities.

Object Tracking in Airborne Imagery: Images obtained from an airborne vehicle gen-

erally appear small and can be represented by geometric shapes such as circle or rectangle.

After detecting the object position in the first frame, the proposed object tracker models the

intensity and the local standard deviation of the object region defined by the shape model.

It then tracks the objects by computing the mean-shift vector that minimizes the distance
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between the kernel distribution for the hypothesized object and its prior. In cases when the

ego-motion of the sensor causes the object to move more than the operational limits of the

tracking module, a multi-resolution global motion compensation using the Gabor responses

of consecutive frames is performed. The experiments performed on the AMCOM FLIR data

set show the robustness of the proposed method, which combines automatic model update

and global motion compensation into one framework.

Contour Tracker: Contour tracking is performed by evolving an initial contour toward the

correct object boundaries based on discriminant analysis, which is formulated as a variational

calculus problem. Once the contour is initialized, the method generates an online shape

model for the object along with the color and the texture priors for both the object and the

background regions. A priori texture and color PDFs of the regions are then fused based on

the discrimination properties of the features between the object and the background models.

The models are then used to compute the posteriori contour likelihood and the evolution

is obtained by the Maximum a Posteriori Estimation process, which updates the contour

in the gradient ascent direction of the proposed energy functional. During occlusion, the

online shape model is used to complete the missing object region. The proposed energy

functional unifies commonly used boundary and region based contour approaches into a

single framework through a support region defined around the hypothesized object contour.

We tested the robustness of the proposed contour tracker using several real sequences and

have verified qualitatively that the contours of the objects are perfectly tracked.
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Behavior Analysis: We propose a novel approach to represent human actions by modeling

the dynamics (motion) and the structure (shape) of the objects in video. Both the motion and

the shape are modeled using a compact representation, which is called the “action sketch”.

An action sketch is a view invariant representation obtained by analyzing important changes

that occur during the motion of the objects. When an actor performs an action in 3D, the

points on the actor generate space-time trajectories in four dimensions (x, y, z, t). Projection

of the world to the imaging coordinates converts the space-time trajectories into the spatio-

temporal trajectories in three dimensions (x, y, t). A set of spatio-temporal trajectories

constitute a 3D volume, which we call an “action volume”. This volume can be treated as

a 3D object in the (x, y, t) space. The action sketch is generated from the action volume by

analyzing the differential geometric surface properties, such as peaks, pits, valleys and ridges.

These properties reflect the changes in the speed, the motion direction and the shape of the

performing actor. We perform action recognition by computing a view invariant distance

measure between the sketch generated from the input video and the set of known sketches

in the database. Experimental results are provided for twenty eight actions.
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CHAPTER 1

INTRODUCTION

Computer vision research started in the 1960’s as an artificial intelligence problem, where the

goal was to understand images by detecting objects and defining the relationship between

them. Thus, in the 1970’s problems such as object segmentation, and edge/line detection

motivated researchers to develop methods to solve early vision problems. In 1982, David

Marr [Mar82] proposed the theory of computer vision based on his background in math-

ematics and neuroscience. He stated that given visual information, a complete geometric

reconstruction of the observed scene is required for visual perception. In his view, a vision

system should compute the shape, orientation, color of every object in the scene and identify

them from just one image [Mar82]. Due to the influence of this approach, during the 1980’s,

several researchers were involved in developing “shape from X” methods to recover the three

dimensional structure of the objects, where X referred to motion [CA91], shading [YS02b],

stereo [BZ92], etc.

The 1990’s were the years when researchers started shifting from Marr’s theory of vision

to an alternate theory, known as active vision [BY92, AB87, SS93]. Active vision is based
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on actively changing the sensor orientation and location to acquire additional information.

In contrast to Marr’s approach, active vision does not demand a complete representation

of the environment. Rather, it defines independent visual tasks (behaviors), which have

well-defined goals and operate independently to perform visual perception. An immediate

result of this theory was to use simple methods to perform simple visual tasks. Although

active vision boosted research in early 90’s, using active sensors for visual perception was

not practical.

With the advent of inexpensive high speed computers in the late 1990’s, several re-

searchers concentrated on motion-based approaches to solve computer vision problems. The

goal of a motion-based approach was to interpret the scene (a sequence of frames from a video

clip or a single image) based on visual cues. For instance, to perform high level vision tasks,

such as action recognition [YRS02] and video retrieval [RS03], many researchers started

using simpler two-dimensional representations without recovering the three-dimensional in-

formation. Compared to working on a single image, a sequence of frames introduces a new

dimension: time, and a new constraint: temporal coherence, for the interpretation of the

scene. Introduction of this additional constraint boosted the research on video processing.

Video can be processed for various purposes. For instance, to obtain the story from video,

one can group similar frames into shots, shots into scenes, etc., and analyze their visual

contents [RS03]. Building surveillance systems was another motivation for video processing.

2



Due to the challenges involved and the scope of application, surveillance has quickly

become a very popular research topic in the past few years [HHD00, JS02, ED01]. The basic

components of a surveillance system are:

1. Object detection which finds region of interests (moving or stationary) in an image.

2. Object tracking which performs tracking and generates trajectories.

3. Object classification which classifies tracked objects as car, suitcase, human, truck,

tank, etc.

4. Activity recognition which analyzes the activities and behaviors performed by individ-

ual objects or group of objects.

The tracking component is usually a minimal requirement for a surveillance system, and

one of the most important bottlenecks. If the object tracker fails, then the rest of the

system becomes unreliable. Recognizing objects and their actions is also very important for

a visual surveillance system. In this thesis, we address problems related to tracking objects

in video acquired using mobile cameras, propose novel tracking approaches to overcome these

problems and introduce a novel representation for actions performed by actors for behavior

recognition.
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1.1 Thesis Overview

Despite the tremendous amount of research on object tracking, there is no comprehensive

survey of visual tracking. Following this observation, we provide a comprehensive survey

and categorization of the state-of-the-art tracking methods proposed in the recent years

(see Chapter 2). Chapter 3 discusses visual features used in tracking methods, such as the

color and the texture features, and details on possible modeling approaches used by various

researchers. In Chapters 4 and 5, we propose two novel approaches for tracking objects.

For both of these tracking methods, our emphasis is on high inter-frame motion and moving

camera, which remain a challenge for most object trackers. The first method uses the

primitive geometric regions to represent the object and the second method uses the contour

representation. Both of these methods have advantages and disadvantages. For instance,

our first method can perform tracking in real time with very high accuracy, however it only

tracks a circular (or ellipsoidal) window on the target (not necessarily centered on the object

centroid). On the other hand, the second method tracks the full object, resolves object

occlusions, and therefore can be used in high-level processes, such as action recognition,

object identification and object recognition. Finally, in Chapter 6, we propose a novel

and compact representation for actions performed by tracked objects. The proposed action

representation uses the contours tracked by the contour tracking method discussed in Chapter

5 to generate a continuous volume. Action features are extracted by analyzing the differential

geometric properties of the underlying volume. In Chapter 7.1, we conclude our thesis and
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provide future research directions. Below we provide an overview of the proposed trackers

and action representation.

1.1.1 Object Tracking: Survey of the State-of-the-art

Object tracking, in general, is a challenging problem. Difficulties in tracking objects can

arise due to abrupt object motion, changing appearance patterns of both the object and

the scene, non-rigid object structures, object to object and object to scene occlusions, and

camera motion. Tracking is usually performed in the context of higher level applications that

require the location or shape of the object. The assumptions made to constrain the tracking

problem are employed in the context of that application. In this chapter, we categorize the

tracking methods on the basis of the object and motion representations used. We provide

detailed descriptions of representative methods in each category and examine their pros and

cons. Moreover, we discuss the topics relevant to tracking in general, such as the use of

appropriate image features, selection of motion models, and detection of objects.
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1.1.2 Object Tracking in Infrared Imagery Captured from Air-

borne Vehicles

Small and quickly moving objects in video acquired by airborne mobile platforms are usually

hard to track. In addition, rapid motion of the sensor creates irregular object motion,

which violates constant speed and acceleration constraints. We propose an object tracker to

overcome these problems in closing sequences of forward looking infrared-imagery (FLIR),

which is motivated by the mean shift tracker proposed in [CRM00]. The main contributions

of our object tracker are:

• We use more features to model the object correctly. In particular, the density estima-

tions of local standard deviation features are fused with the intensity models. Due to

the target’s low contrast with the background, extra features are necessary for FLIR

imagery.

• We use additional tools, such as a global motion estimator to relax the small object

motion constraint imposed by the object trackers in this category (see Section 2.4.2).

The tracking module automatically decides whether motion compensation is necessary.

• The object feature models are automatically updated to adapt to rapid changes in the

visual features due to noise introduced from the IR sensor.
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1.1.3 Contour Based Object Tracking with Occlusion Handling

We propose a contour tracking method for video acquired using a mobile camera, which

tracks the complete objects. The proposed method can track multiple objects, adapt to

changing visual features, and handle partial and full object occlusions. Tracking is achieved

by evolving the contour from frame to frame by minimizing an energy functional, which

is formulated using variational calculus. We minimize the energy in the gradient descent

direction evaluated in the contour vicinity defined by a band. Our approach has two major

components related to the visual features and the object shape. Visual features (color,

texture) are modeled by semi-parametric models, and their relative weights are computed

using independent opinion polling. The shape prior is used to recover the missing object

regions during occlusion. Each shape prior consists of a shape level set, where each cell in the

level set grid has an associated Gaussian. We demonstrate the performance of our method

on real sequences with and without object occlusions.

1.1.4 Spatio-Temporal Volume Sketch: A Novel Action Represen-

tation

Once object contours are available from the proposed contour tracking approach, action

recognition can be performed. Actions can be represented by changes in speed, direction

and shape of the performing object. Changes in these quantities stem from the motion of
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the object in the three-dimensional space. We propose modeling important events during an

action based on the motion of the object in space and time using “action volumes”. Action

volumes can be generated by tracking the points on a three-dimensional object performing

an action, which results in tracks in four dimensions (x, y, z, t). Under the orthographic

projection, space-time trajectories becomes spatio-temporal trajectories in (x, y, t). A set

of spatio-temporal trajectories construct a solid, which we call a “spatio-temporal action

volume”. In contrast to tracking one or a few points on the object, we generate the action

volume by tracking the complete object contour. Once tracking is performed, correspon-

dences between contours in different frames are determined using a dynamic programming

approach. Important events during an action (action elements) are computed by analyzing

the properties of the local surfaces of the action volume, such as peaks, pits and ridges.

Action elements computed using surface analysis are invariant to the position of the camera.

We relate these view invariant surface properties to various types of motions. Finally, using

these features, we perform view invariant action recognition.
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CHAPTER 2

OBJECT TRACKING: STATE-OF-THE-ART

Object tracking is an important task within the area of computer vision. The proliferation

of high powered computers and the increasing need for automated surveillance systems have

generated a great deal of interest in object tracking algorithms. Some of the tasks that use

object tracking are:

• Motion-based recognition: human identification based on gait, automatic object de-

tection, etc.,

• Automated surveillance: monitoring a scene to detect suspicious activities or unlikely

events,

• Video indexing: automatic annotation and retrieval of videos for multimedia databases,

• Human-computer interaction: gesture recognition, eye gaze tracking for data input to

computers,

• Traffic monitoring: real time gathering of traffic statistics to direct traffic flow, and
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• Vehicle navigation: navigating vehicles with path planning and obstacle avoidance

capabilities.

Tracking can be defined as the problem of estimating the trajectory of an object as the

object moves around a scene. Simply stated, we want to know where the object is in the

image at each instant in time. Tracking objects can be a complex problem due to:

• loss of information caused by projection of the 3D world on a 2D image,

• noise in images,

• complex object motion,

• partial and full object occlusions,

• complex object shapes

• scene illumination changes and

• real time processing requirements.

One can simplify the tracking problem by imposing constraints on the motion and appearance

of objects. For example, almost all tracking algorithms assume the object motion to be

smooth. One can further constrain the object motion to be of constant velocity or constant

acceleration based on a priori information. Prior knowledge about the number and the size

of the objects can also be used to simplify the problem. Some algorithms assume prior
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knowledge about the object appearance or shape, e.g., tracking skin colored objects, or

tracking elliptical objects.

Numerous approaches for object tracking have been proposed. These primarily differ from

each other based on the way they tackle the following questions: Which object representation

is suitable for tracking? Which image features should be used? How should the motion, the

appearance and the shape of the object be modeled? The answers to these questions depend

on the context/environment in which the tracking is being performed, and the end use

for which the tracking information is being sought. A large number of tracking methods

have been proposed that attempt to answer these questions for a variety of scenarios. The

goal of this chapter is to group tracking methods into appropriate categories and provide

comprehensive descriptions of representative methods in each category. We aspire to provide

the readers that require a tracker for a certain application with the ability to select the most

suitable tracking algorithm for their particular needs. Moreover, we aim to identify new

trends and ideas in the tracking community and hope to provide insight for the development

of new tracking methods. Finally, we want to point out that the focus of this chapter is

on methodologies for tracking objects in general, and not on trackers tailored for specific

objects, e.g., people trackers.

Our discussion follows a bottom-up approach in describing the issues that need to be

tackled when one sets out on a task of building an object tracker. The first issue is com-

ing up with a suitable representation of the object. In Section 2.1, we will describe some

common object shape representations, e.g., points, primitive geometric shapes and object
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contours, and appearance representations. The next issue is the selection of image features

used as an input for the tracker. In Section 2.2, we discuss various image features, like

color, motion and edges, which are commonly used in object tracking. Almost all track-

ing algorithms require detection of the objects, either in the first frame or in every frame

depending on the tracking method used. Section 2.3 summarizes the general strategies for

detecting the objects in a scene. The suitability of a particular tracking algorithm depends

on object appearance, object shape, number of objects, the object and camera motion, and

the illumination conditions. In Section 2.4, we categorize and describe the existing tracking

methods and also explain their strengths and weaknesses in a summary section at the end

of each category. Section 2.5 discusses important issues relevant to object tracking.

2.1 Object Representation

Objects can be represented by their shapes and appearances. In this section, we will first

describe object shape representations commonly employed for tracking and then address the

joint shape and appearance representations.

• Point: The object is represented by a point, e.g., the centroid (Figure 2.1a). In general,

the point representation is suitable for tracking objects that occupy very small regions

in an image.(see Section 2.4.1).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Object representations. (a) Centroid, (b) multiple points, (c) rectangular, (d)

elliptical and, (e) multiple patches, (f) object contour, (g) control points on the contour, (h)

object silhouette.

• Primitive geometric shapes: The object shape is represented by a rectangle, ellipse,

etc. (Figure 2.1c, d). Object motion, for such representations, is usually modeled by

translation, affine or projective transformation (see Section 2.4.2 for details). Though

primitive geometric shapes are more suitable for representing simple rigid objects, they

are also used for tracking a variety of non-rigid objects.
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• Object contour: The contour representation defines the boundary of the object and

is suitable for representing non-rigid objects (Figure 2.1f, g). The region inside the

contour is the silhouette of the object (see Figure 2.1h). Contour based representations

are suitable for tracking complex non-rigid shapes.

• Articulated shape models: Articulated objects are composed of object parts that

are held together with joints. For example, the human body is an articulated object

with torso, legs, hands, head and feet connected by joints. The relationships between

the parts are governed by the model parameters, e.g., joint angle. To represent the

constituent parts of the articulated model, one can use lines, ellipses (Figure 2.1e) or

cylinders. Articulated object tracking is beyond the scope of this thesis and we refer

the interested reader to the surveys [AC99, Gav99, MG01] on this topic.

There are a number of ways to represent the appearance features of objects. Note that

shape representations can also be combined with the appearance representations for tracking.

Some common appearance representations in the context of tracking algorithms are given as

follows:

• Probability densities of object appearance: The probability density estimates of

the object appearance can either be parametric, e.g., a Gaussian [ZY96] or a Gaussian

mixture model [PD02], or non-parametric, e.g., Parzen windows [EDH02] or histograms

[CRM03]. The probability densities of object appearance features, e.g., color, can be
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computed from the image regions specified by the shape models, e.g., interior region

of an ellipse or a contour.

• Templates: Templates are formed using simple geometric shapes or silhouettes [FT97].

An obvious advantage of a template is that it carries both spatial and appearance infor-

mation. The limitation of template based models is that they only encode appearance

of the objects from one view. Thus, they are only suitable for tracking objects whose

pose does not vary considerably.

• Multi-view appearance models: These models encode different views of an object.

For example, we can represent all the views of an object by a subspace decomposition,

e.g., Eigenspace decomposition [BJ98]. Another approach to model the appearance

is to train classifiers, e.g., support vector machines [Avi01], to represent the different

views of the object. One limitation of this approach is that the appearance information

of all views of the tracked objects is required ahead of time.

Object representations are usually chosen according to the tracking application. For

tracking objects which appear very small in an image, point representation is usually appro-

priate. For instance, Veenman et al. [VRB01] use point representation to track the seeds

in a moving dish sequence, and Shafique and Shah [SS03] use point representation to track

birds. If the objects have shapes like a rectangle or an ellipse, primitive geometric shape

representations are more appropriate. Comaniciu et al. [CRM03] use an elliptical shape rep-

resentation and employ a color histogram computed from the elliptical region for appearance
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modeling. In [BJ98], Black and Jepson use the Eigenspace based appearance representation,

which is generated from the rectangular object regions. For objects with complex shapes,

e.g., humans, a contour or a silhouette based representation is appropriate. Haritaoglu et

al. [HHD00] use object templates in the form of object silhouettes for object tracking in a

surveillance application. Generally, there is a strong relationship between the object repre-

sentation and the tracking algorithms. We will have a further discussion (in Section 2.5.1) on

selection of the right representation for tracking after we discuss the tracking methodologies.

2.2 Feature Selection for Tracking

Tracking methods requires a set of unique features to represent each tracked object. Selecting

the right features is closely related to the object representation. For example, color is used

as a feature for histogram based appearance representations while for contour based repre-

sentation, edges are usually used as features. Common features used in tracking methods

are:

• color,

• edges,

• optical flow,

• texture.
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Color is one of the most widely used features for tracking. Comaniciu et al. [CRM03]

use color as a feature for the histogram representation of the tracked object. Cremers et al.

[CS03] use optical flow as a feature for contour based tracking. Jepson et al. [JFE03] use

steerable filter responses as features. For a detailed discussion on these features, please see

Chapter 3.

2.3 Object Detection

Every tracking method requires an object detection mechanism either in every frame or when

the object first appears in the video. Some common object detection methods are given in

Table 2.1. Although object detection itself requires a survey of its own, here we outline some

of the popular methods for the sake of completeness.

2.3.1 Point Detectors

Point detectors, which find interest points in an image, have been successfully used in the

context of motion, stereo and tracking for a long time. An interest point, e.g., a corner in an

image, ideally should be invariant to the changes in illumination and camera view. A property

of interest points is that there is expressive texture in the locality of the point. Commonly
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Table 2.1: Object detection categories.

Categories Representative work

Point detectors Moravec’s detector [Mor79],

Harris detector [HS88],

Affine Invariant Point Detector [MS02]

Segmentation Mean shift [CM99]

Graph-cut [SM00],

Active contours [CKS95]

Background Modeling Mixture of Gaussians[SG00],

Eigenbackground[ORP00],

Wall flower [TJM99],

Dynamic texture background [MMP03]

used interest point detectors include Moravec’s interest operator [Mor79], Harris interest

point detector [HS88], KLT detector [ST94], and SUSAN detector [SB97]. Moravec’s interest

operator computes the variation of the image intensities in a 4x4 patch in the horizontal,

vertical, diagonal and anti-diagonal directions, and selects the minimum of the four variations

as representative value for the window. A point is declared interesting if the intensity

variation is a local maximum in a 12x12 patch.
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(a) (c) (c)

Figure 2.2: Feature points detected by applying (a) the Harris, (b) the KLT and (c) the

SUSAN feature detectors.

The Harris detector computes the first order image derivatives, (Ix, Iy), in x and y di-

rections to highlight directional intensity variations, then a second moment matrix, which

encodes this variation, is evaluated for each pixel: M =




I2
x IxIy

IxIy I2
y


. An interest point is

identified from the determinant and the trace of M which measure the variation in a local

neighborhood: R = det(M)−k · tr(M)2 where k is constant. The interest points are marked

by thresholding R after applying non-maxima suppression (see Figure 2.2a for results). The

source code for the Harris detector is available at [har]. Similar to the Harris detector, in the

KLT detector, a moment matrix M is computed but in a 6x6 patch. Interest point confi-

dence, R, is considered from the minimum eigenvalue of M , λmin. Interest point candidates

are selected by thresholding R. Among the candidate points, KLT eliminates the candidates

that are spatially close to each other (Figure 2.2b). Implementation of the KLT detector is

available at [klt].
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Quantitatively both Harris and KLT emphasize the variations using very similar mea-

sures. For instance, R in Harris is related to the characteristic polynomial used for finding

eigenvalues of M : λ2 + det(M) − λ · tr(M) = 0. Note that KLT computes the eigenvalues

directly. In practice, both of these measures find the same interest points, however it is the

neighborhood criterion that differentiates the KLT detector over the Harris detector.

In contrast to the aforementioned methods that compute intensity variation, SUSAN

detector evaluates intensity correlation by counting the number of pixels, N , that are similar

to each image pixel in a 7x7 patch. The interest points are subsequently extracted by

thresholding N at each pixel followed by non-maxima suppression. In Figure 2.2c, we show

the features detected by the SUSAN detector. The implementation of the SUSAN detector

is available at [sus].

The Harris point detector is invariant to rotation but not to affine transformations.

Mikolajczyk and Schmid [MS02] propose an affine invariant interest point detector. In the

first step of the algorithm, a set of interest points are selected using the Harris detector.

Next, an iterative procedure is applied that selects the best scale for computing M and then

(affine) transforms the region around the point such that both the eigenvalues of M are

equal. Note that after this transformation, the intensity patterns around the interest point

location are isotropic. Any two isotropic regions are related by a pure rotation, therefore

any rotation invariant detector will be able to detect such transformed interest points. The

source code for this interest point detector is available at [Aff].
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In summary, all point detectors aim to measure the variation of intensity over small image

regions. Autocorrelation or the second moment matrix of intensity gradient are usually used

to estimate the variation. However, these measures are not invariant to changes image scale

or affine and projective transformations. In order to overcome these problems, Mikolajczyk

and Schmid [MS02] use the moment matrix to normalize the region in an affine invariant way

and employ an affine adapted Harris detector to determine the location of interest points.

For a comparative evaluation of interest point detectors, we refer the reader to the survey

by Mikolajczyk and Schmid [MS03].

2.3.2 Background Subtraction

Object detection can be achieved by building a representation of the scene called the back-

ground model and then finding deviations from the model for each incoming frame. Any

significant change in an image region from the background model signifies a moving object.

The pixels constituting the regions undergoing change are marked for further processing.

Usually a connected component algorithms is applied to obtain connected regions corre-

sponding to the objects. The term “background subtraction” is used to denote this process.

Frame differencing of temporally adjacent frames has been well studied since the late 70s

[JN79]. However, background subtraction became popular recently after the work of Wren

et al. [WAP97]. In order to learn gradual changes over-time, Wren et al. proposed to model
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(a) (b) (c) (d)

Figure 2.3: Mixture of Gaussian modeling for background subtraction. (a) Image from a

sequence in which a person is walking across the camera field of view. (b) The mean of

the highest weighted Gaussians at each pixel position. These means represent the most

temporally persistent per-pixel color and hence should represent the stationary background.

(c) The means of the Gaussian with the second highest weight; these means represent colors

that are observed less frequently. (d) Background subtraction result. The foreground consists

of the pixels in the current frame that matched a low weighted Gaussian.

the color of each pixel, I(x, y), of a stationary background with a single 3D (Y, U and V color

space) Gaussian, I(x, y) ∼ N(µ(x, y),Σ(x, y)). The model parameters, the mean µ(x, y) and

the covariance Σ(x, y) are learned from the color observations in several consecutive frames.

Once the background model is derived, for every pixel (x, y) in the input frame, the likelihood

of its color coming from N(µ(x, y),Σ(x, y)) is computed, and the pixels that deviate from the

background model are labelled as the foreground pixels. However, a single Gaussian is not a

good model [GBC00] for outdoor scenes, since multiple colors may be observed at a certain

location due to repetitive object motion, shadows or reflectance. A substantial improvement

in background modeling is achieved by using multi-modal statistical models to describe the
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per-pixel background color. For instance, Stauffer and Grimson [SG00] use a mixture of

Gaussians to model the pixel color. In this method, a pixel in the current frame is checked

against the background model by comparing it with every Gaussian in the model until a

matching Gaussian is found. If a match is found the mean and variance of the matched

Gaussian are updated, otherwise a new Gaussian with the mean equal to the current pixel

color and some initial variance is introduced into the mixture. Each pixel is classified based

on whether the matched distribution represents the background process. Moving regions,

which are detected using the latter approach, along with the background models are shown

in Figure 2.3.

