
Learning, Detection, Representation, Indexing and Retrieval
of Multi-Agent Events in Videos

by

Asaad Hakeem
B.Sc., Ghulam Ishaq Khan Institute, 2000
M.Sc., University of Central Florida, 2006

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2007

Major Professor: Mubarak Shah

UMI Number: 3256923

3256923
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

c© 2007 by Asaad Hakeem

ii

Abstract

The world that we live in is a complex network of agents and their interactions which

are termed as events. An instance of an event is composed of directly measurable low-level

actions (which I term sub-events) having a temporal order. Also, the agents can act inde-

pendently (e.g. voting) as well as collectively (e.g. scoring a touch-down in a football game)

to perform an event. With the dawn of the new millennium, the low-level vision tasks such

as segmentation, object classification, and tracking have become fairly robust. But a rep-

resentational gap still exists between low-level measurements and high-level understanding

of video sequences. This dissertation is an effort to bridge that gap where I propose novel

learning, detection, representation, indexing and retrieval approaches for multi-agent events

in videos.

In order to achieve the goal of high-level understanding of videos, firstly, I apply statistical

learning techniques to model the multiple agent events. For that purpose, I use the training

videos to model the events by estimating the conditional dependencies between sub-events.

Thus, given a video sequence, I track the people (heads and hand regions) and objects using a

Meanshift tracker. An underlying rule-based system detects the sub-events using the tracked

trajectories of the people and objects, based on their relative motion. Next, an event model

is constructed by estimating the sub-event dependencies, that is, how frequently sub-event

iii

B occurs given that sub-event A has occurred. The advantages of such an event model are

two-fold. First, I do not require prior knowledge of the number of agents involved in an

event. Second, no assumptions are made about the length of an event.

Secondly, after learning the event models, I detect events in a novel video by using graph

clustering techniques. To that end, I construct a graph of temporally ordered sub-events

occurring in the novel video. Next, using the learnt event model, I estimate a weight matrix

of conditional dependencies between sub-events in the novel video. Further application of

Normalized Cut (graph clustering technique) on the estimated weight matrix facilitate in

detecting events in the novel video. The principal assumption made in this work is that

the events are composed of highly correlated chains of sub-events that have high conditional

dependency (association) within the cluster and relatively low conditional dependency (dis-

association) between clusters.

Thirdly, in order to represent the detected events, I propose an extension of CASE rep-

resentation of natural languages. I extend CASE to allow the representation of temporal

structure between sub-events. Also, in order to capture both multi-agent and multi-threaded

events, I introduce a hierarchical CASE representation of events in terms of sub-events and

case-lists. The essence of the proposition is that, based on the temporal relationships of

the agent motions and a description of its state, it is possible to build a formal description

of an event. Furthermore, I recognize the importance of representing the variations in the

temporal order of sub-events, that may occur in an event, and encode the temporal prob-

abilities directly into my event representation. The proposed extended representation with

iv

probabilistic temporal encoding is termed P-CASE that allows a plausible means of interface

between users and the computer. Using the P-CASE representation I automatically encode

the event ontology from training videos. This offers a significant advantage, since the domain

experts do not have to go through the tedious task of determining the structure of events by

browsing all the videos.

Finally, I utilize the event representation for indexing and retrieval of events. Given the

different instances of a particular event, I index the events using the P-CASE representation.

Next, given a query in the P-CASE representation, event retrieval is performed using a two-

level search. At the first level, a maximum likelihood estimate of the query event with the

different indexed event models is computed. This provides the maximum matching event.

At the second level, a matching score is obtained for all the event instances belonging to the

maximum matched event model, using a weighted Jaccard similarity measure. Extensive

experimentation was conducted for the detection, representation, indexing and retrieval of

multiple agent events in videos of the meeting, surveillance, and railroad monitoring domains.