An alternate approach for background subtraction is to represent the intensity variations

of a pixel in an image sequence as discrete states corresponding to the events in the environ-

ment. For instance, for tracking cars on a highway, image pixels can be in the background

state, the foreground (car) state or the shadow state. Rittscher et al. [RKJ00] use Hidden

Markov Model (HMM) to classify small blocks of an image as belonging to one of these

three states. In the context of detecting light on and off events in a room, Stenger et al.

[SRP01] use HMM’s for the background subtraction. The advantage of using HMM’s is that

certain events that are hard to model correctly using unsupervised background modeling

approaches, can be learned using training samples.

Instead of modeling the variation of individual pixels Oliver et al. [ORP00] propose a

holistic approach using the Eigenspace decomposition. For k input frames, I i : i = 1 . . . k,

of size n ×m, a background matrix B of size k × l is formed by cascading m rows in each
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frame one after the other, where l = (n×m), and eigenvalue decomposition is applied to the

covariance of B, C = BTB. The background is then represented by the most descriptive η

eigenvectors, ui, where i < η < k, that encompass all possible illuminations in the field of

view (FOV). Thus, this approach is less sensitive to illumination. The foreground objects are

detected by projecting the current image to the Eigenspace and finding the difference between

the reconstructed and actual images. We show detected object regions using the Eigenspace

approach in Figure 2.4. One limitation of this approach is that it requires relatively static

background.

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

(a) (b) (c)

Figure 2.4: Eigenspace decomposition based background subtraction (space is constructed

with objects in the FOV of camera), (a) an input image with objects, (b) reconstructed

image after projecting input image into the Eigenspace, (c) difference image, note that the

foreground objects are clearly identifiable.

The limitation of a static background model was recently addressed by Monnet et al.

[MMP03], and Zhong and Sclaroff [ZS03]. Both of these methods are able to deal with time

varying background, for example, waves on the water, moving clouds and escalators. These
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methods model the image regions as autoregressive moving average (ARMA) processes. An

ARMA process is a time series model that is made up of sums of autoregressive and moving-

average components. Note that an autoregressive process is a process that can be described

as a weighted sum of its previous values and a white noise error. These approaches use the

ARMA processes to learn and predict the motion patterns in a scene.

In summary, most state-of-the-art tracking methods for fixed cameras, e.g., [HHD00,

CLF01] use background subtraction methods to detect regions of interest. This is because

the recent subtraction methods are able to model model the changing illumination, noise, and

the periodic motion of the background regions and therefore can accurately detect objects in a

variety of circumstances. Moreover, these methods are computationally efficient. In practice,

background subtraction provides incomplete object regions in many instances, ie., the objects

may be split into several regions or there may be holes inside the object since there are no

guarantees that the object features will be different from the background features. The most

important limitation of background subtraction is the requirement for stationary cameras.

Camera motion usually distorts the background models. An extension of these methods to

mobile camera can be obtained by regenerating background models for a small temporal

windows, e.g., three frames, from scratch [KCL98] or by compensating sensor motion, e.g.,

creating background mosaics, [RB96, IA98a]. However, both of these solutions require that

the motion in successive frames is small and can be modeled using the parametric motion

models.
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2.3.3 Segmentation

The aim of an image segmentation algorithm is to partition the image into perceptually

similar regions. Every segmentation algorithm addresses two problems, the criteria for a

good partition and the method for efficient partitioning [SM00]. In this section, we will

discuss recent segmentation techniques that are related to object tracking.

2.3.3.1 Mean Shift Clustering

For image segmentation, Comaniciu and Meer [CM02] propose the mean shift approach to

find clusters in the joint spatial+color space, [l, u, v, x, y], where [l, u, v] represents the color

and [x, y] represents the spatial location. Given an image, the algorithm is initialized with

a large number of hypothesized cluster centers randomly chosen from the data. Then, each

cluster center is moved to the mean of the data lying inside the multi-dimensional ellipsoid

centered on the cluster center. The vector defined by the old and the new cluster centers is

called the mean shift vector. The mean shift vector is computed iteratively until the cluster

centers do not change their positions. Note that during the mean shift iterations, some

clusters may get merged. In Figure 2.5b, we show the segmentation using the mean shift

approach generated using the source code available at [meaa].

Mean shift clustering is scalable to various other applications such as edge detection,

image regularization [CM02] and tracking [CRM03]. Mean shift based segmentation requires
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fine tuning of various parameters to obtain better segmentation, for instance, the bandwidths

of the color and the spatial kernels, and the minimum region threshold. Another limitation

of the mean shift segmentation is its high computational cost. However, in the context of

tracking mean shift has a real-time performance (see Section 2.4.2 for details on tracking).

(a) (b) (c)

Figure 2.5: Segmentation of the image shown in (a), using mean shift segmentation (b) and

normalized cut (c).

2.3.3.2 Image Segmentation Using Graph-Cut

Image segmentation can also be formulated as a graph partitioning problem, where the

vertices (pixels), V = {u, v, . . .}, of a graph (image), G, are partitioned into N disjoint

subgraphs (regions), Ai,
⋃N

i=1Ai = V, Ai ∩ Aj = ∅, i 6= j, by pruning the weighted edges of

the graph. The total weight of the pruned edges between two subgraphs is called the “cut”.

The weight is typically computed by the color, the brightness or the texture similarity

between the nodes. Wu and Leahy [WL93] use the minimum cut criterion, where the goal
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is to find the partitions that minimize the cut. They define the weights based on color

similarity. Wu and Leahy’s method is biased toward over-segmenting the image, due to the

increase in cost of a cut with the number of edges going across the two partitioned segments.

Shi and Malik [SM00] propose the normalized cut to overcome the over-segmentation

problem. In their approach, the cut not only depends on the sum of edge weights in the cut,

but also on the total connection weight of nodes in each partition to all nodes of the graph.

For image based segmentation, the weights between the nodes are defined by the product of

the color similarity and the spatial proximity. Once the weights between each pair of nodes

are computed, a weight matrix W and a diagonal matrix D, where Di,i =
∑N

j=1 Wi,j are

constructed. The segmentation is performed first by computing the eigenvectors and the

eigenvalues of the generalized Eigensystem (D −W)y = λDy, then the second smallest

eigenvector is used to divide the image into two segments. For each new segment, this

process is recursively performed until a threshold is reached. In Figure 2.5c, we show the

segmentation result of the normalized cut approach.

In normalized cut based segmentation, the solution to the generalized Eigensystem for

large images can be expensive in terms of processing and memory requirements. However,

this method requires fewer manually selected parameters, compared to mean shift segmen-

tation. Normalized cuts have been used in context of tracking object contours [XA02].
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2.3.3.3 Active Contours

In an active contour framework, segmentation is achieved by evolving a closed contour to

the object’s boundary, such that the contour tightly encloses the object region. Evolution is

governed by energy functionals which define the fitness of the contour to the hypothesized

object region. Contour energy functionals have the following form:

E(Γ) =

∫ 1

0

Eint(v) + Eim(v) + Eext(v)ds,

where s is the arc length of the contour Γ, Eint includes regularization constraints, Eim

includes appearance based energy and Eext specifies additional constraints. Eint usually

includes a curvature term, first order (∇v) or second order (∇2v) continuity terms to find the

shortest contour. Image based energy, Eim, is commonly computed from the image gradient

which is evaluated around the contour [KWT88, CKS95], or the color [ZY96, YLS04, Ron94]

and texture [PD02] information which is evaluated inside and outside the object region.

Different variations of the energy functional also exist. In [CKS95], Caselles et al. use

E(Γ) =
∫ 1

0
Eint(v)Eim(v)ds, where Eim = g(|∇I|), g is the sigmoid function, and Eint

includes first order energy terms. The authors use the level set contour representation.

Paragios and Deriche [PD02] use E(Γ) =
∫ 1

0
λEboundary(v) + (1−λ)Eregion(v)ds, where both

Eregion and Eboundary are simply terms of Eimage. The authors model the appearance in

Eregion by a mixture of Gaussians.

An important issue in contour based methods is the contour initialization. A common ap-

proach is to place the contour outside the object region and shrink until the object boundary
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is encountered [KWT88, CKS95]. This constraint is relaxed in region based methods, such

that the contour can be initialized either inside or outside the object, so that the contour can

either expand or shrink respectively, to fit the object boundary. However, these approaches

usually require prior object or background knowledge [PD02]. Using multiple frames or a

reference frame, initialization can be performed without building region priors. For instance

in [PD00], the authors used background subtraction to initialize the contour.

Besides the selection of the energy functional and the initialization, another important

issue is to select the right contour representation. The contour, Γ, is represented either

explicitly (control points, v) or implicitly (level sets, φ). In the explicit representation,

the relation between the control points are defined by the spline equations. In the level

set representation, the contour is represented on a spatial grid which encodes the signed

distances of the grids from the contour with opposite signs for the object and the background

regions. The contour is evolved by modifying the grid values. Source code for a generic level

set, which can be used for various applications by specifying the contour evolution speed,

e.g., segmentation, tracking or heat flow, is available at [lev]. Both of these representations

have their advantages and disadvantages. For instance, the most important advantage of

the implicit representation over the explicit representation is its flexibility to allow topology

changes (split and merge). However, due to representing the contour on a grid, contour

evolution using implicit representation is computationally more expensive than the explicit

representation.
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2.4 Object Tracking

Tracking an object aims at locating the object and finding the region it encompasses in the

image at every time instant. These two operations can be performed separately or jointly.

For instance, first the regions of interest can be found by a detection algorithm and then

they can be corresponded with the objects previously observed. Alternatively, the regions

corresponding to the objects can be estimated iteratively, given the previous location and

some similarity criteria. In either case, it is necessary to represent the region that the object

encompasses using one of the shape models described in Sec. 2.1. The modeling of object

motion directly depends on its representation. For example, if an object is represented as

a point then only a translational model completely defines its motion. If a geometric shape

representation is used then parametric motion models like affine or projective transformations

can be used. These representations can approximate the motion of rigid objects in the scene.

For non-rigid objects, contours are the most descriptive representation and both parametric

and non-parametric models can be used to specify their motion.

In view of the aforementioned discussion, we have broadly classified tracking approaches

into three categories (see Table 2.2):

• Tracking by point correspondence: Objects detected in consecutive frames are associ-

ated based on the previous object state, which can include motion and shape charac-
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Table 2.2: Tracking categories.

Categories Representative work

Tracking by Point Correspondence

• Deterministic methods MGE tracker [SS90],

GOA tracker [VRB01]

• Statistical methods Kalman filter [BC86],

JPDAF [BF88],

PMHT [SL94]

Tracking by matching primitive

geometric regions

• Template and density based Mean shift [CRM03],

appearance models KLT [ST94],

Layering [TSK02]

• Multi-view appearance models Eigentracking [BJ98],

SVM tracker [Avi01]

Tracking by contour evolution

• State space models Condensation [IB98],

JPDAF+HMM [CRH01]

• Direct minimization Variational methods [BSR00]

Heuristic methods [Ron94]
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teristics of the object. This approach requires an external mechanism to detect the

objects in every frame. An example of point correspondence is shown in Figure 2.6a.

• Tracking by matching primitive geometric regions: These methods usually use a com-

bination of shape and appearance to model the object. For example an object can

be represented by a rectangular template, or by an elliptical shape and an associated

histogram. Objects are tracked by estimating the parametric transformation of the

shape model in consecutive frames (Figure 2.6b). Object detection is required only in

the first frame for these methods.

• Tracking by contour evolution: Tracking is performed by estimating the object contour,

given an initial contour from the previous frame. This essentially can be considered as

segmentation of each frame using priors obtained from previous images. Two examples

of contour evolution are shown in Figure 2.6c,d.

(a) (b) (c) (d)

Figure 2.6: (a) Multi-point correspondence. (b) Parametric transformation of a rectangular

patch. (c,d) Two examples of contour evolution.
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2.4.1 Tracking by Point Correspondence

Tracking can be formulated as correspondence of detected objects represented by points

across frames. Point correspondence is a complicated problem, specially in the presence of

occlusions, mis-detections, entries and exits of objects. Overall, the object correspondence

approaches can be divided into two broad categories, namely deterministic methods and

statistical methods. The deterministic methods use “qualitative motion heuristics” [VRB01]

to constrain the correspondence problem. The correspondence solution is found through a

combinatorial optimization scheme. On the other hand, probabilistic methods explicitly take

the object measurement and model uncertainties into account to establish correspondence.

The object state consists of object kinematics such as position, velocity and acceleration. A

Maximum a Posteriori (MAP) estimate of the object state is calculated at each time instant.

Below, we describe the tracking approaches belonging to these two sub-categories in detail.

2.4.1.1 Deterministic Methods for Correspondence

The deterministic methods for correspondence define a cost of associating each object in

frame t− 1 to a single object in frame t using a set of motion constraints. Minimization of

the correspondence cost is formulated as a combinatorial optimization problem. A solution,

which consists of one-to-one correspondences (Figure 2.7b) among all possible associations
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(Figure 2.7a), can be obtained by optimal assignment methods, e.g., the Hungarian algo-

rithm, [Kuh55] or greedy search methods.

(a) (b) (c)

Figure 2.7: (a) All possible associations of a point (object) in frame t − 1 with points

(objects) in frame t, (b) unique set of associations plotted with bold lines, (c) multi frame

correspondences.
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Figure 2.8: Motion constraints (a) proximity, (b) maximum velocity (r denotes radius),

(c) small velocity change, (d) common motion, (e) rigidity constraints. ‘4’ denotes object

position at frame ‘t − 2’, ‘◦’ denotes object position at frame t − 1, and finally ‘×’ denotes

object position at frame t.
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The correspondence cost is usually defined by using a combination of the following con-

straints:

• Proximity assumes the location of the object would not change notably (see Figure

2.8a).

• Maximum velocity defines an upper bound on the object velocity, and minimizes the

number of possible correspondences to the circular neighborhood around the object

(see Figure 2.8b).

• Small velocity change (smooth motion) assumes the direction and speed of the object

does not change drastically (see Figure 2.8c).

• Common motion constrains the velocity of objects in a small neighborhood to be similar

(see Figure 2.8d). This constraint is suitable for objects represented by multiple points.

• Rigidity assumes that objects in the 3D world are rigid, therefore the distance between

any two points on the actual object will remain unchanged (see Figure 2.8e).

• Proximal uniformity is a combination of the proximity and the small velocity change

constraints.

In particular, Sethi and Jain [SJ87] solve the correspondence by a greedy approach based

on the proximity and rigidity constraints. Their algorithm considers two consecutive frames,

and is initialized by the nearest neighbor criterion. The correspondences are exchanged itera-

tively to minimize the cost. A modified version of the same algorithm is also analyzed, which
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computes the correspondences in the backward direction (from the last frame to the first

frame) in addition to the forward direction. This method cannot handle occlusions, entries

or exits. Salari and Sethi [SS90] handle these problems by first establishing correspondence

for the detected points and then extending the tracking of the missing objects by adding a

number of hypothetical points. Rangarajan and Shah [RS91] propose a greedy approach,

which is constrained by proximal uniformity. Initial correspondences are obtained by com-

puting the gradient based optical flow vector in the first two frames. The method does not

address entry and exit of objects. If the number of detected points decreases occlusion or

misdetection is assumed. Occlusion is handled by establishing the correspondence for the

detected objects in the current frame. For the remaining objects, the position is predicted

based on a constant velocity assumption. In the work by Intille et al. [IDB97], which uses a

slightly modified version of [RS91] for matching centroids of objects, the objects are detected

using background subtraction. The authors explicitly handle the change in number of ob-

jects by examining specific regions in the image, for example, a door, to detect entries/exits

before computing the correspondence.

Veenman et al. [VRB01] extend the work of [SJ87, RS91] by using common motion

constraints for correspondence. The algorithm is initialized by generating the initial tracks

using a two-pass algorithm, and the cost function is minimized by the Hungarian assignment

algorithm in two consecutive frames. This approach can handle occlusion and misdetection

errors, however, it is assumed that the number of objects is the same throughout the sequence,

i.e., no object enters or exits. See Figure ??a for tracking results.
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Shafique and Shah [SS03] propose a multi-frame approach to preserve temporal coherency

of the speed and position (Figure 2.7c). They represent the correspondence as a graph

theoretic problem. Multiple frame correspondence relates to finding the best unique path

Pi = {x0, . . . ,xk} for each point (the superscript represents the frame number). For mis-

detected or occluded objects, the path will consist of missing positions in corresponding

frames. The directed graph, which is generated using the points in k frames, is converted

to a bipartite graph by splitting each node (object) into two (+ and −) nodes and repre-

senting directed edges as undirected edges from + to − nodes. The correspondence is then

established by a greedy algorithm.

2.4.1.2 Statistical Methods for Correspondence

Measurements obtained from sensors invariably contain noise. Moreover, the object motions

can undergo random perturbations. The statistical correspondence methods use the state

space approach to model the object properties such as position, velocity and acceleration.

These methods treat the tracking problem as inferring the object state by taking the mea-

surement and the model uncertainties into account. Measurements usually consist of the

object position in the image, which is obtained by a detection mechanism. Below, we will

discuss the probabilistic state estimation methods in the context of point tracking, however

it should be noted that these methods can be used in general to estimate the state of any

time varying system. For example, these methods have extensively been used for tracking
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contours [IB98], activity recognition [VRC03], object identification [ZCM03] and structure

from motion [MSK89].

Consider a moving object in the scene. The information representing the object, e.g.,

location, is defined by a sequence of states X t : t = 1, 2, . . .. The change in state over time

is governed by the dynamic equation,

X t = f t(X t−1) +W t (2.1)

where W t : t = 1, 2, . . . is white noise. The relationship between the measurement and

the state is specified by the measurement equation Z t = ht(X t, N t), where N t is white

noise and is independent of W t. The objective of tracking is to estimate the state X t

given all the measurements up to that moment, or equivalently, to construct the probability

density function p(X t|Z1,...,t). The theoretically optimal solution is provided by the recursive

Bayesian filter which solves the problem in two steps. The prediction step uses the dynamic

equation and the already computed PDF of the state at time t− 1 to derive the prior PDF

of the current state, i.e., p(X t|Z1,...,t−1). Then, the correction step employs the likelihood

function p(Z t|X t) of the current measurement to compute the posterior PDF p(X t|Z1,...,t).

If there is only one object in the scene, then the state can be simply estimated by the two

steps defined hitherto. On the other hand, if there are multiple objects in the scene then

measurements need to be associated with the corresponding object states. We discuss the

two cases in the following.
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Single Object State Estimation: For the single object case, if f t and ht are linear

functions, and the initial state X1 and noise have a Gaussian distribution then the optimal

state estimate is given by the Kalman Filter. In the general case, i.e., if the state is not

assumed to be a Gaussian, then state estimation can be performed using particle filters

[Tan87].

• Kalman Filters: A Kalman filter can be used to estimate the state of a linear

system where the state is assumed to be distributed as a Gaussian. Kalman filtering is

composed of two steps: prediction and correction. The prediction step uses the state

model to predict the new state of the variables:

X
t

= DX t−1 +W

Σ
t

= DΣt−1DT +Qt

where X t and Σt are the state and the covariance predictions at time t. D is the state

transition matrix which defines the relation between the state variables at time t and

t−1. Q is the covariance of the noise W . Similarly, the correction step uses the current

observations Z t to update the object’s state:

Kt = Σ
t
MT [MΣ

t
MT +Rt]−1 (2.2)

X t = X
t
+Kt [Zt −MX

t
]︸ ︷︷ ︸

v

(2.3)

Σt = Σ
t −KtMΣ

t
,

where v is called the innovation, M is the measurement matrix, K is the Kalman gain,

which is the Riccati equation (2.2) used for propagation of the state models. Note that
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the updated state, X t, is still a Gaussian (see Fig. 2.9). If the functions f t and ht

are non-linear, they can be linearized using the Taylor series expansion to obtain the

Extended Kalman Filter [BF88]. The state is again assumed to be Gaussian.

The Kalman filter has been extensively used in the vision community for tracking.

Broida and Chellappa [BC86] used Kalman filters to track points in noisy images. In

stereo camera based object tracking, Beymer and Konolige [BK99] use a Kalman filter

for predicting the object’s position and speed in x−z dimensions. Rosales and Sclaroff

[RS99] use the extended Kalman filter to estimate the 3D trajectory of an object from

2D motion. A Matlab toolbox for Kalman filtering is available at [kal].

Figure 2.9: Row 1: A Kalman filter gives an optimal estimate of the posterior density given

a Gaussian prior, and measurement densities and assuming linear dynamics. The posterior

density is a Gaussian. Row 2: Particle filters can be used to propagate a general probability

density function.
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• Particle Filters: One limitation of the Kalman filter is the assumption that the

state variables are normally distributed (Gaussian). Thus modeling state variables

that do not have Gaussian distributions with the Kalman filters will result in poor

state estimations. This limitation can be overcome by using particle filtering [Tan87].

In particle filtering, the conditional state density p(Xt|Zt) at time t is represented by

a set of samples {s(n)
t : n = 1, . . . , N} (particles) with weights π

(n)
t (sampling proba-

bility). The weights define the importance of a sample, i.e., its observation frequency

[IB98]. To decrease computational complexity, for each tuple (s(n), π(n)) a cumulative

weight c(n) is also stored, where c(N) = 1. The new samples at time t are drawn from

St−1 = {(s(n)
t−1, π

(n)
t−1, c

(n)
t−1) : n = 1, . . . , N} at the previous time t− 1 step based on dif-

ferent sampling schemes [Mac98]. The most common sampling scheme is “importance

sampling” which can be stated as follows:

1. Selection: Select N random samples ŝ
(n)
t from St−1 by generating a random num-

ber r ∈ [0, 1], finding the smallest j such that c
(j)
t−1 > r and setting ŝ

(n)
t = s

(j)
t−1.

Note that a sample can be selected multiple times.

2. Prediction: For each selected sample ŝ
(n)
t , generate a new sample by s

(n)
t =

f(ŝ
(n)
t ,W

(n)
t ), where W

(n)
t is a zero mean Gaussian error and f is a non-negative

function, i.e., f(s) = s.

3. Correction: Weights π
(n)
t corresponding to the new samples s

(n)
t are computed

using the measurements zt by π
(n)
t = p(zt|xt = s

(n)
t ), where p(.) can be modeled
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as a Gaussian density, where
∑N

n=1 π
(n)
t = 1. Compute cumulative probabilities

by c
(n)
t = c

(n−1)
t + π

(n)
t .

Using the new samples St, one can estimate the new position of the object by εt =

∑N
n=1 π

(n)
t f(s

(n)
t ,W ). Particle filter based trackers can be initialized by either using the

first measurements, s
(n)
0 ∼ X0, with weight π

(n)
0 = 1

N
or by training the system using

sample sequences. In addition to keeping track of the best particles, an additional

resampling is usually employed to eliminate samples with very low weights. Note that

the posterior density does not have to be a Gaussian (see Fig 2.9). Isard and Blake

[IB98] use particle filters for contour tracking. A Matlab toolbox for tracking using

particle filtering is available at [par].

Note that the Kalman and particle filter described above assume a single measurement

at each time instant, i.e., the state of single object is estimated. Tracking multiple objects

requires a joint solution of data association and state estimation problems.

Multi-Object Data Association and State Estimation: When tracking multiple ob-

jects using Kalman or particle filters, one needs to deterministically associate the most likely

measurement for a particular object to that object’s state, i.e., the correspondence problem

needs to be solved before these filters can be applied. The simplest method to perform corre-

spondence is to use the nearest neighbor approach. However, if the objects are close to each

other, then there is always a chance that the correspondence is incorrect. An incorrectly

associated measurement can cause the filter to fail to converge. There exist several statistical
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data association techniques to tackle this problem. A detailed review of these techniques can

be found in the book by Fortmann and Bar-Shalom [BF88] or in the survey by Cox [Cox93].

Joint Probability Data Association Filtering (JPDAF) and Multiple Hypothesis Tracking

(MHT) are two widely used techniques for data association. We give a brief description of

these techniques in the following.

• Joint Probability Data Association Filter: Let a track be defined as a sequence

of measurements that are assumed to originate from the same object. Suppose we have

N tracks and at time t, Z(t) = z1(t), · · · zmt
(t) are the m measurements. We need to

assign these measurements to the existing tracks. Let η be a set of assignments. It

is assumed that the number of tracks will remain constant over time. Let vi,l be the

innovation (see the discussion on the Kalman Filter) associated with track l due to

the measurement zi. The JPDAF associates all measurements with each track. The

combined weighted innovation is given by

vl =
∑mk

i=1
βl

ivi,l, (2.4)

where βl
i is the posterior probability that measurement i originated from the object

associated with track l and is given as:

βl
i =

∑

η

P [ηl(k)|Zt]τi,l(η), (2.5)

where τi,l is the indicator variable, with i = 1, . . . ,mk and l = 1, . . . , N . τ is equal to

one if measurement zi(k) is associated with track l, otherwise it is zero. The weighted
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innovation given in (2.4) can be plugged in the Kalman filter update equations (2.3)

for each track l.

JPDAF is used by Chang and Aggarwal [CA91] to perform 3D structure reconstruction

from an video sequence. Rasmussen and Hager [RH01] use a constrained JPDAF filter

to track regions. The major limitation of the JPDAF algorithm is its inability to

handle new objects entering the field of view (FOV) or already tracked objects exiting

the FOV. Since the JPDAF algorithm performs data association of a fixed number of

objects being tracked over two frames, serious errors can arise if there is a change in

the number of objects. The MHT algorithm, which is explained next, does not have

this shortcoming.

• Multiple Hypothesis Tracking (MHT): If motion correspondence is established

using only two frames, there is always a finite chance of an incorrect correspondence.

Better tracking results can be obtained if the correspondence decision is deferred until

several frames have been examined. The MHT algorithm maintains several correspon-

dence hypotheses for each object at each time frame [Rei79]. The final track of the

object is the most likely set of correspondences over the time period of its observa-

tion. The algorithm has the ability to create new tracks for objects entering the FOV

and terminate tracks for objects exiting the FOV. It can also handle occlusions, i.e.,

continuation of a track even if some of the measurements from an object are missing.

MHT is an iterative algorithm. An iteration begins with a set of current track hypothe-

ses. Each hypothesis is a collection of disjoint tracks. For each hypothesis, prediction
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of each object’s position is made for the next frame, then the predictions are compared

with actual measurements by evaluating a distance measure. A set of correspondences

(associations) are established for each hypothesis based on the distance measure, which

introduces new hypotheses for the next iteration. Each new hypothesis represents a

new set of tracks based on the current measurements. Note that each measurement can

belong to a new object entering the FOV, a previously tracked object, or a spurious

measurement. Moreover, a measurement may not be assigned to an object because the

object may have exited the FOV, or a measurement corresponding to an object may

not be obtained. The latter happens when the object is occluded or it is not detected

due to noise.

Note that MHT makes associations in a deterministic sense and exhaustively enumer-

ates all possible associations. To reduce the computational load, Streit and Luginbuhl

[SL94] propose a probabilistic MHT (PMHT) in which the associations are considered

to be statistically independent random variables. Thus there is no requirement for

exhaustive enumeration of associations. Recently, particle filters that handle multiple

measurements to track multiple objects have been proposed by Hue et al. [HCP02].

In this method the data association is handled in similar manner to PMHT, but the

state estimation is achieved through particle filters.

The MHT algorithm is computationally exponential both in memory and time. To

overcome this limitation, Cox and Hingorani [CH96] use Murty’s [Mur68] algorithm to

determine the k-best hypotheses in polynomial time for tracking interest-points. Cham
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and Rehg [CR99] use the multiple hypothesis framework to track the complete human

body.

2.4.1.3 Discussion

In order to tackle noisy or missing observations, deterministic point trackers use heuristic

constraints, i.e., common motion [VRB01] or proximal uniformity [RS91]. These methods

usually use a greedy approach to establish the correspondence by minimizing a cost function.

Thus the solution is not necessarily optimal. Statistical point tracking methods explicitly

model the measurement and model uncertainties for tracking. These uncertainties are usu-

ally assumed to be in the form of normally distributed noise. However, the assumption that

measurements are normally distributed around their predicted position may not hold. More-

over, in many cases the noise parameters are not known. In the case of valid assumptions

on distributions and noise, Kalman filters [BF88] and MHT [Rei79] give optimal solutions.

2.4.1.4 Evaluation

The quantitative evaluation of point trackers can be performed by computing precision and

recall measures. In this context, precision is the ratio of the number of correct correspon-

dences to the number of total correspondences established. Recall is the ratio of the number

of correct correspondences over the number of actual correspondences (ground truth). Point
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trackers can be qualitatively compared on the basis of their ability to deal with entries of new

objects, exits of objects, missing observations (occlusion) and to provide optimal solutions

for correspondences. In Table 2.3, we provide a comparison based on these properties.

Table 2.3: Qualitative comparison of point trackers. #: number of objects, M: multiple

objects, S: single object,
√

: available, ×: not available.

# Entry Exit Occlusion Optimal

GE [SJ87] M × × × ×

MGE [SS90] M
√ √ √ ×

GOA [VRB01] M × × √ √

MFT [SS03] M
√ √ √ ×

Kalman tracker [BF88] S × × × √

JPDAF tracker [BF88] M × × × ×

MHT [CH96] M
√ √ √ √

2.4.2 Tracking by Matching Primitive Geometric Regions

Given the object in the first frame, these trackers compute the parametric motion, e.g., trans-

lation, translation+rotation and affine transformation, of the object in subsequent frames.

These algorithms differ in terms of the appearance representation used, the number of objects
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tracked and the method used to estimate the motion parameters. We divide these track-

ing methods into two subcategories based on the appearance representation used, namely

templates and density based appearance models, and multi-view appearance models.

2.4.2.1 Tracking using Template and Density Based Appearance Models

Templates and density based appearance models (see Section 2.1) have been widely used in

the area of tracking. In general, these trackers model the object and its motion indepen-

dently of the other objects in the scene. However, in the case of multi-object tracking, the

independence assumption may not be valid. We divide the trackers in this category into two

sub-categories based on whether the objects are tracked individually or jointly.

Tracking Single Objects The most common approach in this category is “template

matching”. Template matching is a brute force method of searching the image, Iw, for a

region similar to the object template, Ot. The position of the template in the current image is

computed by a similarity measure, e.g., cross correlation: arg maxdx,dy

P

x

P

y(Ot(x,y)×Iw(x+dx,y+dy))√
P

x

P

y O2
t (x,y)

where (dx, dy) specifies the candidate template position. Usually image intensities or color

features are used to form the templates. Since image intensity is very sensitive to illumina-

tion changes, image gradients [Bir98] can also be used as features. A limitation of template

matching is high computation cost due to the brute force search. To reduce the computa-

tional cost, researchers usually limit the object search to the vicinity of its previous position.
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Note that, instead of templates, other object representations can also be used for track-

ing, for instance, color histograms or mixture models can be computed by using the pixels

inside the rectangular or ellipsoidal regions. Fieguth and Terzopoulos [FT97] generate ob-

ject models by finding the mean color of the pixels inside the rectangular object region. To

reduce computational complexity, they search for the object in eight neighboring locations.

The similarity between the object model, M , and the hypothesized position, H, is computed

by evaluating the ratio between the color means computed from M and H. The position

that provides the highest ratio is selected as the current object location.

Comaniciu and Meer [CRM03] use a weighted histogram computed from an elliptical

region to represent the object. Instead of performing a brute force search for locating the

object, they use the mean shift procedure (2.3.3). The mean shift tracker maximizes the

appearance similarity iteratively by comparing the histograms of the object, Q, and the

window around the hypothesized object location, P . The histogram similarity is defined

in terms of the Bhattacharya coefficient:
∑b

u=1 P (u)Q(u), where b is the number of bins.

At each iteration, the mean shift vector is computed such that the histogram similarity is

increased. This process is repeated until convergence is achieved, which usually takes five to

six iterations. For histogram generation, the authors use a weighting scheme defined by a

spatial kernel which gives higher weights to the pixels closer to the object center. Comaniciu

[Com02] extended the mean shift tracking approach by representing the object using a joint

spatial-color histogram (Sec. 2.3.3). An example of mean shift tracking is given in Figure

2.10.
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Mean shift tracking iterations. (a) Estimated object location at time t− 1, (b)

Frame at time t with initial location estimate using the previous object position, (c), (d),

(e) location update using mean shift iterations, (f) final object position at time t.

An obvious advantage of the mean shift tracker over the standard template matching is

the elimination of a brute force search, and the computation of the translation of the object

patch in a small number of iterations. However, mean shift tracking requires that a portion

of the object is inside the elliptical region upon initialization (the object has to be inside

the white ellipse in Figure 2.10b). Implementation of the mean shift tracker is available in

OpenCV as CAMSHIFT at [meab].

Shi and Tomasi, in [ST94], propose the KLT tracker based on the principle that only

good features can be tracked well. Their approach consists of two steps. The first step

finds the translation of an interest point and the second step monitors the quality of each

interest point. Given a set of interest points computed using the KLT detector discussed

51



in Sec. 2.3.1, the translation (u, v) of the patch centered on the point is iteratively com-

puted by u ← u + du and v ← v + dv where the updates du and dv are obtained from


∑∑
I2
x

∑∑
IxIy

∑∑
IxIy

∑∑
I2
y






du

dv


 =




∑∑
IxIt

∑∑
IyIt


 similar to the optical flow computation

proposed by Lucas and Kanade [LK81]. Once the new location of the interest point is ob-

tained using the computed (u, v), in the second step, the authors compute the affine trans-

formation between the corresponding patches in consecutive frames. If the sum of square

differences between the current patch and the projected patch is small, they continue track-

ing the feature, otherwise the feature is eliminated. The implementation of the KLT tracker

is available at [klt].

Figure 2.11: Tracking features using the KLT tracker.

Jepson et al. [JFE03] propose an object tracker that tracks an object as a three com-

ponent mixture, consisting of the stable appearance features, transient features and noise

process. The stable component identifies the most reliable appearance for motion estima-

tion, i.e., the regions of the object whose appearance does not quickly change over time. The

transient component identifies the quickly changing pixels. The noise component handles

the outliers in the object appearance, which arise due to noise. An online version of the EM
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algorithm is used to learn the parameters of this three component mixture. The authors use

the phase of the steerable filter responses as features for appearance representation. The

object shape is represented by an ellipse. The motion of the object is calculated in terms

of warping the tracked region from one frame to the next one. The warping transformation

consists of translation, rotation and scale parameters. A weighted combination of the stable

and transient components is used to determine the warping parameters. The advantage of

learning stable and transient features is that one can give more weight to stable features

for tracking, for example, if the face of a person who is talking is being tracked, then the

forehead or nose region can provide a better match to the face in the next frame as opposed

to the mouth of the person.

Tracking Multiple Objects Modeling objects individually does not take into account

the interaction between multiple objects and between objects and background during the

course of tracking. An example interaction between objects can be one object partially

or completely occluding the other. The tracking methods given below model the complete

image, i.e., the background and all moving objects are explicitly tracked.

Tao et al. [TSK02] propose an object tracking method based on modeling the whole im-

age, I t, as a set of layers. The representation includes a single background layer and one layer

for each object. Each layer consists of a shape prior (ellipse), Φ, motion model (translation

and rotation), Θ, and layer appearance (intensity modeled using a single Gaussian), A. A

layering is performed by first compensating the background motion modeled by projective
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motion, such that the object’s motion can be estimated from the compensated image using

2D parametric motion. Then, each pixel’s probability of belonging to a layer (object), pl,

is computed based on the object’s previous motion and shape characteristics. Any pixel far

from a layer is assigned a uniform background probability, pb. Later, the object’s appear-

ance (intensity, color) probability pa is coupled with pl to obtain the final layer estimate.

The model parameters (Φt,Θt, At) that maximize observing a layer at time t are estimated

iteratively using an expectation maximization algorithm. However, due to the difficulty in

simultaneously estimating the parameters, the authors individually estimate one set while

fixing the others. For instance, they first estimate layer ownership using intensity for each

pixel, then they estimate the motion (rotation and translation) using appearance probabili-

ties and finally update layer ownership using this motion. The unknowns for each object are

iteratively estimated until the layer ownership probabilities are maximized.

Isard and MacCormick [IM01] propose joint modeling of the background and foreground

regions for tracking. The background appearance is represented by a mixture of Gaussians

for the background over small patches. The appearance of all foreground objects is modeled

by a mixture of Gaussians. The shape of objects is modeled as cylinders. They assume the

ground plane is known, thus the 3D object positions can be computed. Tracking is achieved

by using particle filters, where the state vector includes the 3D position, shape and velocity

of all objects in the scene. They propose a modified prediction and correction scheme for

particle filtering, which can increase or decrease the size of the state vector to include or

remove objects. The method can also tolerate occlusion between objects. However, the
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maximum number of objects in the scene is required to be predefined. Another limitation of

the approach is the use of same appearance model for all foreground objects and it requires

training to model the foreground regions.

2.4.2.2 Tracking Using Multi-view Appearance Models

In the aforementioned tracking methods, the appearance models, like histograms and tem-

plates are usually generated on line. Thus these models represent the information gathered

about the object from the most recent observations. The objects may appear different from

different views and if the object view changes dramatically during tracking, the appearance

model may no longer be valid and the track of the object might be lost. To overcome this

problem, different views of the object can be learned off-line and used for tracking.

In [BJ98], Black and Jepson propose a subspace based approach, i.e., Eigenspace, to

compute the affine transformation from the current image of the object to the image recon-

structed using eigenvectors. First, a subspace representation of the appearance of an object

is built using Principal Component Analysis (PCA), then the transformation from the im-

age to the Eigenspace is computed by minimizing the so-called subspace constancy equation,

which evaluates the difference between the image reconstructed using the eigenvectors and

the input image. Minimization is performed in two steps: finding subspace coefficients and

computing affine parameters. In the first step, the affine parameters are fixed and the sub-

space coefficients are computed. In the second step, using the new subspace coefficients,
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affine parameters are computed. Based on this, tracking is performed by estimating the

affine parameters iteratively until the difference between the input image and the projected

image is minimized.

In a similar vein, Avidan [Avi01] uses a State Vector Machine (SVM) classifier for track-

ing. SVM is a general classification scheme that, given a set of positive and negative training

examples, finds the best separating hyperplane between the two classes [Vap98]. During test-

ing, the SVM gives a score to the test data indicating the degree of membership of the test

data to the positive class. For SVM based trackers, the positive examples consist of the

images of the object to be tracked and the negative examples of all other things that are

not to be tracked. Generally negative examples consist of background regions that could be

confused with the object. Avidan’s tracking method, instead of trying to minimize the in-

tensity difference of a template from image regions, tries to maximize the SVM classification

score over image regions in order to determine the location of the object.

2.4.2.3 Discussion

Trackers in this category use primitive geometric models for shape representation. Primitive

geometric shape models are suitable representations for rigid objects, though they have also

been used in the context of tracking non rigid objects. These tracking methods model

the appearance by templates, probability densities or multi-view models. The motion is

defined in terms of translation, translation+rotation, affine or projective transformation.
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The methods that use gradient descent based minimization for motion estimation require

overlap between object regions in successive frames [CRM03, ST94, Avi01], however this

assumption is valid for many tracking scenarios.

2.4.2.4 Evaluation

The evaluation criteria for these trackers depend on the context in which the tracking algo-

rithm is being used. The goal of the tracking algorithm can be either to:

1. estimate the motion of an object, or

2. to estimate the region encompassed by an object

in every frame. For the former goal, the evaluation can be performed by computing a distance

measure between the estimated and actual motion parameters. An example of a distance

measure can be the angular distance, d = A·B
|A||B|

, between the motion vectors, A and B. For

region based evaluation, precision and recall measures can be used. In this context, both

of these quantities are defined in terms of the intersection of the hypothesized and correct

object regions. In particular, precision is the ratio of the intersection to the hypothesized

region. The recall is the ratio of the intersection to the ground truth.

Trackers using geometric shape models can be qualitatively compared based on

• tracking single or multiple objects,
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• ability to handle occlusion,

• requirement for training,

• type of motion model, and

• requirement of manual initialization.

In Table 2.4, we qualitatively compare the methods discussed in this section.

2.4.3 Tracking by Contour Evolution

Many non-rigid objects have complex shapes which cannot be well described by simple

geometric shape representations, e.g., hands, head and shoulders (see Fig 2.12a). Contour

based object models provide an accurate shape description for these objects. The goal of a

contour based object tracker is to find the boundary between the object and the background

in each frame, such that the object region is tightly enclosed within the contour. We can

categorize the contour based object trackers into two categories based on how the contour

is evolved. The first category of contour trackers use state space models (Sec. 2.4.1.2) to

evolve the contour. The second category performs direct minimization of a contour energy

functional.
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Table 2.4: Qualitative comparison of geometric model based trackers. “Init.” denotes ini-

tialization. #: number of objects, M: multiple objects, S: single object respectively, A:

affine homography, T: translational motion, S: scaling, R: rotation, P: partial occlusion, F:

full occlusion.

# Motion Training Occlusion Init.

Simple template matching S T × P
√

Mean shift [CRM03] S T+S × P
√

KLT [ST94] S A × P
√

Appearance Tracking [JFE03] S T+S+R × P
√

Layering [TSK02] M T+S+R × F ×

Bramble [IM01] M T+S+R
√

F ×

EigenTracker [BJ98] S A
√

P
√

SVM [Avi01] S T
√

P
√

2.4.3.1 Tracking Using State Space Models

In this section, we will discuss tracking object contours that use the probabilistic state space

approaches to track the object. The object’s state is defined in terms of the shape and the

motion parameters of the contour. The state is updated at each time instant such that the

contour’s a posteriori probability is maximized. The posterior probability depends on the
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prior state and the current likelihood, which is usually defined in terms of the distance of

the contour from observed edges.

Terzopoulos and Szeliski [TS92] define the object state by the dynamics of the control

points. The dynamics of the control points are modeled in terms of a spring model, which

moves the control points based on the spring stiffness parameters. The new state (spring

parameters) of the contour is predicted using Kalman filters. The correction step uses the

image observations which are defined in terms of the image gradients.

(a) (b)

Figure 2.12: (a) Edge observations along the contour normals.(b) Level-set contour repre-

sentation; each grid position encodes the Euclidean distance from the contour, gray level

represents the value of the grid.

In [IB98], Isard and Blake define the object state in terms of spline shape parameters

and affine motion parameters. The measurements consist of image edges computed in the

normal direction to the contour (see Figure 2.12a). The state is updated using a particle

filter. In order to obtain initial samples for the filter, they compute the state variables from
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the contours extracted in consecutive frames during a training phase. During the testing

phase, the current state variables are estimated through particle filtering based on the edge

observations along normal lines at the control points on the contour.

In [MB00], MacCormick and Blake extend the particle filter based object tracker in [IB98]

to track multiple objects by including the “exclusion principle” for handling occlusion. The

exclusion principle integrates into the sampling step of the particle filtering framework, such

that for two objects, if a feature is lying in the observation space of both objects then it

contributes more to the samples of the object which is occluding the other object. Since the

exclusion principle is only defined between two objects, this approach can track at most two

objects undergoing occlusion at any time instant.

Chen et al. [CRH01] propose a contour tracker, where the contour is parameterized as an

ellipse. Each contour node has an associated HMM and the state of each HMM is defined by

the points lying on the lines normal to the contour control point. The observation likelihood

of the contour depends on the background and the foreground partitions defined by the

edge along the normal line on contour control points. The state transition probabilities of

the HMM are estimated using the JPDAF. Given the observation likelihood and the state

transition probabilities the current contour state is estimated using the Viterbi algorithm

[Vit67]. After the contour is approximated, an ellipse is fit to enforce the elliptical shape

constraint.

The methods discussed above represent the contours using explicit representation, e.g.,

parametric spline. Explicit representations do not allow topology changes, such as region
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split or merge [Set99]. Next, we will discuss contour tracking methods based on direct

minimization of an energy functional. These methods can use implicit representations and

allow topology changes.

2.4.3.2 Tracking By Direct Minimization of Contour Energy Functional

In terms of evolving the contour onto the object region, there is an analogy between the

segmentation methods discussed in Sec. 2.3.3 and the contour tracking methods in this

category. Both the segmentation and tracking methods minimize the energy functional either

by greedy methods or by gradient descent. The contour energy is computed using temporal

information in the form of either the temporal gradient (optical flow) [BSR00, Man02, CS03],

or appearance models computed from object and background regions [Ron94].

Contour tracking using temporal image gradients is motivated by the extensive work

on computing the optical flow. The optical flow constraint is derived from the brightness

constancy constraint: I t+1(x, y) − I t(x − u, y − v) = 0, where I is the image, t is the time,

and (u, v) is the flow vector in the x and the y directions. Bertalmio et al. [BSR00] use this

constraint to evolve the contour in consecutive frames. Their objective was to compute u and

v iteratively for each contour position using the level set representation (see Figure 2.12b).

At each iteration, contour speed in the normal direction, −→n , is computed by projecting the

gradient magnitude |∇It| on −→n . The authors use two energy functionals, one for contour

tracking, Et, and one for intensity morphing, Em: Em(Γ) =
∫ 1

0
Eim(v)ds and Et(Γ) =
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∫ 1

0
Eext(v)ds, where Eext is computed based on Em. The intensity morphing functional,

which minimizes intensity changes in the current and the previous frames, ∇It = It − It−1,

on the hypothesized object contour: ∂F (x,y)
∂t

= ∇It(x, y) ‖ ∇F (x, y) ‖, is coupled with the

contour tracking equation: ∂φ(x,y)
∂t

= ∇It(x, y) ~nF ~nφ ‖ ∇φ(x, y) ‖, and both functionals are

minimized simultaneously. For instance, if ∇It(x, y) À 0, then the contour moves with the

maximum speed in its normal direction and I t−1(x, y) is morphed into I t(x, y). On the other

hand, if ∇It(x, y) ≈ 0, then the evolution speed will be zero.

Similarly, Mansouri [Man02] uses the optical flow constraint for contour tracking. In

contrast to [BSR00] which computes the flow only on the object boundary, his approach

is motivated by computing the flow vector for each pixel inside the complete object region

in a circular neighborhood with radius r using a brute-force-search. Once the flow vectors

are computed, the contour energy, which is based on the brightness constancy constraint, is

evaluated. This process is iteratively performed until the energy is minimized.

In [CS03], Cremers and Schnorr use the optical flow as an feature for contour evolution,

such that an object can only have homogeneous flow vectors inside the region. Their energy

is a modified form of the common Mumford-Shah energy [MS89], which evolves the contour

until a region with homogeneous flow vectors is encountered. They also incorporated the

shape priors to better estimate the object shape. The shape priors are generated from a set

of object contours, such that each control point on the contour has an associated Gaussian

with a mean of the spatial positions of the corresponding control points on all the contours

along with a standard deviation.
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Tracking methods using region priors do not explicitly use the temporal information

in the form of the brightness constancy constraint. In contrast, they use appearance priors

generated on line. Tracking is performed by initializing the contour in the current frame with

its previous position. Ronfrad [Ron94] propose a region based contour tracking method. His

functional is defined based on the piecewise stationary image models formulated as Ward

distances, which is a measure of image contrast [BG89]. Since the resulting energy does

not have an analytical form, each contour point is evolved individually based on its local

neighborhood.

2.4.3.3 Discussion

The most important advantage of a contour tracker is that it can model a large variety of

object shapes. Contours are represented by explicit (control points and splines) or implicit

(level sets) representations (see Figure 2.12). The use of these representations depend on the

context of the application. For instance, in most cases for tracked objects that do not split or

merge, explicit representation is usually suitable for tracking. However, in some applications

such as surveillance, it is important to keep track of a person leaving an object behind. In

the context of contour tracking, when a person leaves an object, part of the object contour

will be placed on the left object (region split). Topology changes like region split or merge

can be handled well by implicit representations.
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2.4.3.4 Evaluation

Contour trackers are employed when tracking the complete region of an object is required. In

the context of region tracking, the precision and recall measures are defined in terms of the

intersection of the hypothesized and correct object regions. The precision is the ratio of the

intersection to the hypothesized region and recall is the ratio of the intersection to the ground

truth. Qualitatively, the contour based methods can be compared on the basis of requirement

of training and occlusion handling. Moreover some algorithms only use information on the

contour boundary for evolution while other use the complete region. Generally the region

based approaches are more resilient to noise. A qualitative comparison of contour based

approaches is given in Table 2.5.

2.5 Relevant Issues

The primary issues that arise in the course of development of any tracking system include

the determination of an appropriate representation of the object and the selection of suitable

image features. Although we already introduced these issues, we give a further discussion in

light of the presented tracking algorithms. Further more, we give a brief discussion on the

methods for occlusion resolution in tracking. Finally, we debate the need and use of multiple

cameras for tracking objects.
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Table 2.5: Qualitative comparison of contour evolution based trackers. #: number of objects,

S : single, M: multiple, P: partial, F: full, B: boundary, R: Region.

Region or

# Occlusion Training Boundary

[TS92] S × √
B

[IB98] S × √
B

[MB00] M F
√

B

[CLL01] S × √
B

[Man02] S × × R

[BSR00] S × × R

[PD02] S × × B

[CKS02] S P
√

R

2.5.1 Object Representation

In order to represent the appearance of an object, models can be built online or can be

defined a priori. The primitive geometric shape models are only useful for describing sim-

ple rigid objects. These models are usually defined a priori and are not general enough

to handle a variety of different objects. Subspace approaches, e.g., Principal Component

Analysis (PCA), Independent Component Analysis (ICA), have been used for both shape

and appearance representation [MP97, BJ98]. Using eigenspace for similarity computation
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is a useful alternative to standard template matching techniques such as SSD and normal-

ized correlation. The Eigenspace based similarity computation is equivalent to matching

with a linear combination of eigen templates. This allows for distortions in the templates,

for example distortion caused by illumination changes in color images. Recently classifiers

encoding multiple views, e.g., SVM, have also been used as object representation. These

classifiers are learned using both positive and negative examples, and tracking is achieved by

maximizing a classification score across image regions. One advantage of this approach over

simple template matching is that knowledge about background objects (negative examples

that are not to be tracked) is explicitly incorporated in the tracker. Both the subspace and

classifier based representations require extensive a priori information about the objects to

be tracked.

For exact tracking of non-rigid object regions, e.g., a hand or complete human body, a

more detailed representation might be required. Contour based 2D object representations

can naturally deal with the non-rigid object motion. Contours can be defined by using both

implicit and explicit representations. In computer vision community most commonly used

implicit representation is the level sets. Besides the level sets, volume fluid methods [Hir90],

which have been well studied in the fluid dynamics community, can be used for contour

based tracking.

One interesting approach for on line learning of non-rigid shape models was proposed by

Bregler et al. [TB02]. They automatically estimate the object shape using a structure from

motion approach instead of imposing predefined shape constraints, and use these constraints
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to track points on the object. Initially, tracks of a set of interest-points on an object are

obtained using an approach similar to the KLT tracker for the complete sequence. These

tracks are used to estimate n basis-shapes of the object. These basis-shapes are used to

compute hypothesis tracks for any point on the object. The confidence of each hypothesis

is measured by computing the SSD between the patch in the first frame and the remaining

frames. The hypothesis with the highest confidence is selected as the track of the point. A

limitation of this approach is that tracking has to be performed off line for a set of interest

points. In addition, the sequence has to be long to find accurate shape basis.

2.5.2 Feature Selection

Feature selection methods can be divided into filter methods and wrapper methods [BL97].

The filter methods try to select the features based on a general criteria, e.g., the features

should be uncorrelated. The wrapper methods select the features based on the usefulness of

the features to solve the given problem, e.g., the classification performance using a subset

of features. The Principal Component Analysis (PCA) is an example of the filter methods

for the feature reduction. PCA involves transformation of number of (possibly) correlated

variables into a (smaller) number of uncorrelated variables called the principal components.

The first principal component accounts for as much of the variability in the data as possible,

and each succeeding component accounts for as much of the remaining variability as possible.

A wrapper method of selecting the discriminatory features for tracking a particular class
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of objects is the Adaboost [TV04] algorithm. One problem with off line feature selection

approaches is that the feature selection and the combination depends greatly on the training

examples. Also, training samples may not always be available in general tracking scenarios.

Collins and Liu. [RY03] compute the “best” features, given a pool of features, in every

frame for object tracking. The criteria for goodness of a feature is that it should be locally

discriminative, i.e., the object only needs to be distinguishable from its immediate surround-

ings. At each time instant, given the object location, a variance ratio (ratio of within class

and between class likelihoods) for the object and the background classes is computed for

each feature. The features with the highest variance ratio are then used for tracking.

Overall, if a priori object information is available, one can use the filter or wrapper

methods for the feature selection from the training set. However, there still is a need for on

line selection of features that are the most discriminative at a particular time.

2.5.3 Resolving Occlusion

Occlusion can be classified into three categories: self occlusion, inter-object occlusion and

occlusion by the background scene structure. Self occlusion occurs when one part of the

object occludes another. This situation most frequently arises while tracking articulated

objects. Inter-object occlusion occurs when two objects being tracked occlude each other.

Similarly, occlusion by the background occurs when a structure in the background occludes
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the tracked objects. Generally, for inter-object occlusion, the multi-object trackers like

[MB00, EDH02] can exploit the knowledge of position and appearance of the occluder and

occludee to detect and resolve occlusion. Partial occlusion of an object by a scene structure

is hard to detect, since it is difficult to differentiate between the object changing its shape

and the object getting occluded.

A common approach to handle complete occlusion during tracking is to model the object

motion by linear dynamic models or by non-linear dynamics and in case of occlusion, to keep

on predicting the object location till the object re-appears. For example, a linear velocity

model is used in [BK99] and a Kalman filter is used for estimating the location and motion

of objects. A non-linear dynamic model is used in [IM01] and a particle filter was employed

for state estimation.

Researchers have also utilized other features to resolve occlusion, e.g., silhouette pro-

jections [HHD00] (to locate persons’ heads during partial occlusion), optical flow [DT01b]

(assuming that two objects move in opposite directions). Free form object contour trackers

employ a different occlusion resolution approach. These methods usually address occlusion

by using shape priors which are either build ahead of time [CKS02] or build on line [YS04].

In particular Cremers et al. [CKS02] build a shape model from subspace analysis (PCA)

of possible object shapes to fill in missing contour parts. Yilmaz et al. [YS04] build on-

line shape priors using a mixture model based on the level set contour representation. The

approach is able to handle complete object occlusion.
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The chance of occlusion can be reduced by an appropriate selection of camera positions.

For instance, if the cameras are mounted on airborne vehicles, i.e., a birds eye view of

the scene is available, occlusions between objects on the ground do not occur. However,

oblique view cameras are likely to encounter multiple object occlusions and require occlusion

handling mechanisms. Multiple cameras viewing the same scene can also be used to resolve

object occlusions during tracking [DT01a, MD03]. These methods are discussed in the next

subsection.

2.5.4 Limitations of Single Camera and Multiple Camera Tracking

The need for using multiple cameras for tracking arises due to two reasons. The first reason

is the use of depth information for tracking and occlusion resolution. The second reason

for using multiple cameras is to increase the area under view since it is not possible for a

single camera to observe large areas because of finite sensor resolution. An important issue

in using multiple cameras is the requirement of knowledge of the relationship between the

different camera views, which can be manually defined [CLF01, CA99] or can be computed

automatically [LRS00, KS03] from the observations of the objects moving in the scene. For

the tracking algorithms that require the depth estimation, high computational cost is another

concern. Due to the availability of successful commercial products, real-time depth recovery

is solved to some extent, and can be used as a feature for the existing tracking methods. In

addition, methods like [MD03] do not perform dense depth estimation but calculate a single
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depth estimate for each object using a region based stereo method, which also reduces the

computational load. Multi-camera tracking methods like [DT01a, MD03] have demonstrated

superior tracking results as compared to single camera trackers in case of persistent occlusion

between the objects.

The aforementioned multi-camera tracking methods assume stationary cameras. Recently

Kang et al. [KCM03] use a combination of stationary and pan-tilt-zoom cameras with

overlapping views for tracking. In many situations it is not possible to have overlapping

camera views due to limited resources or large areas of interest. Methods for tracking

in such a scenario inherently have to to deal with sparse object observations due to non-

overlapping views. Therefore some assumptions have to be made about the object speed and

the path, in order to obtain the correspondences across cameras [HR97, KZ99, JRS03]. Note

that these methods, which establish object correspondence across non-overlapping cameras,

assume 1) the cameras are stationary and 2) the object tracks with in each camera are

available. The performance of these algorithms depends greatly on how much the object

follow the established paths and expected time intervals across cameras. For scenarios in

which spatio-temporal constraints can not be used, e.g., objects moving arbitrarily in the

non-overlap region, only “tracking by recognition” approach can be employed, which uses

the appearance and the shape of the object to recognize it when reappears in a camera view.
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2.6 Conclusions

In this chapter, we present an extensive survey of object tracking methods and also give a

brief review of related topics. We divide the tracking methods into three categories based

on the use of object representations: namely, methods establishing point correspondence,

methods using primitive geometric models and methods using contour evolution. Note that

all these classes require object detection at some point. For instance, the point trackers

require detection in every frame, whereas geometric region or contours based trackers require

detection only when the object first appears in the scene. Recognizing the importance

of object detection for tracking systems, we include a short discussion on popular object

detection methods. We provide detailed summaries of object trackers, including discussion on

the object representations, motion models, and the parameter estimation schemes employed

by the tracking algorithms. Moreover, we describe the context of use, degree of applicability,

evaluation criteria and qualitative comparisons of the tracking algorithms. We believe that

being the first survey in object tracking area with a rich bibliography content, can give

adequate insight the readers into this important research topic and encourage new research.
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CHAPTER 3

VISUAL FEATURES

Selecting the right features plays a critical role in tracking. In general, the most desirable

property of a visual feature is its uniqueness, so that the objects can easily be distinguished in

the feature space. In general, many tracking algorithms use a combination of these features.

The most common features used during the last two decades are color (intensity) and texture.

Color feature is primarily generated by the reflectance of the light from the object surface.

The texture feature measures the variation of the color. Besides color and texture, edge and

optical flow are also used to represent the objects. Edges are generated by the strong changes

in image intensities. Similar to the texture feature, edges are less sensitive to illumination

changes compared to the color feature. Optical flow represents a dense field of displacement

vectors which defines the translation of each pixel in a region. It is from the brightness

constraint, which assumes “brightness constancy” of corresponding pixels in the consecutive

frames [HS81].

In this chapter, we discuss color and texture features in detail due to their relevance to

the proposed tracking methods proposed in Chapters 4 and 5. We will also summarize the
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approaches to model these features. In addition, we will discuss possible methods on fusing

a subset of these features for increasing the robustness of methods.

3.1 Color

The apparent color of an object, which is the visible spectrum of light, is influenced primarily

by the following physical factors:

• The spectral power distribution of the illuminant, and

• The surface reflectance properties of the object.

In digital images, the physical properties are mapped into a predefined color space composed

of several bands, such as the three primary colors of light: Red (R), Green (G), and Blue

(B). The RGB color space is highly correlated and is not a perceptually uniform color space,

i.e., the difference between the colors in the RGB space does not correspond to the color

differences perceived by the humans [Pas01]. There are various other spaces to represent the

color. Common color spaces used in literature are RGB, HSI (hue, saturation, intensity),

HSV (hue, saturation, value), YIQ (Y-axis, in-phase, quadrature) etc. These color spaces

are usually sensitive to noise [SKP96]. There are also less common color spaces, which are

tuned according to the application they are used in. For instance, RGS, which was used in

[ED01], produces two chromaticity components, which are normalized red and green values

and a lightness component, S, which represents the strength of illumination. Chromaticity
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components have been used for various vision applications because of their property of being

minimally effected by illumination variation, similar to the H and V components of HSV

color space. RGS color model is simply computed by

r =
R

R +G+B
, g = G

R+G+B
, s =

R +G+B

3

The small letters for the RGS model components are used for distinguishing them from the

RGB model. In Figure 3.1, we show the components of the RGS color space.

(a) (b)

(c) (d)

Figure 3.1: (a) RGB image. (b) r, (c) g, (d) s components of the RGS model.
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3.1.1 Modeling Color

Modeling color aims at selecting the right representation of the color content of an image.

In general, the performance of color based trackers degrades due to illumination variation.

However, it has been shown that in practice color based approaches have reasonable perfor-

mances [CRM00, CM99, YSL01]. Common approaches for color modeling are:

• Object template: contains raw color values in a rectangular patch. Object templates

have been successfully used in tracking facial features [KP02], object tracking and

recognition [Ols00], etc. However, they are only good for tracking for very short du-

rations, and since color values may change, they perform poorly for longer durations

[JFE01].

• Histogram: captures the distribution of color in an image or a patch. The color space

is quantized into several discrete bins, and the number of pixels with the same color are

recorded in the corresponding bin. Histogram is widely used for image segmentation,

object recognition, object tracking etc.

• Simple parametric model: The data is usually modeled by a single kernel (filter). The

most common model used in this context is the Gaussian kernel with two unknown

parameters: mean and standard deviation. Data is used to compute the model un-

knowns.
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• Mixture models: The most common parametric model is the mixture of Gaussians,

whose parameters are computed using the Expectation Maximization (EM) algorithm.

Mixture of Gaussians represent the data better than the single Gaussian models, how-

ever the computation cost of estimating model parameters is usually more expensive.

In addition, number of components used to represent the data is hard to estimate.

• Kernel density estimate: is the general form of histograms, which produce continuous

density estimate. Since there are no parameters to estimate it is the most efficient

model. Usually, model is generated by storing all observations of the data, and assum-

ing every individual observation is itself a distribution modeled by a simple parametric

model such as Gaussian and Epanechnikov. For an input datum the probability that

it comes from that kernel density estimate is computed by summing the probabilities

computed from individually modeled observations. Kernel density estimation has been

successfully used in object tracking [CRM00, YS02a, YSL01].

Depending on how the color is utilized, the resulting feature space can be variant to scene

deformations (templates) and may not hold spatial relationships between colors (histograms,

kernel density estimates). To introduce spatial relationship between colors, various re-

searchers modeled both the spatial position and color using nonparametric models [KS01,

HE02, CM99].

Among different approaches, in the context of tracking objects, we used the kernel density

to model the color due to its flexibility. For instance, template based models are usually
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prone to changes in shape or color of the object. The mixture models are expensive to

compute, and the number of components used affects the quality of the model. In addition,

it was demonstrated in [JR02] that the performance of histogram is better than a mixture

model in context of skin color modeling. In contrast to histograms, kernel density estimates

model non-uniformly distributed data continuously similar to a parametric model and is

statistically a better choice [Fuk90].

Kernel density estimation can be computed using the multivariate kernel K(x) by:

f̃(x) =
1

nhd

n∑

i=1

K(x− xi),

where d is the dimension of data (for RGS space d = 3 and for gray level images d =

1), and h is the bandwidth of the kernel. If the kernel is chosen to be a uniform kernel,

density estimation will reduce to a histogram, which is a discrete density estimate. To obtain

continuous density estimates other kernels can be used including: Gaussian, Triangular, Bi-

weight or Epanechnikov. The Epanechnikov kernel is given by:

K(x) =

{ 1
2
c−1
d (d+ 2)(1− ‖ x ‖2) if ‖ x ‖< 1

0 otherwise

,

where cd is the volume of unit d-dimensional sphere. Among various kernels, this kernel yields

minimum average global error between the estimate and the true density [CRM00, Sco92].

In Figure 3.2, since visualization is easier, we present the histogram (a) and kernel density

estimation (b) of brightness of an image. Note that, the histogram is discrete and as seen in

Figure 3.2b it produces a noisy estimate. However, kernel density (Figure 3.2c) produces a

continuous and smooth estimate.
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Figure 3.2: (a) Color image. (b) Histogram (250 bins) and (c) kernel density estimate of the

intensity values (gray level image).

3.2 Texture

Texture is a measure of the variation of the intensity of a surface, quantifying properties

such as smoothness, coarseness and regularity [HO85]. It’s often used as a region descriptor

in image analysis and computer vision. Compared to color, texture usually require a post
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processing step to generate texture descriptors, which are generally illumination invariant.

There are various approaches to measure the texture.

• Gray level co-occurrence matrix (GLCM) defines a two dimensional histogram that

shows the occurrence of intensities in a specified direction and specified distance [HSD73,

Lam96]. Since GLCM is based on raw color intensities, it changes as the illumination

changes.

• Law’s texture measures are computed by convolving the image with 25 two-dimensional

filters generated from five one-dimensional filters corresponding to level, edge, spot,

wave and ripple [Law80]. This approach requires very heavy computation due to

convolution of the image with 25 two-dimensional filters.

• Filter banks have been the most popular texture measures during the last decade.

Generally, a selection of filters (high-pass, low-pass or bandpass), which are composed

of various scales and orientations, are applied to the image. Commonly used filters in

this regard are different families of wavelets [Mal89], steerable pyramids [FA91] and

bank of bandpass filters [JF91, BB94]. For a good reference on degree of discrimination

of most filter based approaches suitable for infrared imagery, interested readers are

directed to [YSS03, Bov91].

Due to better modeling performance (as outlined in [YSS03]), we use the steerable pyra-

mids for texture representation. Steerable pyramids are multi-scale and multi-oriented linear

basis, where the resulting filter coefficients are complex valued. The real and the imaginary
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parts correspond to even and odd basis [FA91, GBG94, PS00]. Compared to using other

filter banks, steerable pyramids perform a polar-separable decomposition in the frequency

domain, thus allowing independent representation of scale and orientation. Using steerable

pyramid filters, the image can be divided into its residual high-pass band (HP), multi-scale

low-pass bands (LPi) and multi scale sub-bands (BPi) as depicted in Figure 3.3. The recur-

sive steerable pyramid representation of an image is obtained by first convolving an image

with a high-pass filter, following by a low-pass filter and finally convolving the low-pass re-

sponse with a set of band-pass filters. This process of filtering continues by low-pass filtering

subsampled response again iteratively, until a desired resolution is obtained.

Selecting the right filters for sub-band analysis plays a critical role in statistical modeling,

which will be discussed in the next section. Usually, sub-bands are obtained using oriented

filters, such as Gabor filters or Gaussian derivative filters. In order to have a disjoint feature

space, such that the sub-bands are independent, we adopt the Gabor wavelets, which creates

an orthonormal sub-band basis. Gabor wavelets are Gaussian modulated sine and cosine

gratings:

Gi(x, y) = e−π[x2/α2+y2/β2] · e−2πi[u0x+v0y]

where α and β specify effective width and height, while u0 and v0 specify the modulation of

the filter [BB94].
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Figure 3.3: Steerable pyramid representation of an image. HP refers to the high-pass filter,

LP0 and LP1 refer to low-pass filter, BP0, BP1,...BPK refer to band-pass filters. The images

on the right are the magnitude responses of the band-pass filters for the input image given

on the left.

3.2.1 Modeling Texture

A common texture representation is to create a multi dimensional feature vector obtained

from various directional filters. This representation is then modeled using various models.

For instance, Fleet et al. used the mixture model of phase response of Gabor filters in context

of tracking [JFE01]; similarly Do and Vetterli used a single Gaussian model of wavelet

decomposed textures for texture retrieval [DV02]; in the texture recognition field Leung

used k-means clustering of magnitude response of various filter banks [Leu01]; Paragios and
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Deriche used mixture model of magnitude of Gabor filter banks for texture based segmentation

[PD02], similarly Hofmann et al. used local histograms of multi-scale Gabor filter banks

[HPB98] for the same problem.

Similar to color, PDF s for orthonormal texture can be generated using kernel density

estimation. However, in contrast to the color, since the size of the non-parametric model

is not known, non-parametric density estimate is not efficient for modeling the texture. An

alternative to non-parametric models is to use parametric models, such as mixture of Gaus-

sians [JFE01, PD02]. In a mixture model, the probability of observing a value x is computed

using model parameters (µk and σk for Gaussian) and a priori component probabilities, Pk,

from:

p(x|Θ) =

CN∑

k=1

Pk pk(x|µk, σk), (3.1)

where Θ = {Pk, µk, σk : k = 1 . . . CN}. In Equation 3.1, the primary unknowns are the

a priori component probabilities Pk, the mean µ and the standard deviation σ for each

component and the secondary unknown is the number of components CN . We select the

number of components, CN , manually, and the rest of the unknowns are computed using the

Expectation Maximization (EM) algorithm outlined in [DH73] for the 2-dimensional space

of complex filter responses. In Figure 3.4, a sample texture and its Gaussian mixture model

in 2D are shown.
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Figure 3.4: Sample texture (top image). Four boxes represent the four bandpass filter

responses using Gabor wavelets in four directions. Inside each box, the first row is the

magnitude of the response, second row is the phase response and last row is their mixture

model computed using the EM algorithm for CN = 2.

3.3 Local Intensity Deviation (LID) Feature

Local intensity deviation generates better object representations for very small objects (of

size five to ten pixels) compared to the steerable pyramid, which smooths the image and

loses the objects. The LID is computed for each pixel, xi, in its neighborhood defined by M
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using:

S(x) =

√
1

|M | − 1

∑

xi∈M

(I(xi)− I(x))2, (3.2)

where I : N
2 → N

1 is the imaging function. Although the size of the window affects

the performance, from our experiments, we found out that fixing it to 5x5 results in better

performance for small objects. In Figure 3.5, we show the standard deviation image generated

using Equation 3.2. As can be seen, the object regions are clearly emphasized.

(a) (b)

Figure 3.5: Local standard deviation feature: (a) input image, (b) resulting local standard

deviation.

Following the descriptions for the color modeling given in Section 3.1.1, we model the

LID using kernel density estimation, where the kernel is the Epanechnikov kernel.
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3.4 Fusing Features

Fusing various features is usually performed to enhance the decision making process of

method proposed for a vision problem (segmentation, tracking, recognition etc.) and it

has long been considered by researchers in the field. In [Bla92, TAE98, KS01, HE02], the

authors used motion, brightness and/or boundary cues for segmentation of layers in a video.

In [JFE01], Fleet et al. used phase response of Gabor filter along with spatial pixel infor-

mation for object tracking. Possible approaches to combine features are

• Cascaded integration,

• Supervised late integration,

• Unsupervised early integration.

Without loss of generality, we will discuss the integration methods on a simple two-class

classification problem, such that an object can either be from class A or class B.

3.4.1 Cascaded Integration

Based on only one feature, classification of an object can easily be performed by the certainty

of assigning the object to class A or class B. An intuitive extension to this, upon availability

of an additional feature, is to increase or decrease the certainty computed by the first feature

and reclassify the object, such that additional feature is cascaded to the first one. In some
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cases with more features, the certainty can be increased. In [Bla92] and [TAE98], the authors

followed this approach and considered each feature one at a time in different steps of the

algorithm. For instance, Black [Bla92] first used intensity to classify pixels in the image,

and refined the classification by introducing motion information based on coherent motion

assumption for pixels that belong to the same region. In Figure 3.6, we show this coarse

to fine approach. One important property is that the decision may change at every step

according to the certainty of the feature.

Figure 3.6: Cascaded integration decision flow.

The basic disadvantage of cascaded information is that the features are equally weighted

and the decision can change at every step of the flow. In addition, using features one at a

time results in a dependency of the current classification on previous steps, which may be

erroneous.
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3.4.2 Supervised Late Integration

For some classification problems a set of features might have more priority than the others.

In such cases, we may want to weigh them more than the others, where the weights need to

be defined manually. Due to the weighting mechanism, the final decision on classification is

deferred until all the features are considered.

For instance, in the context of video segmentation, Khan and Shah [KS01] combined

the features through manually assigned weights, which emphasized some features more than

others in a linear opinion polling scheme. Their method uses a semi-automatic weight

assignment depending on the observation that brightness feature is more stable along object

boundaries. Similarly, Yilmaz et al. [YSL01] used convex combination of brightness and

texture for tracking in infrared imagery, where the weights were manually defined.

The decision flow of the late integration approach (which is also called as linear opin-

ion polling) is given in Figure 3.7. As observed, the decision for each feature is obtained

independent of the others, and they are combined with manually defined weights, using:

P (α|x) =
∏

β

(
P (x|α)p(α)

p(x)

)
,

where α = {A,B} (the set of classes) and β is the set of features (texture, color, motion,

etc.).
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Figure 3.7: Supervised late integration decision flow.

3.4.3 Unsupervised Early Integration

Due to the manual weighting scheme in linear opinion polling, undiscriminative features

might have equal or even higher weights, which may lead to false classification. This problem

can be solved by unsupervised early integration (independent opinion polling). Independent

opinion polling strategy relies on combining independent features according to their discrim-

ination power and is evaluated prior to classification. To simplify the discussion, let there

be two classes, namely the object and the background classes, and a pixel can be in either of

the classes. The total likelihood of the observations for the object or the background model

is given by

p(x|Mα) =
∏

β

p
β
(x|Mα,β)

where α ∈ {object, background}, β ∈ {color, {steerable sub-bands}} and x is spatial vari-

able (pixel coordinate). Using the Bayes’ rule, a posteriori estimate of membership can be

90



computed using,

p(α|x) =

∏
β pβ

(x|Mα,β)p(α)∑
α

∏
β pβ

(x|Mα,β)p(α)
(3.3)

It can easily be observed from Equation 3.3 that features which are not discriminative will

have equal membership probabilities; whereas the discriminant features will be emphasized.

The decision flow of this scheme using the Equation 3.3 is presented in Figure 3.8. As can be

observed all the features are combined together prior to any decision making and the output

of this combination is used for the final decision making process.

Figure 3.8: Unsupervised late integration decision flow.

Late unsupervised integration has been successfully used in the context of video seg-

mentation in [HE02, TSA01]. In this thesis, we extend this scheme to the object tracking

problem for fusing different visual cues.
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3.5 Summary

There are various features that can be used for representing objects, such as color, depth,

motion and texture. Since most of the computer vision problems are ill-posed, more features

increase the robustness of solutions. In this chapter, we summarized the color, texture and

local standard deviation features and discussed possible models used in the vision community.

In addition, possible approaches on how to fuse subsets of these features is detailed. In the

rest of the thesis, we will use these features to represent the objects for both of the proposed

object tracking approaches.
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CHAPTER 4

OBJECT TRACKING IN INFRARED IMAGERY

CAPTURED FROM AIRBORNE VEHICLES

Detection and tracking of moving or stationary objects in forward looking infrared (FLIR)

imagery are challenging research topics in computer vision. Though a great deal of effort

has been expended on detecting and tracking objects in visual images, there has been only

limited amount of work on thermal images in the computer vision community.

The thermal images are obtained by sensing the radiation in the infrared (IR) spectrum,

which is either emitted or reflected by the object in the scene. Due to this property, IR

images can provide information which is not available in visual images. However, in contrast

to visual images, the images obtained from an IR sensor have extremely low signal to noise

ratio (SNR), which results in limited information for performing detection or tracking tasks.

In addition, in airborne FLIR images, non-repeatability of the target signature, competing

background clutter, lack of a priori information, high ego-motion of the sensor and the

artifacts due to the weather conditions make detecting or tracking objects even harder.
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In this chapter, we present an approach for real-time object tracking in FLIR imagery

in the presence of high global motion and changes in target features, i.e., shape and inten-

sity. Moreover, the objects are not required to have constant velocity or acceleration. The

proposed tracking algorithm uses the positions and the sizes of targets determined by the

object detection scheme. For object detection, we apply steerable filters and compute texture

energies of the objects, which are located using a segmentation based approach. Once the

objects are detected, the tracking method employs three modules to perform tracking. The

first module, which is motivated from [CRM00], is based on finding the translation vector in

the image space that minimizes the distance between the distributions of the model and the

candidate. The distributions are obtained from the intensity and local standard deviation

measure of the frames. The local standard deviation measure is obtained in the neighbor-

hood of each pixel in the frame and provides a very good representation of frequency content

of the local image structure. Based on the distance measure computed from the object fea-

ture distributions, the other two modules compensate for the sensor ego-motion and update

the object model. The global motion estimation module uses the multi-resolution scheme of

[BAH92] assuming a planar scene under perspective projection. It uses Gabor filter responses

of two consecutive frames to obtain the pseudo-perspective motion parameters.
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4.1 Tracking Model

The probability density functions (PDF) of color or LID features as described in Section 3.1.1,

do not contain spatial relationship of the intensities. To incorporate spatial information,

kernel density estimation is defined by cascading two Epanechnikov kernels. The first kernel

is used to define the spatial relationship of the feature using the Euclidean distance of its

spatial position from the object centroid, i.e., we place a two-dimensional kernel centered on

the object centroid and the kernel values as spatial weights. Two-dimensional Epanechnikov

kernel is given by

K2(x) =

{ 2
πh2 (h

2 − xTx) xTx < h2

0 otherwise

,

where h is the radius of the kernel [CRM00]. The second kernel is used as a weighing factor

in the feature histogram, i.e., we place a one-dimensional kernel centered on the feature value

and use the kernel values as weights. One dimensional Epanechnikov kernel is given by

K1(x) =

{ 3
4h

(h2 − x2) x < h

0 otherwise

,

such that
∫ h

−h
K1(x)dx = 1. Using the cascaded kernels, density estimate of feature u for an

object can be estimated from

P (u) =

∑n
i=1K1 (I(xi)− u)K2(xi −m)

C
, (4.1)
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where C is the normalization constant, C =
∑n

i=1K2(m − xi) and the bandwidths, h1 and

h2 for both kernels are specified separately. Note that, the discussion presented here does

not deal with fusing the different features as discussed in Section 3.4.

4.2 Methodology

Assume that the object first appeared in the 0th frame, and m0 denotes its center. To

track the object in the succeeding frames, kernel density estimates of each bin for both the

intensity, QI , and the LID, QS, of images are computed using Equation 4.1.

Using the object model defined in Section 4.1, one possible way to find the object position

in the current frame is to search neighboring regions for a distribution similar to the model

computed for different scales of two-dimensional kernel in the neighboring regions [YS02a].

Although compared to template matching based methods, such an approach is more stable

to changes in the object features such as shape, it is still computationally expensive. Rather,

we will locate the object position directly by minimizing the distance between the model and

the candidate PDF s, which is defined by

d(m) =
√

1− ρ(m), (4.2)

where ρ(m) is the modified Bhattacharya coefficient which fuses the information obtained

from the two different modalities: intensity and LID. Considering Equation 4.2, the modified

Bhattacharya coefficient can also be interpreted as a likelihood measure between the model
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and the candidate distributions, and is given by

ρ(m) =
b∑

u=1


λ

√
PIu

(m)QIu︸ ︷︷ ︸
intensity based

+(1− λ)
√
PSu

(m)QSu︸ ︷︷ ︸
stdv. based


 ,

where b is the number of bins common to both the intensity and LID distributions and

λ ∈ [0, 1] is the parameter which balances the contribution of intensity and LID features.

Expanding ρ(m), the likelihood, using Taylor series around previous object position m0

gives:

ρ(m) = ρ(m0) +
1

4C

n∑

i=1

K2(m− xi)

( b∑

u=1

K1(I(xi)− u)
√

QIu

PIu
(m0)

+

b∑

u=1

K1(S(xi)− u)
√

QSu

PSu
(m0)

)
, (4.3)

where S(xi) denotes the normalized LID measure computed using Equation 3.2. Discarding

the constant terms in Equation 4.3, the likelihood of each pixel belonging to the object can

be defined by the following function:

ψi =
n∑

i=1

K2(m− xi)

( b∑

u=1

K1(I(xi)− u)
√

QIu

PIu
(m0)

+

b∑

u=1

K1(S(xi)− u)
√

QSu

PSu
(m0)

)
, (4.4)

where i = 1 . . . n. In order words, ψi denotes the likelihood of the object in the spatial kernel

defined by K2. Here, we assume ψ is normalized such that
∑n

i=1 ψi = 1. Starting from the

center of a differentiable kernel like K2, a hill-climbing scheme can be used to maximize the

likelihood of the object. During the maximization, density estimate given by

f
K
(m) =

1

nhd

n∑

i=1

K(xi −m), (4.5)
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will have a gradient direction, ∇̂f , pointing to the new kernel center at every iteration

[Che95, FH75]. In Equation 4.5, m is the center of a d-dimensional kernel, and n is the

number of points inside the kernel. Translating the image origin to the kernel center, such

that m = 0, the mean shift vector is given by

m1 = m0 +
4

πh4

n∑

i=1

ψixi, (4.6)

where m1 is the new object position.

The scheme outlined above can be used for tracking objects whose features remain con-

stant throughout the sequence. However, in general, objects don’t exhibit constant brightness

or contrast, thus the object feature distributions may change. The following section presents

a solution to overcome this shortcoming.

4.3 Object Model Update

During the course of tracking, object features may abruptly change. The simplest way to

change the object model is to periodically update the feature distributions. However, due to

the low contrast of an object with its background, which usually occurs in FLIR imagery, the

update may not necessarily occur when the object is correctly localized. Another straight

forward solution is to change the object model using a constant threshold on the similarity

metric used in tracking. For instance, for correlation based methods, the model can be

updated if the correlation of the model with the object is higher than a threshold. Similarly,
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for the method outlined in Section 4.2, the model can be updated if the distance calculated

in Equation 4.2 is lower than a threshold [YSL01]. The problem with this is to select the

right threshold for all the sequences, i.e., a particular threshold may work very well for one

sequence, but may fail for others.

The model can be automatically updated using sequence-specific information about the

rate of change of object features, which can be computed using the distance measure given

in Equation 4.2. In our implementation, the object model consists the object intensity and

the LID distributions. The rate of change for object intensity and LID differs from one

sequence to another. To utilize sequence-specific changes of the object features over time,

the distribution of the distance (see Figure 4.1 for an example distribution) is modeled

by a Gaussian distribution. The Gaussian distribution parameters, mean µ and standard

deviation σ, are updated at each frame using:

µk =
(k − 1)µk−1 + dk

k
, (4.7)

σ2
k = σ2

k−1 + (µk − µk−1)
2 +

dk − µk

k − 1
, (4.8)

where k denotes the current frame number. The decision whether to update the model is

made based on the current value of the distance dk, i.e., if dk < mk− 2σk, then object model

is updated. This scheme guarantees that the model is updated if the object distribution

change is within the acceptable range for a particular sequence. For instance, for a sequence

where the object distribution changes very rapidly, such that the µk and σk are high, the

acceptable range for model update will be wide.
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Figure 4.1: The histogram of distances calculated using Equation 4.2, and Gaussian model

fitted to the distribution.

In Figure 4.2, distances between the model and the object distributions with and without

model update are shown. In Figure 4.2a, the big jumps in the distance plot are due to the

intensity change of the object for some parts of the sequence. These problems are corrected

by model updating as shown in Figure 4.2b. More results are given in Section 4.6

4.4 Ego-Motion Compensation

The main limitation of the mean-shift based tracker is that at least some part of the object

in the next frame should reside inside the kernel [CRM00]. FLIR sequences obtained via

an airborne moving platform suffer from abrupt discontinuities in motion due to sensor

ego-motion. Because of this, the output of the tracker becomes unreliable, and requires

compensation of the sensor ego-motion.
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Figure 4.2: Distribution of the distances computed (a) before model update, (b) after model

update.

There are several approaches presented in the literature for ego-motion (global) compen-

sation. However, they are not directly applicable to FLIR imagery due to lack of texture and

low SNR. For instance, we have noted that motion compensation using the intensity values

does not result in good estimation of motion parameters.

Therefore, we employ images filtered by 2D Gabor filter kernels, which is given in Section

3.2. In our implementation, we used the real parts of the Gabor responses for four different

orientations. The responses of the Gabor filters are then summed and used as the input for

the global motion compensation module. In Figure 4.3, we show a selected frame from one

of the infrared sequences along with its Gabor response.
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(a) (b)

Figure 4.3: (a) Sample frame from one of the infrared sequences, (b) summation of four

Gabor responses of the frame in (a).

To compensate for the global motion, we employ the multi-resolution framework of

[IA98b]. The compensation method uses the pseudo-perspective motion model given by:

u = a1 + a2x+ a3y + a4xy + a5x
2,

v = a6 + a7x+ a8y + a4y
2 + a5xy,

where a1 . . . a8 are motion parameters, (x, y) is the position of a pixel in image plane and

(u, v) is the optical flow vector. Pseudo-perspective motion model provides a better estimate

of the motion for the planar scenes in closing FLIR sequences compared to simpler motion

models such as the affine, which fails to detect skew, pan and tilt in planar scenes. Rewriting

the pseudo perspective motion of the sensor between two images in the matrix form we have:

U = Ma, (4.9)
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where U = (u, v)T is the optical flow, a = (a1, a2, a3, a4, a5, a6, a7, a8)
T and

M =




1 x y xy x2 0 0 0

0 0 0 y2 xy 1 x y


 .

Optical flow can be computed using the optical flow constraint equation given by

FT
XU = −ft, (4.10)

where FX = (fx fy)
T is the spatial gradient vector and ft is the temporal derivative.

Combining Equations 4.9 and 4.10 results in a linear system that can be solved using the

least squares method as

(∑
MTFXFX

TM

)
a = −

∑
ftM

TFX. (4.11)

In Figure 4.4, we show two successive frames Ik and Ik+1, their difference Ik+1 − Ik,

the compensated global motion, i.e., first frame registered onto the second frame, I ′k using

Equation 4.11, and the difference I ′k − Ik+1. As it is clearly seen, the frames are correctly

registered.

Compensating for sensor ego motion in images lacking adequate gradient information

suffers from the biased estimation of the motion parameters. Especially for FLIR imagery,

background clutter and lack of texture increase the possibility of estimating incorrect param-

eters. Based on these observations, it is important not to perform motion compensation for

every frame. Similar to the scheme described in Section 4.3, we compensate for the global

motion if the distance (computed using Equation 4.2) dk > mk + 2σk, where mk is the mean
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(d) (e)

Figure 4.4: (a) The reference frame Ik, (b) the current frame Ik+1, (c) the difference image

obtained using (a) and (b). Note the large bright spots due to miss registration. (d) First

frame registered onto the second frame, i.e., global motion is compensated, (e) the difference

image obtained using (b) and (d).

and σk is the standard deviation of di for i < k. This scheme guarantees compensation of

global motion if the object distribution changed drastically for a particular sequence, such

that the tracker fails to locate the object.
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Once the projection parameters, a, are computed by solving the system of equations given

in Equation 4.9, we apply the transformation to the previous object center and compute the

approximate new candidate object center using mk = mk−1 + U.

We then perform the mean shift computations in the neighborhood of the new object

position to increase the likelihood of the object model and the new candidate model.

4.5 Algorithm

In our algorithm, we assume that the object first appeared in frame 0, and the current frame

is k. The model distributions for intensity and LID are denoted by QI and QS respectively.

Similarly, we denote the candidate distributions for intensity and LID for frame k+ 1 by PI

and PS respectively. The distance between the model and candidate distributions is referred

to as dk.

For the detected objects (by one of the methods described in Section 2.3), the algorithm

executes the following steps to perform tracking in frame k. In our framework, we used the

“Feature Clustering” approach for target detection, which is discussed in Section 2.3.3.

1. For the detected objects compute QI and QS using equation 4.1.

2. Initialize object center in frame k using the previous object center and compute dis-

tributions PI and PS.

3. Iteratively compute the modified mean shift vector using Equations 4.4 and 4.6.
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4. Compute distance dk (Equation 4.2), and go to step 2 until the change of dk in each

iteration is close to 0.

5. If dk < mk−1 − 2σk−1 update QI and QS else if dk > mk−1 + 2σk−1 compensate for the

global motion.

6. Update the distance distribution parameters mk and σk using Equations 4.7 and 4.8

then return to step 2.

Since each detected object in the scene has its own distribution model, the above track-

ing algorithm also performs tracking under partial occlusion. We do not address complete

occlusions.

4.6 Experiments

We have applied the proposed tracking method to the AMCOM FLIR data set, which was

made available to us in gray-scale format and has 41 sequences where each frame in each

sequence is 128x128. The AMCOM data set is a very challenging data set. The original

mean shift method fails to track the targets, due to presence of high sensor ego motion and

noise in intensity feature, for most of the sequences provided in the dataset.

The proposed approach was developed in C++ on a Pentium III platform and the current

implementation of the algorithm is capable of tracking at 10 fps. We used object detection

methods where applicable, in other cases (for instance, dark objects), we manually marked

106



the object and performed tracking. We used 64 bins to construct distributions of the intensity

and the LID feature PDFs.

In this section, we show the robustness of our approach using both the model update and

motion compensation modules and present results on sequences which have low SNR and high

global motion. In the results, rather than showing every 10th or 15th frame, we selected repre-

sentative frames from these sequences to demonstrate motion of the objects. The positions of

the objects in the sequences presented here are visually verified. For complete video sequences

of results please visit Mean Shift www.cs.ucf.edu/ vision/projects/MeanShift/MeanShift.html.

4.6.1 Object Tracking for Mobile Camera

In Figures 4.5, 4.6 and 4.7, we present the tracking results for sequences rng17 01, rng14 15

and rng19 07 respectively. The tracked objects in the images are marked by circles. In all

three sequences, despite the fact that the objects look very similar to their backgrounds,

their positions are correctly tracked.
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Figure 4.5: Tracking results for sequence rng17 01, frames 1, 17, 35, 53, 70 and 115.

Figure 4.6: Tracking results for sequence rng14 15, frames 1, 60, 128, 195, 237 and 271.
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Figure 4.7: Tracking results for sequence rng19 07, frames 129, 138, 144, 159, 174 and 189.

4.6.2 Tracking Under High Sensor Ego-Motion

In Figure 4.8, we present the results that demonstrate the importance of using global motion

compensation and automatic model update for two sequences. In the figure, first columns

of both part (a) and part (b) show the tracking results where we neither update the object

model nor compensate for global motion. The correct object positions are marked by ’×’,

whereas the detected object positions are marked by circles. Specifically in Figure 4.8a,

the sensor ego-motion causes an abrupt change in the object position and the object is lost

without global motion compensation; however as can be seen from the second column, the

object is correctly located using the global motion compensation module. In Figure 4.8b,

due to changes in object distribution over time and low SNR of the object, (as it is clear from

the first column) the tracker loses the object when it does not perform the model update.
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However, as shown in the second column the model update improves the performance and

the object is correctly tracked.

4.6.3 Tracking Cold Infrared Objects

In Figure 4.9, tracking results for cold objects are shown. Since the detection method

only detects hot objects, the sizes and positions of the objects are manually initialized.

In both sequences, rng18 07 (part (a)) and rng18 03 (part (b)), the objects have very low

contrast with the background and particularly in part (b) neighboring locations hide the

object due to high gradient magnitude. Using both the intensity and the LID measures

together improved the tracking performance for both sequences. In particular, for sequence

rng18 07 the algorithm was able to track the object successfully even in presence of very

high variation in the intensity levels.

4.6.4 Tracking Multiple Objects

To demonstrate the multiple object tracking capability, we also applied the tracking method

to sequences with multiple objects. In Figures 4.10, 4.11 and 4.12, tracking results are
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presented for sequences rng16 07, rng19 NS and rng16 18. As seen from the results, the

objects are correctly tracked. Note that we do not address the complete occlusion problem.

4.7 Conclusions

We propose a robust approach for tracking targets in airborne FLIR imagery. The track-

ing method requires the position and the size of the target in the first frame. The target

detection scheme, which is used to initialize the tracking algorithm, finds target candidates

using fuzzy clustering, edge fusion and texture measures. We employ a texture analysis on

these candidates to select the correct targets. The experimental results for 200 target and

200 non-target regions that were manually marked show that “steerable filters” have bet-

ter categorization performance compared to “Law’s texture measures” and “wavelet filters”.

Once the targets are detected, the tracking system tracks the targets by finding the transla-

tion of the target center in the image space using the intensity and local standard deviation

distributions. According to the distribution of the distance calculated from target model

and distributions of the new target center, the algorithm decides whether a model update or

global motion compensation is necessary. Sensor ego-motion is compensated for two consec-

utive frames assuming the pseudo-perspective motion model. The results demonstrated on
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sequences, which have low SNR and high ego motion, show the robustness of the proposed

approach for tracking FLIR targets.
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(a) (b)

Figure 4.8: The first and the second columns show results with and without global motion

compensation and model update respectively. (a) Sequence rng15 20, (b) sequence rng22 08.

The correct positions are marked by ×, and the detected positions are marked by ©.
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(a)

(b)

Figure 4.9: Object tracking results for cold objects: (a) sequence rng18 07, frames 113, 135,

181, 204, 229 and 259, (b) sequence rng18 03, frames 11, 39, 63, 91, 119, 154 and 170.

114



Figure 4.10: Tracking results for multiple objects in sequence rng16 07, frames 226, 241, 253,

274, 294 and 386.
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Figure 4.11: Tracking results for multiple objects in sequence rng19 NS, frames 208, 215,

231, 253, 267 and 274.
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Figure 4.12: Tracking results for multiple objects in sequence rng16 18, frames 1, 20, 40, 60,

79 and 99.

117



CHAPTER 5

CONTOUR BASED OBJECT TRACKING WITH

OCCLUSION HANDLING

In the previous chapter, we proposed an object tracker which used primitive geometric

shapes, and was able to track the object’s centroid. However, tracking objects centroid or

an object region defined by simple geometric shapes is not adequate for high level vision

tasks, such as fine level action recognition and behavior analysis, where detailed modeling

of the shape deformation during an action is required. We believe, complete object contours

(see Figure 2.1) are the best two-dimensional representations for performing high-level vision

tasks. In this chapter, we propose a contour based object tracking method (see Section 2.4.3

for details on contour tracking), which tracks the complete object contours in video acquired

using mobile cameras.

The flow diagram of the proposed method is given in Figure 5.1. The proposed method

can track multiple objects, handle occlusions, and adapt to changing object and background

appearances by applying on line models. We model the color and texture of the objects

and their backgrounds by using a semi-parametric models, where the mixing parameters are
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computed based on the strength of the discrimination of each feature. To deal with ambigui-

ties caused by object occlusions, which result in missing observations in the estimated object

regions, we use on line shape priors. Based on the appearance models, we perform discrim-

inant analysis localized around the contour and rigorously derive a new energy functional

that maximizes the likelihood of observing the object contour. Associated Euler-Lagrange

equations, which are used to minimize the energy in the gradient descent direction, result in

a system of nonlinear partial integro-differential equations of order one. To provide numeri-

cal stability during the minimization process, the contour is implicitly represented by level

sets. The robustness of the proposed method is demonstrated on real sequences with and

without complete object occlusions.

Figure 5.1: Flow chart of proposed contour tracking method.
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5.1 Bayesian Framework For Object Tracking

Tracking an object in an image sequence In : 0 < n < ∞, can be treated as discriminant

analysis of pixels on two non-overlapping classes, where the classes correspond to the object

region, Robj, and the background region, Rbck.

Without loss of generality, we can assume that in the spatial domain an image, I, is

composed of an object region, Robj (black region in Figure 5.2), and a background region,

Rbck (light gray region in Figure 5.2), such that I = R = Robj∪Rbck. The boundary (contour

shown with solid line between object and background regions in Figure 5.2), Γ, between

these two regions is defined by the intersection of the directional curves corresponding to

each region: Γ = Γobj∩Γbck, where Γobj is border of object region (curve in counterclockwise

direction of object region in Figure 5.2) and Γbck is the border of background region (curve

in clockwise direction of object region in Figure 5.2).

Background

Object

Image I

Figure 5.2: Definition of object and background regions in an image.
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Assuming that there exists an object in the image, the likelihood of observing the bound-

ary between the object and the background regions is equal to the likelihood of partitioning

the image into two regions:

P (Γ) = P (ϕ(R) = {Robj, Rbck}) , (5.1)

where ϕ is the partitioning operator [ZY96]. The posteriori boundary probability of Equation

5.1 can be used interchangeably with the posteriori probability of partitioning the space.

Thus, for frame n, we formulate the object tracking problem in terms of the boundary

probability, PΓ, defined by the probabilities of the regions, given the current image, In, and

the previous collection of object boundaries, Γi : i = 0 . . . n− 1, as

PΓ = P
(
ϕ(Rn)|In,Γn−1,Γn−2, . . . ,Γ0

)
. (5.2)

where Γ0 is the initial contour of the object.

The difference between the segmentation and the tracking is the availability of the object

in the previous sequences, which is realized in Equation 5.2 by conditioning the current

contour on previous contour observations. Using Bayes’ rule,

PΓ =
P (In|ϕ(Rn),Γn−1, . . . ,Γ0)P (ϕ(Rn)|Γn−1, . . . ,Γ0)

P (In|Γn−1, . . . ,Γ0)
. (5.3)

Note that the denominator term in Equation 5.3 represents the probability of observing

the intensity values in In given the previous contour observations, and is assumed to be

constant, since the intensities conditioned on the shape of the object do not vary. Thus in

the remainder of the derivation, we will denote

C = P
(
In|Γn−1,Γn−2, . . . ,Γ0

)
.
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The partitioning operator ϕ(Rn) results in two separate partitions namely Robj and Rbck.

Because of this, P (In|ϕ(Rn),Γn−1, . . . ,Γ0) splits into two:

P
(
In|Rn

obj,Γ
n−1, . . . ,Γ0

)
and P

(
In|Rn

bck,Γ
n−1, . . . ,Γ0

)
.

Thus the probability of observing the contour becomes:

PΓ =

object term︷ ︸︸ ︷
P
(
In|Rn

obj,Γ
n−1, . . . ,Γ0

)
background term︷ ︸︸ ︷

P
(
In|Rn

bck,Γ
n−1, . . . ,Γ0

)
shape term︷ ︸︸ ︷

P
(
ϕ(Rn)|Γn−1, . . . ,Γ0

)

C
. (5.4)

The first two terms in Equation 5.4 reflects the probability of observing the color of a pixel,

given the object and background regions along with the deformation of the contour overtime.

Once the models are generated for the object and the background regions, which takes the

past contours into account, these terms can be computed using discriminant analysis. On

the other hand, the last term is the partitioning probability purely based on the shape of

the object observed over time and is not dependent on visual features (color, texture etc.).

This term can be computed by modeling observed shapes of the object overtime. To simplify

the notion, without loss of generality, we will use PRα
(In) = P (In|Rn

α,Γ
n−1, . . . ,Γ0) : α ∈

{obj,bck} and P n
S = P (ϕ(Rn)|Γn−1, . . . ,Γ0). Thus,

PΓ =
PRobj

(In)PRbck
(In)P n

S

C
.

Holes (Figure 5.3b) or noise (Figure 5.3c) inside the object is problematic for tracking

methods (see discussion in Section 2.4). For instance, object detection methods, which are

required for point trackers, may split the region into many sub-regions and tracking will
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become errorenous. Similarly for trackers which estimate the transformation of the object

represented by simple geometric shapes, will have poor motion estimation.

Background

Object

Background

Object

Background

Object

(a) (b) (c)

Figure 5.3: (a) An object region at time t; (b) example of a hole or (c) noise appearing at

time t+ 1.

To address the problems outlined above, let there be two subregions, one inside the object

region, RΓ
obj ⊂ Robj, and the other inside the background region, RΓ

bck ⊂ Rbck, defined in

the neighborhood of the contour. In Figure 5.4, we show the defined subregions for better

visualization of the concept.

Limiting the region definition from the complete regions to the subregions shown in Figure

5.4 results in the modified contour probability, Γ′:

P ′
Γ =

PRΓ
obj

(In)PRΓ
bck

(In)P n
S

C
. (5.5)

Note that PΓ 6 P ′
Γ due to the discussion presented above. In the remainder of the paper,

we replace the contour probability PΓ with P ′
Γ in Equation 5.5, and assume that each pixel
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(a) (b) (c)

Figure 5.4: (a) The object region. (b) Selected band inside the object region, RΓ
obj defined

by the contour. (c) Selected band outside the object region, RΓ
bck.

in the image is independent of the others, such that:

P
(
In|Rα,Γ

n−1 . . .Γ0
)

= PRΓ
α
(In) =

∏

x∈Rα

Pα(In),

where α = {obj, bck}.

For x ∈ Γ, let Robj(x) and Rbck(x) denote a neighborhood of x in RΓ
obj and RΓ

bck respec-

tively, such that Robj(x) ∈ RΓ
obj and Rbck(x) ∈ RΓ

bck. Based on these subregions, we can

estimate P ′
Γ using:

P ′
Γ =

∏
x1

[ object likelihood︷ ︸︸ ︷∏

x2

PRΓ
obj

(In(x2))

background likelihood︷ ︸︸ ︷∏

x3

PRΓ
bck

(In(x3))

shape likelihood︷ ︸︸ ︷
P n

S (x1)

]

C
, (5.6)

where x1 ∈ Γ, x2 ∈ Robj(x1), x3 ∈ Rbck(x1) and P n
S is a function of the contour variable x1.

124



5.2 MAP Estimation

The maximum a posteriori estimate (MAP) of the object contour being tracked in the nth

frame, Γ̂n, is found by maximizing the probability P ′
Γ over the subsets Γ ⊂ Ω, where Ω is

the space of all possible object contours in the current frame, such that the object and the

background regions are well separated.

Based on Equation 5.6, the MAP estimate of the object contour Γ̂ can be written in terms

of the subregions defined by the contour. Thus, we have the following tracking scheme:

Γ̂n = arg max
Γ⊂Ω

∏

x1

[∏

x2

PRΓ
obj

(In(x2))
∏

x3

PRΓ
bck

(In(x3))P
n
S

]
, (5.7)

where x1, x2 and x3 are as defined above. Note that the constant C is dropped due to the

MAP estimation process.

In Equation 5.7, the band, RΓ
obj∪RΓ

bck, around the hypothesized object contour, Γ̂, serves

both as a boundary constraint (similar to boundary based active contour methods [CKS95,

KWT88]) and as a region constraint (similar to [Man02, ZY96, PD02]) and generalizes the

previously proposed contour based segmentation and tracking schemes into one framework.

The main advantages of the proposed tracking functional are:

• Noise and artifacts (holes inside the object) are not considered in the estimation,

increasing robustness,

• The boundary-based and region-based methods are generalized into one framework,
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• It allows object tracking using mobile cameras, and adapts to visual changes (due

illumination, camera motion etc.) in the object and the background features.

5.2.1 Defining the Energy Functional

A convenient way of converting a MAP estimation to an energy minimization problem is

by computing the negative log-likelihood of the probabilities. Thus, the tracking functional

proposed in Equation 5.7 can be formulated as a minimization problem with the energy

functional:

E(Γ) =

∫∫

x1

[ ∫∫

x2

Ψobj(x2)dx2

︸ ︷︷ ︸
EA

+

∫∫

x3

Ψbck(x3)dx3

︸ ︷︷ ︸
EB

− logP n
S

]
dx1, (5.8)

where x1 = (x1, y1)
T ∈ Γ, x2 = (x2, y2) ∈ Robj(x1)

T , x3 = (x3, y3)
T ∈ Rbck(x1), and

Ψobj(x) = − logPRobj
(In(x)), Ψbck(x) = − logPRbck

(In(x)).

The most important limitation of the energy functional given in Equation 5.8 is the lack

of subregion definitions Robj(x) and Rbck(x), and as a result the upper and lower bound of

the surface integrals in Equation 5.8 are not defined. To overcome this problem, we introduce

square subregions for Robj(x) and Rbck(x):

Rα(x) = {x, y | x ∈ [−m,m] ∧ y ∈ [−m,m]},

where x ∈ Γ and α ∈ {obj, bck} and Rα(Γ) = Robj ∪ Rbck. Construction of the sub-band

around the contour using square subregions is presented in Figure 5.5b.
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(b)

Figure 5.5: (a) Rectangular subregion, where bold line is the object contour and m is limit

of the rectangle. (b) Band around the object contour defined by the rectangular subregions

of (a).

A closer look at the square subregions centered around the contour, which is given pre-

sented in Figure 5.5a, shows that the membership definition is missing. Thus, if we replace

the surface integrals
∫∫

x2
and

∫∫
x3

in Equation 5.8 with the integrals in the square region,

i.e.,
∫ m

−m

∫ m

−m
, then the object and background membership is lost, due to the replacement of

variables x2 ∈ Robj and x3 ∈ Rbck. To satisfy the requirement of the membership, we define

an indicator function, 1Γ
α{x ∈ Rα}, of the form:

1Γ
α{x ∈ Rα} =





1 x ∈ Rα

0 otherwise

where α ∈ {obj, bck}. The membership definition will become more clear in the following

sections. The region defined by the square window centered around x1 can be represented
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by:

xi = x̃+ x1,

yi = ỹ + y1, (5.9)

for i = 2, 3 in Equation 5.8, x̃, ỹ ∈ [−m,m] and xi, yi ∈ RΓ
obj∪RΓ

bck. Using this new definition

of the contour band, EA and EB in Equation 5.8 becomes:

EA(s) =

∫∫ m

−m

Ψobj(x2, y2)1
Γ
obj{x, y}

dx2

dx̃
dx̃
dy2

dỹ
dỹ,

EB(s) =

∫∫ m

−m

Ψbck(x3, y3)1
Γ
bck{x, y}

dx3

dx̃
dx̃
dy3

dỹ
dỹ,

where:

dx2

dx̃
=1,

dy2

dỹ
=1,

dx3

dx̃
=1,

dy3

dỹ
=1.

After doing necessary manipulations, the energy functional given in Equation 5.8 becomes:

E(Γ) = −
∫∫

xl

Φobj(x1)⇒posteriori object log likelihood︷ ︸︸ ︷∫∫ m

−m

logPRobj
(I(x2))1

Γ
obj{x2}dx̃dỹ dx1−

∫∫

xl

Φbck(x1)⇒posteriori background log likelihood︷ ︸︸ ︷∫∫ m

−m

logPRbck
(I(x3))1

Γ
bck{x3}dx̃dỹ dxl−

∫∫

xl

S(x1)⇒shape︷ ︸︸ ︷
logP n

S dxl, (5.10)

where x1 ∈ Γ, 1Γ
bck = 1− 1Γ

obj and x2, x3 are given in Equation 5.9.
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5.2.1.1 Properties of the Energy Functional

The functional proposed in Equation 5.10 is general, and the functionals used by Mansouri

[Man02], Caselles et al. [CKS95], Zhu and Yuille [ZY96], Paragios and Deriche, [PD02],

etc. are special cases of this functional. If we drop the shape term from Equation 5.10, and

perform the necessary modifications,

• Limiting the discriminant analysis to the pixels inside the region and setting the prob-

abilities of Equation 5.10 to

Pα(x) = max
z:‖z‖6m

e−
(In−1(x)−In(x+z))

2

2σ2 ,

where z defines the circular neighborhood of a pixel and dropping the plane integrals

(due to max operation) results in the tracking scheme proposed in [Man02].

• Replacing the regional terms, Φobj and Φbck of Equation 5.10 with:

Pα(x) = e
−|∆I|2

2σ2 ,

where |∆I| is the image gradient. In addition, setting m = 1, which cancels the surface

integral terms, the method reduces to the segmentation approach of [CKS95].

• The proposed objective function can be simplified to the two region case of [ZY96] by

increasing m such that the square window covers the complete object and background

regions. In this case, the front dependent subregions RΓ
α of Equation 5.8 are changed

to region terms Rα and the requirement of introducing extra derivations to deal with

the involvement of the contour outlined in Section 5.2.1.1 can be discarded.
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• The convex combination of boundary force (around a small neighborhood of the con-

tour) and region force (similar to [ZY96]), which is proposed in [PD02], is implicitly

obtained by the band size m and the membership function 1Γ
α in Equation 5.8.

5.2.2 Minimizing the Tracking Functional

Object tracking using the Equation 5.10 requires that (starting from an initial estimate) the

final contour, Γ, of the hypothesized object, Robj has the minimum energy, E(Γ). However,

note that the energy functional given in Equation 5.8 includes fourth order integrals. In

order to simplify the solution to our problem, we will reduce the order of integrals using

Green’s Theorem, which is a form of the fundamental theorem of calculus in the context of

integrals over planar regions.

Theorem 1 Green’s Theorem: For a planar region R,
(
P (x, y), Q(x, y)

)
is any vector

field with continuous first order derivatives, then:

∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

∂R

(Pdx+Qdy) ,

where the boundary, ∂R, is traversed counterclockwise on its outside cycle, (and clockwise

on any internal cycles).

Let us define a function F such that:

F (x, y) = Φobj(x, y) + Φbck(x, y) + S(x, y) =
∂Q

∂x
− ∂P

∂y
, (5.11)
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where Φobj, Φbck and S are defined in Equation 5.10. Intuitive Q and P functions that

satisfies the requirements in Equation 5.11 are [ZY96]:

Q(x, y) =
1

2

x∫

0

(
Φobj(t, y) + Φbck(t, y) + S(t, y)

)
dt,

P (x, y) = − 1

2

y∫

0

(
Φobj(x, t) + Φbck(x, t) + S(x, t)

)
dt.

At this point, in order to use conventional minimization techniques for parametric func-

tions, let’s represent the contour by its parametric form:

Γ :





x = f(s)

y = g(s)

,

where 0 ≤ s ≤ l, l is the arc-length of Γ, f and g are the parametric curve functions, and x

and y are the variables of the region boundary, ∂R. Changing the variables of the integral

around the line given in Theorem 1, we have:

∫

∂R

(Pdx+Qdy) =

∫ l

0

(Pẋ+Qẏ) ds,

where ẋ = ∂x
∂s

and ẏ = ∂y
∂s

. Let

L(x, ẋ, y, ẏ) = P (x, y)ẋ+Q(x, y)ẏ.

Based on these derivations the contour energy functional becomes:

E(Γ) =

l∫

0

L(x, ẋ, y, ẏ)ds

= −1

2

l∫

0

y∫

0

(
Φobj(x, t) + Φbck(x, t) + S(x, t)

)
dt ẋds+

1

2

l∫

0

x∫

0

(
Φobj(t, y) + Φbck(t, y) + S(t, y)

)
dt ẏds. (5.12)
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Note that, the order of integrals reduced from four to three. The first order necessary

condition in regard to minimizing the energy functional given in Equation 5.12 is to compute

the gradient of the functional by the Euler-Lagrange equation:

δE

δx
=

∂L

∂x
− d

ds

∂L

∂ẋ
, (5.13)

δE

δy
=

∂L

∂y
− d

ds

∂L

∂ẏ
. (5.14)

Substituting the derivatives:

∂L

∂x
=
∂P

∂x
ẋ+

∂Q

∂x
ẏ,

∂L

∂ẋ
= P (x, y),

∂L

∂y
=
∂P

∂y
ẋ+

∂Q

∂y
ẏ,

∂L

∂ẏ
= Q(x, y),

and

d

ds

∂L

∂ẋ
=

d

ds
P
(
x(s), y(s)

)
=
∂P

∂x
ẋ+

∂P

∂y
ẏ,

d

ds

∂L

∂ẏ
=

d

ds
Q
(
x(s), y(s)

)
=
∂Q

∂x
ẋ+

∂Q

∂y
ẏ,

into the Euler-Lagrange Equations 5.13 and 5.14, we get:

δE

δx
=

∂Q

∂x
ẏ − ∂P

∂y
ẏ,

δE

δy
= −∂Q

∂x
ẋ+

∂P

∂y
ẋ.

The Euler-Lagrange equations given above are related to the functional F given in Equation

5.11, such that:

δE

δx
= (Φobj + Φbck + S) ẏ, (5.15)

δE

δy
= − (Φobj + Φbck + S) ẋ, (5.16)
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The Equations given in 5.15 and 5.16 are a differential system of equations that include

integral terms. Formally, they are system of partial integro-differential equations of order

one [AKZ00]:

δE

δx
=

(∫∫ m

−m

Ψobj(x)1Γ
obj{x}+ Ψbck(x)1Γ

bck{x}dx + S

)
ẏ, (5.17)

δE

δy
=−

(∫∫ m

−m

Ψobj(x)1Γ
obj{x}+ Ψbck(x)1Γ

bck{x}dx + S

)
ẋ. (5.18)

Let ~v = (x, y)T , the normal at ~v is ~n = (ẏ,−ẋ)T . In Section 5.1, we defined the contour to

be a counter-clockwise curve for the object region and a clockwise curve for the background

region (see Figure 5.2). Thus, the normal of the object region ~nobj is in the opposite direction

of ~nbck:

~nobj = −~nbck.

Using these, the system of integro differential equations given in 5.17 and 5.18 becomes:

δE

δ~v
=

(∫∫ m

−m

Ψobj(x)1Γ
obj{x} −Ψbck(x)1Γ

bck{x}dx + S

)
~nobj.

In the following discussion, without loss of generality, we will refer to the object normal

~nobj as ~n. From the above, the optimum direction for minimizing the energy functional of a

spatial contour is obviously the normal direction. However, it should be noted that partial

integro-differential equations are not very common and hard to solve in general, especially

the way derived above by the introduction of a square neighborhood definition. Although

the convergence issue needs rigorous analysis, due to the changing membership regions, a

practical approach to show its convergence is to assume that the rectangle centered on the

contour has equal object and background regions on all the contour positions. Thus, the
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planar integral can be dropped and the system of equations can be transformed into a second

order differential equation, whose convergence has been well studied.

5.3 Contour Representation and Evolution

The contour of an object, which undergoes non-rigid deformations, can be represented in

various ways including [Chu02]:

• Parametric from: is the most common and the most limited approach to defining

various shapes. It cannot change topology and may result in problems during evolu-

tion. An intuitive example which allows scale changes (one degree of freedom) is the

parametric form of the contours

x = r cos s, y = r sin s.

• Marker-string method: is usually used for active contour framework, it was first intro-

duced in the fluid dynamics discipline. The idea is to represent the contour by a fixed

number of control points. The relations between the points are usually defined through

splines. This representation does not allow topology changes and causes problems if

two control points evolve to the same position.

• Volume fluid method: are the most common contour representation in the fluid dynam-

ics field. For the two dimensional case, the space is divided into subspaces of equal area
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and the closed contour is represented such that, inside the contour, the subspaces are

filled with fluid, whereas outside the contour, the subspaces are empty. For subspaces,

which the contour partially intersects, the portion of the subspace is filled to reflect

the amount of subregion belonging to the inside of the contour.

• Level set: is a new tool to represent the contours implicitly (similar to volume fluid

method). Level set representation is easier to implement, and in contrast to volume

fluid methods, contour properties such as curvature and normal can be computed from

the representation. We will discuss the level sets in more detail in the next section.

Here, we chose the level set level set representation for its simplicity and stability for repre-

senting the contour of the object.

5.3.1 Level Set Representation

Level sets implicitly represent a contour on a grid, φ : R2 ×R→ R1, which is usually called

the front. The position of the contour is defined by the values on the grid. Formally the

contour is referred as the 0-level, such that φ(Γ) = 0. The inside and outside of the contour

take opposite signs:

sign
{
φ(RΓ

in)
}
× sign

{
φ(RΓ

out)
}

= −1

Since grid values are not always zero, practically, the zero crossings on the grid is taken to

find the position of the contour. A sample level set representation of a contour is shown in
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Figure 5.6a. Note that the contour is not necessarily on the grid (if we assume that the grid

is the image pixels then we obtain sub-pixel accuracy).

(a) (b)

Figure 5.6: (a) Contour on a level set grid. (b) Distance transformation with contour

superimposed.

A common measure used as grid values in a level set representation are distance from

the contour, which can be obtained by a distance transformation [Cui99]. In Figure 5.6b,

we show the distance transformation of a given contour generated using the fast algorithm

proposed in [Cui99]. The contour in this image is the 0-level and the rest of the pixels

represent the other levels, i.e., first, second, third, etc.

An evolving contour in level set representation is defined by introducing a time parameter,

t, in the formulation, such that φ
(
Γ(s, t), t

)
= 0, where s is the parameter of the contour

and Γ(s, t) = {x(s, t), y(s, t)}. Evolving the contour corresponds to updating the level set
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function, φ, which defines new zero crossings. The level set evolution is defined by

dφ

dt
= φt +∇φ

(
Γ(s, t), t

)∂Γ

∂t
.

Since we are working on the 0-level set, φ(Γ) = 0, we have:

0 =
φt

|∇φ| +

normal vector⇒~n︷ ︸︸ ︷
∇φ
(
Γ(s, t), t

)

|∇φ| Γ′,

φt = | ∇φ | ~n
speed⇒F︷︸︸︷

Γ′
︸ ︷︷ ︸
velocity⇒~V

. (5.19)

We can interpret Equation 5.19 as the evolution of the contour in its normal direction with

speed F . In Figure 5.7, we show the evolution of a curve when F is set to the curvature of

the curve. Note that the evolution of the contour tends to reduce the curvature, such that

after some iterations the shape becomes a circle, and eventually collapses to a point.

5.3.2 Relating Level Sets with Energy Minimization

The energy functional defined in Section 5.2.1.1, can be related to evolving the contour by

introducing one more dimension, t, in the process. Thus the contour becomes a function

that has two parameters, Γ(s, t). Minimizing the related energy functional given in Equation

5.10 can be converted to minimizing the energy temporally by ∂E
∂t

:

∂E(Γ(s, t))

∂t
=
∂E

∂x

∂x

∂t
+
∂E

∂y

∂y

∂t
. (5.20)
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Figure 5.7: Evolving contour under curvature flow. (a) 0-levels at various time slices. (b)

The surface constructed by curvature based contour evolution. Note that cutting the surface

at various levels will give the evolving contours given in (a). (c) Contour plot of the surface

given in (b).

In Equation 5.20, partial derivatives, ∂E
∂x

and ∂E
∂y

are derived in Equations 5.17 and 5.18.

Rearranging terms, we have

∂E(Γ(s, t))

∂t
=

(
∂E

∂x

∂E

∂y

)



∂x

∂t
∂y

∂t


 , (5.21)
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where the first part of the equation corresponds to the combined Euler-Lagrange equations:



∂E

∂x
∂E

∂y


 =

∂E

∂~v
~n.

Plugging this into Equation 5.21, we have

∂E(Γ(s, t))

∂t
= (Φobj − Φbck + S)

(
∂~v

∂t

)T

~n, (5.22)

where (∂~v
∂t

) =
[

∂x
∂t
, ∂y

∂t

]T
and Φα : α ∈ {obj,bck} is defined in Equation 5.10. Minimizing the

energy according to the evolving contour parameter t is then related to level set evolution

function given in Equation 5.19 by the following speed function:

F =

∫∫ m

−m

(
Ψobj(x)1Γ

obj{x} −Ψbck(x)1Γ
bck{x}

)
dx + S.

The level set representation outlined in Section 5.3.1 is a grid-based representation and is

discrete in nature. Thus the speed function given above can simply be converted to a discrete

function by:

Fx,y = −
m∑

i=−m

m∑

j=−m

logPRobj
(Ix′)1Γ

obj{(x′)}+

m∑

i=−m

m∑

j=−m

logPRbck
(Ix′)1Γ

bck{(x′)}−

S(x, y), (5.23)

where x′ = (x+ i, y+ j). The negative and the positive terms that have double summations

in Equation 5.23 increase or decrease the value of the level set grids, φ(x, y), which in turn

changes the position of the zero crossings. We can interpret these shrinking and expanding

forces as:
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• When the boundary hypothesis for the pixel xΓ is correct, the speed, and thus the

motion, of the contour pixels will be ≈ 0.

• If the object contour is not correct, the background (object) likelihood of the front

pixel will be higher and the speed function becomes negative (positive).

In our implementation, an object is considered to be either occluded or unoccluded during

tracking. Since there is no prior object information, and we build our appearance models

on-line, we are not considering the shape component in Equation 5.23, i.e., S (x, y) = 0,

during the contour evolution unless occlusion occurs, where the object shape is dramati-

cally distorted. Besides, using the shape constraint during tracking without occlusion is

computationally expensive.

5.4 Tracking During Occlusion

So far, we have not dealt with occlusion, and only considered the appearance models using

visual features such as color and texture. However, visual features are not observed during

occlusion. Missing observations in such cases degrade the performance of the object tracking.

In this section, we discuss our approach to detecting the occlusions, label the occluder and

the occludee and define an on-line shape prior based on the level set representation, which

can account for the missing observations and track the contours of the objects.
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5.4.1 Occlusion Detection

The implicit definition of an object contour in a level set representation is given by the zero

crossings on the grid of the level set function φ(Γ, t), where the grid values can be defined by

the Euclidean distance from the contour. Let there be N objects with N level set functions

φi : i ≤ N , having the object area At
i at frame t. The distance Di,j from the object Oi to

the object Oj can be computed by:

Di,j = arg minφi (Γj(x)) ,

where i 6= j. Given the average area:

Aavg
i = τAavg

i−1 + (1− τ)At
i.

which is computed over time, the occlusion decision is made based on both Di,j and the ratio

of At
i to Aavg

i using:

Occi,j =
1

e−|Di,j | + 1︸ ︷︷ ︸
measure of closeness to Oj

× At
i

Aavg
i︸ ︷︷ ︸

ratio of the area

. (5.24)

To give more insight to Equation 5.24, let’s consider the following scenarios:

• When objects Oi and Oj are close to each other such that Di,j ≈ 0, the first term

becomes 0.5 (lower bound). Based on the value of the second term, object Oi is labeled

as the occludee and object Oj is labeled as the occluder. For the occludee (Oi), shape

reconstruction is started by evolving using the scheme described in the next section.
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• If the objects Oi and Oj are far apart, such that Di,j >> 0, the first term becomes

1 (upper bound). At this point the algorithm is aware that there is no occlusion.

However, based on the second term (ratio of the areas) a significant decrease in the

object area can be detected. Decrease of the object area occurs for objects that have

visual features very similar to their backgrounds, where the contour evolution becomes

unpredictable. In this case, although there is neither an occluder nor an occludee, we

reconstruct the shape of Oi using the scheme given in the next section.

The decision process described above can be understood by looking at Figure 5.8, in which

two synthetic objects (occluders) are occluding the tennis player (occludee). In Figure 5.8a,

we show the first frame of the sequence, (b) shows the contours of three objects, which are

superimposed on the objects, labeled with different contour colors. In Figure 5.8c, d, e,

extracted objects for the first frame are shown. Occlusion occurs in the second frame of the

sequence (Figure 5.8f). Using the visual features (color and texture), the tracking method

described in Section 5.3.2 finds the object contours which is shown in Figure 5.8g. Figure

5.8h, i, j shows the extracted objects. At this point, the distances between the player and

the other two objects are Dplayer, ellipse ≈ 0 and Dplayer, rectangle ≈ 0. The ratio of the player

area and its average area computed over time is
Aplayer

Aavg
player

< 0.5. Thus, Equation. 5.24 is

Occplayer,rectangle < .25 and Occplayer,ellipse < .25, which conclude that the player is occluded

by both of the synthetic objects.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.8: Sequence of frames with two synthetic objects (red and blue) occluding the tennis

player. (a) First frame of the sequence. (b) Initial object contours super imposed on the

objects. Extracted (c) player, (d) rectangular, and (e) circular objects. (f) Second frame of

the sequence. (g) Tracking results using the visible features (contours are superimposed on

the objects). Extracted (h) player, (i) rectangular, and (j) circular objects. Note the missing

regions in (h) due to occlusion.

Next, we will discuss how the algorithm estimates the contour of the missing regions,

which is shown in Figure 5.8h.
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5.4.2 Estimating the Occluded Object Contour

Objects usually undergo non-rigid deformations resulting in changes of shape, S, and area,

A. To keep track of this deformation, we represent each object, Oi, with a dense level set,

φ′
i, which is obtained by increasing the number of grid points as shown in Figure 5.9a, b.

However, in contrast to φi, the outside region of the contour in φ′
i is set to zero (Figure 5.9c).

Let the deformations be represented by dense level sets, φ′
i(Γ

1, 1), φ′
i(Γ

2, 2),..., φ′
i(Γ

t, t),

in the spatio-temporal domain (Figure 5.9c). Ideally, the shape, Si, for the object, Oi,

changes gradually, resulting in a small variation in φ′
i over time. For each grid point (k, l),

we model the change of values by a single Gaussian, Gφ′(k, l). The models are updated until

an occlusion is detected based on the criteria given in Equation 5.24. In presence of an

occlusion at time j for Oi, the level set function φi(Γ
j, j) (with fewer grid points) is obtained

by evolving the contour using the visible features, which leads to missing observations (object

regions that are missing as shown in Figure 5.8h). In this case, for the missing regions, the

contour will be evolved to maximize the likelihood of observing the modeled shape, Gφ′ , by

setting Φobj and Φbck to 0 in Equation 5.23 and computing:

F (k, l) = S(k′, l′) = Gφ′(k′, l′) =
1√

2πσk,l

e
−

(φ′
k′,l′

−µ
k′,l′ )

2

σ2
k,l , (5.25)

where (k, l) is the grid position in the spatial domain, and (k ′, l′) is the corresponding grid

position in the dense level set φ′, and µk,l, σk,l are the Gaussian model parameters. Due to

the initialization of the outside region as 0, the speed computed using Equation 5.25 will be
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(a) (b)

(c)

Figure 5.9: a) Contour represented on the spatial grid points, b) increasing the number

of grids for the contour shown in (a), (c) consecutive level sets, φ′
i, from a walking person

sequence with a coarser grid.

just an expansion force to fill in the missing observations during tracking with or without

occlusion.

In Figure 5.10, we present the steps of the contour estimation algorithm for the occluded

object regions. Figure 5.10a shows the object contours that are estimated using the evolution

function given in Equation 5.23, in part (b), we show the estimated object contours of the
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objects after the estimation process using Equation 5.25. Note that the missing regions are

in Figure 5.10a are correctly recovered and the extracted objects are shown in Figure 5.10c,

d and e. In Figure 5.10f, we display selected frames from the sequence, which demonstrates

the robustness of the method. The second frame in Figure 5.10f has multiple occlusions: the

ellipsoidal object is occluding both the tennis player and the rectangular object, while the

rectangular object is occluding the tennis player. The proposed method successfully handled

the multiple object occlusion. In Section 5.5, more results including full object occlusion are

presented.

5.5 Experimental Results

To demonstrate the performance of the proposed contour tracking approach, we have tested

our algorithm on various real sequences captured using stationary and mobile infrared (IR)

and electro-optical (EO) cameras. Some of the test sequences are standard sequences used

by various researchers in the field. The results we obtained are in general excellent and the

contours of the objects are very tight. During the tracking, model priors for the objects

are computed on-line by reevaluating the change in the object and background features.

The contour evolution is implemented using the narrow band level set method, where Equa-

tion 5.23 is used as the speed function [Set99]. The algorithm is initialized with bound-

aries of objects in the first frame. The selection of m (the limits of the square region in
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Equation 5.23) is not sequence dependent and is fixed to 6 for all sequences. In contrast

to [Man02], magnitude of motion is not limited. For the video sequences, please visit:

http://www.cs.ucf.edu/~vision/ projects/contour_tracking.

5.5.1 Single Object Sequences

Tennis Player Sequence Figure 5.11 shows the tracking results on the standard tennis

player sequence. In the sequence, the camera pans and tilts slowly as the player performs

various strokes. Usually the visual features of the background and the player remains the

same (especially the color, which is distinctive) and the contour of the player is perfectly

tracked throughout the sequence (even the pony tail of the player is tracked!). Note that

the racket is not tracked due to the motion blur resulting from fast racket motion. These

results are probably the best tracking results compared to other recent work [HE02] [KS01].

Walking Person Sequence To demonstrate the robustness of the method for a mobile

camera, we tested the proposed method on a challenging video sequence where the camera,

zooms, pans, and tilts as shown in Figure 5.12. The visual features both for the person

and the background vary as the person walks and sometimes the background model and

the object model become very close in both color and texture. As can be observed from

the sequence, sometimes the color or texture alone were adequate, however at other times
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(toward the end of the sequence) both features contributed to the tracking. Throughout the

sequence, the contour of the person is perfectly tracked and there were no miss-positioned

contour points.

Surveillance Camera Person Walking Sequence In Figure 5.13, we present contour

tracking results of a walking person sequence acquired from a low quality surveillance camera

located in downtown Orlando. The color is distinctive enough to track the person. In

particular, the background model is generated and updated such that the shadow of the

person is a part of the model. Thus the shadow of the person is naturally left as a part of

the background (such that it is outside the contour). The proposed method produced very

tight object contour throughout the sequence.

Walking Person Sequence In Figure 5.14, contour tracking results for another real se-

quence is shown. The contour of the person is perfectly tracked, while the method adapts

to the variation of the color and texture of the background. For instance at the beginning

(first frame), the model generated for the background is different from the model generated

toward the middle of the sequence (third frame).
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5.5.2 VIVID Dataset

The VIVID dataset is composed of sequences acquired from aerial vehicles. The sequences

are usually of low quality and the objects do not have very unique features to identify the

correct object contour. Both the color and texture contribute to the tracking in all these

sequences.

Passing EO: In Figure 5.15, we present contour tracking results for the two object case.

The objects in the sequence are very small and hard to track. In the first frame we manually

initialized and labeled the objects and for the rest of the sequence the labels and object

contours are preserved. At some points of the tracking due to very low object resolution,

some parts of the contour are misplaced but overall the contour is always on the objects.

Tank Sequence: The sequence given in Figure 5.16 is challenging for contour tracking

since the object and background color and texture models become very similar during track-

ing also the models need to be correctly updated to adapt the changing features. Throughout

the sequence, our method successfully tracked the object contour. As seen from the figure,

at some points during the tracking the object contour is expanded incorrectly which does not

reflect the correct object contour, This is due to the limited set of features used in tracking

(color and texture).
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Ural Sequence: In Figure 5.17, tracking results for a very long VIVID sequence is pre-

sented. As seen from the figure, two different poses of the vehicle are observed due to the

motions of the aerial and ground vehicles. As observed form the 3rd image, a tail like con-

tour, which does not belong to the object, is expanded. Although very easy to erase by a

simple post processing (such as keeping only the biggest connected component) we left it to

display the limitations of the features used for tracking. Besides this problem, the contour

of the object is tracked reasonably well.

5.5.3 Infrared Sequences

In general, IR sensors produce very low quality images. Closing IR video (where the sensor

is mounted on an aerial vehicle), in particular are highly effected by atmospheric conditions.

We have tested our algorithm on various sequences from the AMCOM dataset, in which

the intensity values of the objects and the background change rapidly even in consecutive

frames, which requires a highly adaptive feature modeling mechanism. Figure 5.18 presents

three different sequences. In all three sequences it should be noted that the brightness of

the objects and backgrounds changes dramatically from beginning to end, and our method

successfully generates statistical models for very small targets, (10 to 15 pixels in area).

Notice the blurred boundary between the objects and the backgrounds in the first couple of

frames shown in Figures 5.18a, b, c. Especially in Figure 5.18a, the window of the vehicle
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(dark region) toward the end of the sequence is tracked as a part of the vehicle (besides its

similarity to the background). These particular sequences will result in over segmented object

regions if tried with the conventional active contour methods [CKS95, CS97, KWT88, PD02].

Methods given in [BBA00], [BSR00] and [PD00] will not work at all because they rely on

static background and/or small object motion from frame to frame. In addition, due to the

lack of repetitive texture in most part of the sequences both [JFE01] and [PD02] will fail to

track the objects.

5.5.4 Occluding Object Sequences

In Figures 5.19 and 5.20, we demonstrate the ability of our approach to track objects under

occlusion as described in Section 5.4. Both of the sequences demonstrate the performance

under complete occlusion, where visual features do not provide any information. Most of the

transformation-based object tracking approaches including [PD00, CRM00, JFE01, YSS03,

Man02] which do not have a way to track the objects under occlusion will fail for both of

these sequences.

Dancer Sequence: The dancer sequence (Figure 5.19) is a very tough sequence for gen-

erating a consistent shape model due to the rapid deformation around the skirts of both

dancers. The first row in the figure displays the frames with contours superimposed, while
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the second row shows the extracted dancers before, during and after occlusion. Our method

correctly labelled the occluder (red dressed dancer) and the occludee (white dressed dancer)

and correctly estimated the occluded (white dressed) dancer’s position (depicted as Dancer

B in the second row of the figure).

Occluding Persons Sequence: The occluding persons sequence (Figure 5.20) also demon-

strates the robustness of both the tracking and the estimation of missing object regions.

Notice the white regions inside Person A in the second row of Figure 5.20, especially during

complete occlusion. Person A’s contour is correctly estimated and both persons are correctly

tracked before, during and after the occlusion. Another important point in this sequence is

that the ambiguous regions (such as the heads of both persons) are correctly located and

tracked during and after the occlusion. To the best of our knowledge, almost no tracking

method in current literature can perform tracking with this much accuracy and estimate the

correct contour of the objects during occlusion.

5.6 Conclusions

We proposed a contour based nonrigid object tracking method. Along with color and texture

models generated for the object and the background regions, our method maintains a shape
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prior for recovering occluded object parts during the occlusion. The shape priors encode the

motion of the object and are built online. The energy functional is derived using a Bayesian

framework and is evaluated around the contour to suppress visual artifacts and to increase

numerical stability. We minimized the energy in the gradient descent direction, which in

turn maximizes the posteriori contour probability. The results presented show the robust

tracking performance with occlusion in video acquired from moving cameras.
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(a) (b) (c) (d) (e)

(f)

Figure 5.10: Synthetic occlusion sequence. (a) Tracking result using visible features (given in

Figure 5.8g). (b) Tracking result using the occlusion handling method given in Equation 5.25

(contours superimposed). Note that the occludee is marked with a thin contour, whereas the

occluders are marked with thick contours. Extracted (c) player, (d) rectangle and (e) ellipse.

Note that the missing contour regions in Figure 5.8h are correctly estimated. (f) Selected

frames from the complete sequence. The first row shows the contours superimposed and the

second row shows extracted objects. Note that multiple object occlusion in the second frame

of (f) is correctly handled.
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Figure 5.11: Tracking results for the tennis player sequence acquired using a mobile camera.

We recommend viewing the results in color.
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Figure 5.12: Contour tracking results for a walking person sequence, in which the visual

features both for the foreground and the background change. We recommend viewing the

results in color.
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Figure 5.13: Contour tracking results for a sequence acquired from a stationary surveillance

camera.
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Figure 5.14: Contour tracking results for walking person sequence acquired using mobile

camera.
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Figure 5.15: Contour tracking results “Passing EO” sequence for the VIVID dataset.

Figure 5.16: Contour tracking results “Tank EO” sequence for the VIVID dataset.
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Figure 5.17: Contour tracking results “Ural EO” sequence for the VIVID dataset.
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(a)

(b)

(c)

Figure 5.18: Tracking of targets in FLIR sequences taken from an airborne platform. (a)

Sequence rng14 15; (b) sequence rng16 18; (c) sequence rng23 12.
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(a) (b) (c)

(d) (e)

Figure 5.19: Contour tracking results for occluding dancers. The first row shows the frame

from the sequence and the second row shows the extracted dancers. (a) Prior to occlusion,

(b) occlusion starts, (c) full occlusion occurs, (d) dancer B is visible on the opposite side

(partial occlusion), (e) occlusion ends. We recommend viewing these results in color.
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(a) (b) (c)

(d) (e)

Figure 5.20: Contour tracking results for two person occlusion. The first row shows frames

from the sequence and the second row shows the extracted objects. (a) Prior to occlusion,

(b) occlusion starts, (c) full occlusion occurs, (d) occludee is visible on the opposite side, (e)

occlusion ends. We recommend viewing these results in color.
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CHAPTER 6

SPATIO-TEMPORAL VOLUME SKETCH: A

NOVEL ACTION REPRESENTATION

Object tracking is usually a preprocessing step in a surveillance system. Once tracking is

performed, a typical surveillance system:

• Looks for activities of persons or objects in the camera field of view,

• Generates computational models of the observed activity,

• Alerts a human supervisor when suspicious activity patterns are detected.

Activities of the tracked objects are captured by using one of the object representations

described in Section 2.1. Based on the object representation chosen, there are various com-

putational models to represent the observed activity, i.e., as trajectories of a set of tracked

object features, silhouettes or 3D articulated body models. Building computational models,

however, is not an easy task due to the loss of one dimension when the 3D world is projected

onto a 2D image.
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Figure 6.1: 3D action volume of a falling person.

In general, video contains lots of data, most of which is redundant. Therefore, to develop

robust recognition and retrieval methods, the first step is to extract useful features from the

raw video. In recent years, there has been a significant amount of work on this topic, which

can be broadly classified into object-based [BD01, YRS02, SP96, WWJ03, MTH03, YSS02]

and image-based approaches [LL03, BY97, HZ99, DD03, SBL02, YS00]. The object-based

approaches analyze the object properties, such as the speed, shape, and motion of the object.

Alternatively, image-based methods analyze the content of the complete image, such as color,

texture, temporal gradients or optical flow of each image pixel. For a detailed information on

features used for content based image retrieval, we refer the reader to the survey by Huang

et al. [HRC99]. The object-based approach proposed by Bobick and Davis [BD01] models

the changes of the silhouette by using temporal templates for representing the motion of

human actors in video. Their approach does not use the motion of the object explicitly,

rather it analyzes the motion history from a set of silhouettes extracted while the actor

is performing the action. In [YRS02], Rao et al. use the maxima of the spatio-temporal
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curvature of a trajectory generated from a single point on the object. This method is limited

to the human actions that can be represented by a single trajectory, such as picking up

an object. In [SP96], Starner and Pentland use HMMs to model the consecutive states of

the hand for recognizing American sign language. Similar to [YRS02], Wu et al. analyze

the trajectories of objects in surveillance video to recognize suspicious activities. Laptev and

Lindeberg [LL03] analyze the image content to find temporal changes in the image intensities

assuming that the changes are due to only the object motion. Note that intensity changes

that do not belong to the object signify false action characteristics. In [HZ99], Hanjalic

and Zhang propose a video retrieval approach based on extracting the representative frames

(key frames) from video similar to [YS00]. Although global image features derived from key

frames are the most common features used for representing the video content, the relation

between the human perception and the representation of the video content using key frames

is not clear. Black and Yacoob [BY97] study the human perception of facial expressions

which employs the motion of facial features. They propose an automatic method for facial

expression recognition using affine motion parameters of different parts of the face like the

eyes and the mouth.

In this chapter, we propose a novel approach to model the motion and the shape of the

moving objects for recognizing and retrieving actions. The proposed method models the

variations of these features both in space and time. When an actor moves in 3D, points

on the object generate tracks in four dimensions (x, y, z, t). Projection of the 4D tracks

to spatio-temporal space results in 3D trajectories. Instead of using a single trajectory,
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we use all the trajectories along with their spatial relations. Spatio-temporal trajectories

construct a volume, which we call the “action volume” (see Figure 6.1). This volume forms

a 3D object in the spatio-temporal space. Important events, such as changes in motion and

shape, represent the characteristics of the action, and are directly related to the differential

geometric properties of the action volume, such as peaks, pits, valleys and ridges. These

properties are invariant to viewing direction. The action volume has several advantages:

• It captures both spatial and temporal information of an action in one unified manner.

• It is a continuous representation and two sequences of the same action with different

lengths will generate the same action volume. Therefore, time warping during retrieval

is not necessary.

• Since the important elements composing the action sketch are based on the convex and

concave parts of object contours, which are view invariant, the action sketch is also

view invariant.

The proposed representation is generated in two steps:

1. In the first step, a set of object contours are used to generate the action volume. Gen-

erating a volume from a set of images has been previously considered in [NA94] for

walking persons. Their method fit a “manually generated” walking volume, which

consists of two surfaces (right and left body parts), to a walking sequence. In their

approach, volume fitting is performed using a modified superquadrics fitting approach,
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which involved a large number of intricate steps, and assumed fronto-parallel motion.

Here we propose to “automatically generate” the volume for any action viewed from

any viewing direction. In our approach, the object contours are obtained by apply-

ing the contour tracking method proposed in [YS04] to raw video. Once the contours

are available, the points on consecutive contours are associated by a dynamic pro-

gramming approach, in which each association is penalized based on the proximity,

alignment similarity and shape similarity.

2. After the volume is generated, differential geometric surface properties are analyzed

using the Weingarten mapping to detect important action elements (action sketch).

We demonstrate that the action sketch is invariant to the camera view point and types

of surfaces forming the action sketch are related to various types of object motions.

The organization of the chapter is as follows. In the next section, we discuss the genera-

tion of an action volume from a set of contours. Section 6.2 details how the proposed action

representation is obtained and its relation to various types of object motions. In Section

6.3, we discuss both the matching of two different action sketches and the view invariance

property of the proposed method. Finally, we demonstrate the performance of the proposed

representation for recognizing actions performed by human actors in Section 6.4.
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6.1 Action Representation

Most of the computational models represent actions by using only the temporal information,

i.e., shape of the performing actor is usually discarded. However, there is a close relation

between the object shape and its motion. For instance, for recognizing different actions,

human observers require more than a single point trajectory or a set of feature locations

that describe an action. In the following discussion, we will discuss how the action volume

B, which encodes the motion and shape, is generated from the video.

6.1.1 Generating the Action Volume

At this point, we assume that the contours or the silhouettes of the performing actor are

available. In particular, we used the tracking method proposed in Chapter 5 to track the

contours Γt of the object at frame t (see Figure 6.2a for tracking results of the falling action).

Alternatively, one can use background subtraction [GSR98] to generate the silhouettes from

which contours can easily be extracted. Contour representation provides a very simple

parametric form of the complete object region. In the discrete spatio-temporal space, (x, y, t),

contours constitute a dense cloud of voxels ci = [xi, yi, ti]
T (Figure 6.2b). Once the voxels

are obtained, the next step is to establish the correspondence between voxels in the space to

generate the volume.
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(a)

(b)

Figure 6.2: (a) A sequence of tracked object contours. (b) Clouds of voxels in the spa-

tio-temporal space.

Matching of two point sets, either in 2D or in 3D, is still an open problem. An obvious

difficulty in point matching is dealing with points that do not have corresponding points

in the other set (homology). In particular, matching contours of non-rigid objects requires

1-M (one-to-many) or M-1 (many-to-one) mappings in addition to the homologies. Various

methods use different constraints for point matching. An intuitive constraint is to use the

nearest neighbor criterion [BM92]. Articulated rigid motion is another common constraint

used by researchers [CR00]. This constraint tries to iteratively compute the transformation

from a set of points in the source point cloud L (contour) to the destination point cloud R,
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assuming that a small segment of points undergo rigid motion. The set of transformations

that provides the best matching while preserving the spatial neighbor criterion defines the

correspondence. However, these methods require that the number of matched points in one

set are equally distributed among the points in the other set, such that if one point in L is

associated with 5 points in R, another point in L cannot be associated with 100 points in R.

(a)

(b) (c) (d)

Figure 6.3: (a) Local contours from two consecutive frames used in defining the weights of

central vertices. Matching of a subset of vertices between contours for (b) falling, (c) dance

and (d) tennis stroke actions.

We propose to solve the correspondence problem between the contours of a non-rigid

object using dynamic programming. Our approach consists of two steps.

171



1. The first step associates the points based on the strength of the link which is computed

in terms of an association penalty. Note that at this step some points whose link

strenght are low remain unassociated.

2. The second step assigns the unassociated points based on the spatial arrangement of

the associated points.

We define the association penalty in terms of both association from Γt to Γt+1 and association

to a particular trajectory using previous correspondences. The penalties are defined in

terms of proximity, alignment and shape similarity constraints all in the spatial domain.

All three constraints are computed from a set of neighboring points as in Figure 6.3a. Let

ck
i = [xi, yi, t]

T and cj = [xj, yj, t+ 1]T be contour points in L and R respectively, where the

superscript denotes the trajectory to which ck
i belongs. We compute proximity by:

di,j =‖ ck
i − cj ‖2 .

The alignment similarity is obtained by considering the angle α between the spatial nor-

mal vectors ~ni and ~nj corresponding to ck
i and cj respectively, which are computed in the

neighborhood of the points:

αi,j = arccos
~ni · ~nj

|~ni||~nj|
.

Let Ti,j = ck
i − cj be the translation and

Ri,j =




cosαi,j sinαi,j

− sinαi,j cosαi,j


 ,
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be the rotation between the neighborhood of points ck
i and cj. Shape similarity between ck

i

and cj is defined based on how the shapes of the neighborhoods Ni and Nj have changed

after compensating for Ti,j and Ri,j :

ξi,j =
∑

xj∈Nj

‖ x̂i − xj ‖2,

where x̂i = Ri,jxi + Ti,j , and xi ∈ Ni corresponds to xj based on spatial relationship (note

that |Ni| = |Nj|). Using these three constraints, the association penalty wi,j from ck
i to cj

is given by:

wi,j = exp(−d
2
i,j

σ2
d

) exp(−α
2
i,j

σ2
α

) exp(−ξ
2
i,j

σ2
ξ

), (6.1)

where σd controls the distance between the points, σα controls the alignment and σξ controls

the degree of shape variation. In the experiments, we chose σd = 15, σα = 0.5 and σξ = |Ni|.

In addition, the penalty of cj being associated with the trajectory k is evaluated by computing

the penalty in (6.1) for each corresponding point on the trajectory Tk, {ck
j : ∀cj ∈ Tk}, and

ci. Combining the penalties for point association and trajectory association we obtain the

iterative trajectory cost as:

wt
i ← τwi,j + (1− τ)wt−1

j (6.2)

where t denotes the frame number, or alternatively the row of the trajectory cost matrix, and

j denotes the particular point on the trajectory (column of the trajectory matrix) at t. For

each frame after correspondences are obtained, penalties related to each trajectory are stored

in a trajectory cost matrix which is initially empty. After the initial set of assignments, the

points which had no association due to high penalties are assigned based on the neighboring
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correspondences. In Figure 6.3b, c and d, we show the final vertex matchings for three

different actions.

The spatio-temporal action volume can be considered as a manifold, such that it is

nearly flat in small scales defined by a small neighborhood around a point. Based on this

observation, a continuous volume B is generated by computing plane equations in a small

neighborhood around each point. In Figure 6.4a and b, spatio-temporal action volumes for

tennis stroke and dance actions are shown.

Besides the implicit three dimensional (x, y, t) representation, the action volume can also

be represented by a 2D parametric representation based on the arc length of the contour, s,

which encodes both the object shape and the motion:

B = f(s, t) = [x(s, t), y(s, t), t].

Using these two parameters, we can generate 2D motion trajectories of any point on the

actor from the volume by fixing the s parameter (see Figure 6.5a). Similarly, by fixing the t

parameter we can generate the object contours at time t (see Figure 6.5b).

Another advantage of the action volume is that it is a continuous action representation,

that is, it does not require any time warping for matching two sequences of different lengths.

However, we should note that this is only valid for atomic actions. For instance, temporal

invariance is valid between two walking cycles, but it is not valid between a walking cycle

and a video of several walking cycles. In Figure 6.6, we show an example to demonstrate
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(a)

(b)

(c)

Figure 6.4: Visualization of spatio-temporal action volumes from two views for (a) dance,

(b) tennis stroke, and (c) walking.
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(a)

(b)

Figure 6.5: Projection of action volume. Object contours generated by fixing the (a) s and

(b) t parameters in B = f(s, t) respectively.

the temporal invariance for the dance sequence. A new synthetic sequence with 20 frames

was generated by randomly removing frames from the original dance sequence, which has 40

frames. As can be observed, the action volumes are very similar.
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(a) (b)

Figure 6.6: Action volumes for (a) dance sequence with 40 frames, (b) synthetic dancer

sequence with 20 frames, generated by randomly removing frames.

6.2 The Action Sketch

An action is typically composed of action units, which we call “action elements”. In psychol-

ogy, action elements are usually identified by the important motion events, which occur due

to significant changes in velocity. In our representation, every voxel in the action volume

B has an associated motion trajectory. Due to the spatial relationship between the points

on the contour, associated trajectories are also influenced by the neighboring trajectories.

These relationships and the object motion are implicitly encoded on the surface of the action

volume.

To extract action elements during an action, we analyze the differential geometric prop-

erties (surface types) of the underlying volume. There are eight fundamental surface types:

peak, ridge, saddle ridge, flat, minimal, pit, valley and saddle valley (see Table 6.1). Com-
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pared with considering a single feature, e.g., speed or curvature, of an action trajectory,

different surface types and their relation to possible object motions provides a richer repre-

sentation for analyzing the video content.

Table 6.1: Fundamental surface types based on Gaussian curvature, K, and mean curvature,

H.

K > 0 K = 0 K < 0

H < 0 peak ridge saddle ridge

H = 0 none flat minimal

H > 0 pit valley saddle valley
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6.2.1 Finding the Action Elements

The fundamental surface types are closely related to the object motion. For example, a

peak occurs due to an instantaneous change in velocity of a convex object. These prop-

erties provide a compact description in the video domain which can be used for retrieval

or recognition of action elements. As shown in Table 6.1, fundamental surface types are

defined by two metric quantities, Gaussian curvature and mean curvature, computed from

the Weingarten mapping which is obtained from the first and second fundamental forms of

the surface [Wei02].

The first fundamental form is the inner product of the tangent vector at a given point

x(s, t) and can be computed in the direction (sp, tp) by:

I(s, t, sp, tp) = [sp tp]
T



E F

F G




︸ ︷︷ ︸
g

[sp tp], (6.3)

where E = xs ·xs, F = xs ·xt and G = xt ·xt, where subscripts denote the partial derivatives.

The g matrix is called the metric tensor of the surface and has the same role as the speed

function for spatio-temporal trajectories.

The second fundamental form defines the variation of the normal vector with respect to

the surface position. It is computed by the following equation:

II(s, t, sp, tp) = [sp tp]
T



L M

M N




︸ ︷︷ ︸
b

[sp tp], (6.4)
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where ~n is unit normal vector, L = xss ·~n, M = xst ·~n and N = xtt ·~n, and subscripts denote

the second order partial derivatives. In terms of encoding motion, N in (6.4) is related to

the acceleration of x(s, t).

The Weingarten mapping combines both fundamental forms given in (6.3) and (6.4) into

a singe matrix S:

S = g−1b =
1

EG− F 2




GL− FM GM − FN

EM − FL EN − FM


 . (6.5)

Gaussian curvature, K, and mean curvature, H, are two algebraic invariants derived from

Weingarten mapping [BJ86]. In particular, Gaussian curvature is the determinant of S:

K = det(S) =
LN −M 2

EG− F 2
,

and the mean curvature is half of the trace of S:

H =
1

2
trace(S) =

EN +GL+ 2FM

2(EG− F 2)
.

After the curvatures are computed, maxima of |K| and |H| in a local neighborhood indicate

the presence of important events on the action volume. Note that the signs of these curvature

maxima define the surface type, and thus the type of the action (see Table 6.1). We will

use the curvature maxima to represent the actions. In Figure 6.7, we show several action

volumes with action elements color coded according to the eight fundamental surface types.

180



(a) Falling (b) Tennis stroke

(c) Walking (d) Dancing

Figure 6.7: Color coded action characteristics corresponding to various surface types. Color

codes are: red (peak), yellow (ridge), white (saddle ridge), blue (pit), pink (valley) and green

(saddle valley).
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6.2.2 Action Elements and Their Relations to Object Motions

Action elements can be the result of shape changes, such as closing the fingers while forming

a fist, or motion of a body part without changing its shape, such as a waving hand. As

discussed in the previous section, the action elements are directly related to the fundamental

surface types shown in Table 6.1. However, in the context of action content analysis in the

video, the flat surface and the minimal surface types are not important. In particular, a the

flat surface type only occurs when there is no object motion or shape change. Due to the

surface structure, minimal surface does not occur in action volumes. In the rest of the paper,

we will consider the remaining six surface types, namely, peak, pit, ridge, saddle ridge, valley,

and saddle valley for generating the action sketch.

The analogy between the surface types and object shape and motion can be broadly given

as follows:

• A flat shaped object can generate a ridge, a valley or a flat surface.

• A convex shaped object can generate a peak, a ridge or a saddle ridge surface.

• A concave shape object can generate a pit, a valley or a saddle valley surface.

To simplify the discussion, we will concentrate on simple wire object moving on a planar

surface. Possible object motions for the wire object include: no motion, constant speed in

one direction, and deceleration followed by an acceleration in the opposite direction (includes

a full stop).
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(a) (b) (c)

Figure 6.8: Directions of motion for (a) convex wire, (b) concave wire, (c) straight wire.

• Peak: This surface type can only be generated by the convex shaped wire object

(Figure 6.8a) moving first in direction d1 as in Figure 6.8a, then in the direction of d2.

A peak usually occurs when the object moves suddenly. A peak is a common action

characteristic which is distinctive for different actions.

• Pit: This surface defines characteristics similar to the peak surface, but it is defined

for the concave wire object as shown in Figure 6.8b. The motion first should be in the

d2 direction then in the d1 direction. A pit occurs during sudden object motion, and

is a common action characteristic.

• Ridge: A ridge occurs in two different ways. The first possibility is that the concave

wire object given in Figure 6.8a moves with a constant speed in any direction, or does

not move at all. The second possibility is the straight wire shown in Figure 6.8c moving

first in the d1 direction then in the d2 direction. Although a ridge can occur when there

is no motion, since it also occurs during object motion, we consider this surface type

an important action characteristic.
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• Saddle Ridge: A saddle ridge is defined for the convex object (Figure 6.8a) and can

only be created by object motion. The object should move in opposite directions for

peak generation, i.e., first in the d2 direction then in the d1 direction.

The discussion for the ridge and saddle ridge can simply be extended to the valley and

the saddle valley. The difference between ridges and valleys is that the local object contour

has to be concave for the latter. Object concavity or convexity and the object motion is

encoded by the values of the mean and the Gaussian curvatures. For the peak and the

pit surface types the mean curvature encodes the shape of the object (concave: H < 0,

convex H > 0) and the Gaussian curvature shows the bending of the temporal surface in

the time t direction, such that when K > 0, the object moves in the normal direction of the

object contour and when K < 0 it moves in the direction opposite to the contour normal.

Similar arguments hold for the saddle valley and saddle ridge surfaces. However, for the

valley and the ridge surfaces, object shape and motion can be encoded by both the mean

and the Gaussian curvature. Depending on the surface type, the curvatures can also show

the motion direction and speed of a voxel.

6.3 View Invariant Action Recognition

Volumes representing the actions can be considered three-dimensional rigid objects, and the

action sketch contains the representative features of this 3D (x, y, t) object. In this setup,
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both the retrieval and the recognition problems become matching 3D object features with

the features of other objects of known types. In this chapter, we propose a general graph

theoretical framework to match action elements obtained from different viewpoints. We

will first discuss the view invariance of the action sketch, then we will discuss the matching

strategy to compute a matching score between two different actions.

6.3.1 View Invariance

One of the fundamental problems in video retrieval is to define the features that are invariant

to the viewing direction. There are unfortunately very few approaches that claim view

invariance for action recognition. In [YRS02], the authors used the maxima of the spatio-

temporal trajectory as the view-invariant features under an affine camera model. Seitz

and Dyer [SD97] proposed an affine based view-invariant method to find repeating poses of

walking people. Here, we will present the view invariance properties of the proposed action

sketch.

As discussed in Section 6.1.1, volume B is generated by computing the correspondence

between points on the object contours Γt over a temporal period. Thus, if the contours are

view invariant, then action elements will also be view invariant. In particular, the elements

are defined when mean curvature H > 0 or H < 0. This only happens at surface patches,

that correspond to concave or convex parts of object contours. Here, we are interested in
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showing that the concavity or convexity of the contour is independent of the camera view

point.

Let’s first consider a concave segment in a contour, which is defined by two components:

the normal vector ~n and the angle α defined by P1 = [X1, Y1, Z], P2 = [X2, Y2, Z] and

P3 = [X3, Y3, Z] as shown in Figure 6.9a. We claim that from any viewpoint in 3D space,

0◦ < α < 180◦ always holds for an aaffine camera.

Let the transformation of the view point in 3D be defined by the rotation matrix R and

translation vector T . Since T does not affect α, we will drop T . In addition, rotation around

the z-axis also does not affect α. Thus, we are left with only R, which has two components

the pan angle β (rotation around the y-axis) and the tilt angle γ (rotation around the x-axis).

When the camera pans, the coordinates of X change as follows:

X ′ = X cos β − Z sin β,

Y ′ = X sin β + Z cos β.

Before projecting from 3D into the image plane, we will first translate and rotate the contour

segment such that P2 is the origin and the normal ~n points in the y direction: P̃1 =

Rθ(P1 − P2), P̃2 = [0, 0, 0] and P̃3 = Rθ(P3 − P2), where θ = arccos ~ny

~nx
. Due to this

transformation, we have the following (see Figure 6.9b):

X̃1 < 0, Ỹ1 < 0, Z̃1 = 0, X̃3 > 0, Ỹ3 < 0, Z̃3 = 0. (6.6)

Image coordinates under an affine camera model are given by x = f X
D

and y = f Y
D

, where

D is the distance from the camera and f is the focal length. The projection of P̃i : i = 1, 2, 3
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to p̃i on the image plane is

p̃i =

[
f X̃i cos β

D
f X̃i sin β

D

]T

(6.7)

for i = 1, 3 and p̃2 = [0, 0]T . Our constraint for concavity 0◦ < α < 180◦ implies that the

x and y components in (6.7) have to follow the conditions in (6.6). Dropping the constants

f and D, we get X̃1 cos β < 0, X̃1 sin β < 0 and X̃3 cos β > 0. These constraints old when

−90◦ < β < 90◦, which means that concavity is maintained when the camera pans within

a hemicircle. The same argument holds when the camera tilts around the x-axis, such that

−90◦ < γ < 90◦. In addition, the camera can pan and tilt simultaneously in the hemisphere

defined by β and γ. Since the convex and concave segments in a contour are view invariant,

the spatio-temporal action sketch will also remain view invariant.

(a) (b)

Figure 6.9: (a) Concave contour segment denoted by three control points and (b) a normal

rotated concave contour segment.
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6.3.2 Matching Actions

Let Di be the ith action volume in the action database, and B be the input action volume. For

each action volume, let the action elements be represented by Vα(s, t), where α = {B,Di}.

Let G be a bipartite graph where the vertices are the elements Vα(s, t). The edges are

defined from VB(s, t) to VDi
(s, t), and there are no edges between the vertices within an

action volume.

The weights of the edges between the nodes have two components. The first component

measures the proximity in the spatio-temporal domain and the second component measures

the similarity of the surface shape. The proximity between the kth node in B and the lth

node in Di is defined by the Euclidean norm in three dimensions:

di(k, l) =‖ VB(sk, tk)− VDi
(sl, tl) ‖2 .

The similarity of the local surface defined in the neighborhood of a node measures the degree

of shape variation and object motion based on the Gaussian curvature K and mean curvature

H:

Ψi(k, l) = τe
−(Kk−Kl

i)
2

σ2
K + (1− τ)e

−(Hk−Hl
i)

2

σ2
H ,

where τ controls the importance of each component. The weight of the edge is then given

by convex combination of the proximity and shape similarity features:

wi(l, l) = .5 exp(−−d
2
i (k, l)

σ2
d

) + .5Ψi(k, l)
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In our experiments, we have chosen σ
K

= 10, σ
H

= 10 and τ = 0.6. The correspondence

is then achieved by computing the maximum matching of the bi-partite action graph. In

Figure 6.10, we show matchings between the tennis stroke and the falling actions. In the

figure, unassociated nodes correspond to associations with extremely low weights.

Figure 6.10: Associated vertices using maximum graph matching. The red vertices are from

the tennis stroke action, the blue vertices are from the falling action. Some vertices have no

correspondence due to 0 weight.

Once the corresponding elements VB = [s, t]T and VDi
= [s′, t′] in two actions are de-

termined, the fundamental matrix between the elements generated from two uncalibrated

cameras is defined by: V T
BFVDi

. Using several such correspondences between two action
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sketches we have

Af =




s′1s1 s′1t1 s′1 t′1s1 t′1t1 t′1 s1 t1 1

...
...

...
...

...
...

...
...

...

s′nsn s′ntn s′n t′nsn t′ntn t′n sn tn 1



f = 0

where f is a 9-element vector (in row-major order) representation of F . Since the above

equation is a homogeneous equation, A has a rank of at most eight, if the two sketches match.

The similarity of two actions can then be measured using ρ
B,Di

= σ2
9/N , where σ2

9 is the ninth

singular value of A2. After the distances from the input action to all actions in the database

are computed, recognition is achieved by selecting the action from the database that has the

minimum distance, arg mini(ρB,Di
). This matching is invariant to viewing direction.

In Figure 6.11a-e, we show the walking action captured from different viewpoints and

their corresponding action surfaces. In Figure 6.11f, the distances of the fronto-parallel

walking (Figure 6.11c) from the other views is plotted as a function of viewing angle. As can

be observed in Figure 6.11f, the distances on the left side of 90◦ are lower than the distances

on the right side of 90◦. This is mainly due to the self occlusion of the right arm in the

videos captured from viewing angle greater than 90◦. In general, even though some body

parts are not available in the action volume due to self occlusion, the visible parts provide

adequate information as evident from low distances in Figure 6.11f.
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(a) (b) (c) (d) (e)

(f)

Figure 6.11: Walking action from five different view points, first row shows one frame of the

action, second row shows associated contours and third row shows the corresponding action

volumes. (a) 30o, (b) 60o, (c) 90o, (d) 145o, (e) 180o. (f) Matching scores, for the action in

(c) with the other actions.
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6.4 Experiments

In order to test the performance of the proposed approach, we use twenty-eight sequences of

twelve different actions captured from different viewing angles. The video sequences include

dancing (2), fall (1), tennis strokes (2), walk (7), run (1), kick (2), sit down (2), stand up

(3), surrender (2), hands-down (2) and aerobics (4) actions (the number in the parenthesis

denote the count of actions). In Figures 6.12 and 6.13, we show the complete set of action

sketches superimposed on the action volumes.

From input video footage, we first track the contours of the objects and generate the

action volume as detailed in Sec. 6.1.1. For each action, the action sketch is generated by

analyzing the differential geometric surface properties of the underlying volume. The action

sketch is then matched with the representative actions in the database by computing the

view invariant distance measure discussed in Sec. 6.3. In Table 6.2, we tabulate the two best

matches of each action video. For all but five actions the best matches of action videos are

correct. For the remaining five the second best matches are correct. Usually, the matching

criterion clusters similar actions during retrieval. Specifically for the second video, in which

the action is recognized as the second best match, “hands down” action involves “standing

up” and the proposed method retrieved both actions. The hands down action also shows the

importance of using both the shape and the motion of the object. For instance, if we were

modeling the trajectory of only one hand, we would end-up with a line shaped trajectory
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which is not a characteristic of the action. However, the shape variation around the knees

(due to standing up) and the motion of the hands identifies the action.

6.5 Conclusions

We propose a novel approach to represent and retrieve actions using action sketches which

are generated from spatio-temporal action volumes. Given the object contours for each time

slice, we first generate an action volume by computing point correspondence between con-

secutive contours using dynamic programming. This volume can be treated like an object

in the spatio-temporal space. The action volume consists of spatio-temporal trajectories for

voxel. In order to obtain a compact action representation, we analyze differential geometric

surface properties of the underlying volume. These properties, which we call the elements

of the“action sketch”, are related to the object motion and the shape through the surface

invariants, namely the Gaussian and the mean curvatures. The action sketch defines im-

portant elements during an action and is invariant to the viewing direction, such that the

action elements of the sketch occur at the same positions regardless of the camera position.

Finally, using these view invariant features, we retrieve videos of similar action content based

on a view-invariant distance measure. Experiments performed on twenty-eight videos show

promising results.
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Table 6.2: Recognition results for various actions. Bold face represents the correct matches

and italics indicate the best match is incorrect.

Video First Second

best best

1 Dance Walking

2 Stand up Hand down

3 Walking Kicking

4 Kicking Stroke

5 Walking Kicking

6 Stand up Hands down

7 Hands down Surrender

8 Hands down Kicking

9 Kicking Aerobic 1

10 Falling Kicking

11 Walking Kicking

12 Sit down Walking

13 Aerobic 1 Walking

14 Sit down Falling

Video First Second

best best

15 Walking Kicking

16 Hands down Stand up

17 Surrender Aerobic 1

18 Tennis stroke Walking

19 Aerobic 4 Walking

20 Dance Aerobic 3

21 Aerobic 2 Aerobic 3

22 Aerobic 3 Kicking

23 Sit down Dance

24 Walking Kicking

25 Aerobic 4 Dance

26 Tennis stroke Kicking

27 Stand up Release

28 Running Kicking
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1) dance 2) hands down 3) walk 4) kick

5) walk 6) stand up 7) surrender 8) hands down

9) kick 10) fall 11) walk 12) walk

13) aerobic 1 14) sit down 15) walk 16) stand up

Figure 6.12: Action sketches superimposed on the action volumes, which are generated from

video sequences of human actors. Numbers denote the action labels in Table 6.2. Continues

in Figure 6.13.
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17) surrender 18) stroke 19) walk 20) dance

21) aerobic 2 22) aerobic 3 23) sit down 24) walk

25) aerobic 4 26) stroke 27) stand up 28) run

Figure 6.13: Continuation of Figure 6.12.

196



CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

The proliferation of high powered computers increased demand of surveillance systems, which

in turn rocketed the number of papers on tracking and surveillance in the last decade. Despite

the popularity, there has been only a handful of surveys on only specific topics within the

area of tracking, however no single survey on tracking in general. In Chapter 2, we tried to

address this need and provided a comprehensive survey on the state-of-the-art. The survey:

• follows a step by step discussion on how to propose a new tracking method from

selecting the object representation to selection of the tracking methodology,

• discusses object detection mechanisms, which is required for all the tracking methods,

• provides an intuitive classification of different tracking approaches,

• proposes possible evaluation criteria for different classes of tracking methods,

• discusses challenging tasks and future directions.

With this survey, we hope to identify new trends and ideas to solve the tracking problem

and introduce the researchers to tracking field.
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Following the classification provided in Chapter 2, we proposed two tracking methods in

Chapters 4 and 5. Both of the methods perform tracking for video acquired using mobile

cameras, where the object models and the background models change overtime:

• The first tracking method is a patch based. It uses color and local intensity deviation

to represent the objects during tracking. For each object detected in the first frame,

kernel density estimate of the color and local intensity deviation is computed. Tracking

is then performed by first initializing the object position with its previous spatial

position, then computing the shift vector which maximizes the likelihood of observing

the object given the a priori object model. The maximization is an iterative procedure

and usually it takes up to six iterations to locate the object. Proposed object tracker

also uses dynamic models and updates them automatically when it observes changes in

the color and local intensity deviation features. Through global motion compensation

it can track objects for aerial videos, where sensor motion generates abrupt object

motion. Global motion is compensated when to tracker fails to locate the object in the

current frame.

• The second tracking method tracks the contours of the objects detected in the first

frame. Proposed contour tracker uses color and texture to model the objects and

background. In addition, conditioning the tracking of the object contour on previous

contours results in shape priors which increase the robustness of tracking during partial

or full occlusions. The proposed tracking functional, which uses a support region

around the contour, suppresses the noise and artifacts that generally occur during the
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course of tracking. The minimization of the proposed tracking energy functional is

performed by evolving the contour in the steepest descent direction and the contour

is implicitly represented using level sets. During the course of tracking, if there is no

occlusion that distorts the shape, the evolution speed in the level set representation

is based purely on the visual features such as color and texture. When occlusion

happens, the proposed occlusion detection and handling method successfully estimates

the contour of the occluded regions using a level set evolution speed based on the shape

prior learned over time. The results presented show the robustness of the tracking

algorithm with and without occlusion for both EO and IR imagery captured from

moving cameras.

Tight object contours obtained from the object tracker proposed in Chapter 5 are suitable

for higher level tasks such as behavior analysis. Following this observation, in Chapter 6,

we propose a novel approach to represent and retrieve actions using action sketches which

are generated from spatio-temporal action volumes. Given the object contours for each

time slice, we first generate an action volume by computing point correspondence between

consecutive contours using dynamic programming. This volume can be treated like an object

in the spatio-temporal space. The action volume consists of spatio-temporal trajectories for

voxel. In order to obtain a compact action representation, we analyze differential geometric

surface properties of the underlying volume. These properties, which we call the elements

of the“action sketch”, are related to the object motion and the shape through the surface

invariants namely the Gaussian and the mean curvatures. Action sketch defines important
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elements during an action and is invariant to the viewing point, such that the action elements

of the sketch occur at the same positions regardless of the camera position. Using these view

invariant features, we propose a view invariant action recognition methods based on the rank

of the fundamental matrix computed from the spatio-temporal positions of the action sketch.

7.1 Future Directions

The use of a particular feature can greatly affect the tracking performance. Generally the fea-

tures that best discriminate between the object and the background are also best for tracking

purposes. However, the same feature may not be the most discriminative one throughout a

sequence. The tracking methods proposed in this thesis use a weighted combination of color

and texture features where the weights are automatically computed. However, color and

texture are not necessarily the best features for an object, and there are other features that

may provide unique object signatures. One possible direction is to consider different features

such as motion and different filter responses. Then, fusion of the features can be performed

by Adaboost to obtain the best tracking performance. Adaboost is method of finding a

strong classifier based on a combination of moderately inaccurate “weak” classifiers. Given

a large set of features, one classifier can be trained for each feature. Adaboost will discover

weighted combination of classifiers (representing features) that maximize the classification

performance of the algorithm. The higher the weight of the feature the more discriminatory

it is.
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Compared to computational cost of the tracking method proposed in Chapter 4, contour

tracking method proposed in Chapter 5 is not real time. One of the reasons for high com-

putation cost is the requirement of iterative computations per level set grid. This can be

reduced dramatically by switching to an explicit contour representation, e.g., splines with

control points, in stead of the implicit level set representation. Another possibility is to pro-

pose a modified level set scheme, similar to the narrow band approach for shrinking contours

[Set99], which does not require evaluation of each grid in the level set.

We have provided an action recognition method based on the differential geometric prop-

erties of the volume generated from the object contours. The object volume can also be used

for various other applications, such as object compression in MPEG-4 standard or synthe-

sizing an action for different people. Another direction would be to explore volume features

other than the features used in this thesis, such as first, second or third order moments for

increasing the accuracy of the recognition performance.
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