To that end, the Semoran system was developed that takes in user inputs in any of the three

forms for event retrieval: using pre-defined queries in P-CASE representation, using custom

queries in P-CASE representation, or query by example video. The system then searches

the entire database and returns the matched videos to the user. I used seven standard

video datasets from the computer vision community as well as my own videos for testing the

robustness of the proposed methods.

v

This dissertation is dedicated to my loving wife Madiha and my caring parents Rizwana

and Masood Hakeem.

vi

Acknowledgments

I would like to thank my dissertation advisor Dr. Mubarak Shah for his guidance, help,

and dedication; Drs. Steve Fiore, Annie Wu, and Niels da Vitoria Lobo for serving as my

committee members and for their valuable feedback; Cherry Tran, Anne Hunter, and Linda

Lockey for proof reading my dissertation; Dr. Yaser Sheikh and Saad Ali for the discussion of

ideas and helpful insights; Andrew Horner for generating the video tracks; and Dr. Charles

Hughes and Jenny Shen for all their help and support.

I would also like to thank my loving wife Madiha for all her encouragement, patience,

and help; my mother Rizwana, my father Masood, my mother-in-law Aaila, my father-in-law

Rass, my sister Saeedeh, and my brother Raza for their support, encouragement and prayers

throughout my graduate studies.

vii

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTER 1 INTRODUCTION . 1

1.1 Event Learning . 2

1.2 Event Detection . 3

1.3 Event Representation . 4

1.4 Event Indexing and Retrieval . 6

1.5 Organization of the Dissertation . 7

CHAPTER 2 RELATED WORK . 9

2.1 Low-Level Feature Detection . 10

2.1.1 Tracking . 11

2.1.2 Object Classification . 14

2.1.3 Sub-Event Detection . 18

viii

2.2 Event Detection . 20

2.2.1 Pre-defined Event Models Based Event Detection 21

2.2.2 Learnt Event Models Based Event Detection 23

2.2.3 Clustering Based Event Detection . 24

2.3 Event Representation . 25

2.4 Event Indexing and Retrieval . 27

2.5 Conclusions . 28

CHAPTER 3 LOW-LEVEL FEATURE DETECTION 31

3.1 Meanshift Tracking . 33

3.2 Sub-Event Detection . 35

3.3 Results . 37

3.4 Discussion . 40

CHAPTER 4 EVENT LEARNING AND DETECTION 41

4.1 Learning the Event Model . 45

4.1.1 Capturing Temporal Order of Sub-events using Allen’s Temporal Algebra 46

4.1.2 Event Modeling using Edge-Weighted Directed Hypergraph 48

4.2 Event Detection . 51

4.2.1 Estimating the Probabilistic Weight Matrix of Sub-event Dependencies 51

ix

4.2.2 Graph Clustering using Normalized Cuts 53

4.3 Results . 55

4.4 Discussion . 58

CHAPTER 5 EVENT REPRESENTATION 65

5.1 CASE Framework . 68

5.2 Extended CASE . 70

5.2.1 Hierarchical Representation . 70

5.2.2 Temporal Logic . 71

5.2.3 Causality . 73

5.2.4 Variation in Temporal Order . 74

5.3 Results . 77

5.3.1 P-CASE Representation for Railroad Monitoring Domain 77

5.4 Discussion . 82

CHAPTER 6 EVENT INDEXING AND RETRIEVAL 84

6.1 Semoran System . 90

6.2 Event Indexing . 93

6.2.1 Comparison of P-CASE with HMMs 93

6.2.2 Comparison of P-CASE with Bayesian Networks 95

x

6.3 Event Retrieval . 96

6.4 Results . 98

6.5 Discussion . 103

CHAPTER 7 SUMMARY AND FUTURE WORK 114

APPENDIX A: SUB-EVENT DETECTION RULES 119

APPENDIX B: PROOF OF EQUIVALENCY FOR W AND W’ BASED

MINIMIZATIONS . 125

APPENDIX C: MOST LIKELY SEQUENCE OF SUB-EVENTS FOR EVENTS

IN SEMARON SYSTEM . 127

LIST OF REFERENCES . 134

xi

LIST OF TABLES

3.1 SUMMARY OF UNIQUE SUB-EVENTS . 36

3.2 SUMMARY OF SUB-EVENT DETECTION RATE 39

4.1 SUMMARY OF TRAINING VIDEOS . 55

4.2 SUMMARY OF DIFFERENT DATASETS USED FOR EVENT LEARNING 56

4.3 RESULTS OF TESTING VIDEOS . 58

6.1 SUMMARY OF INDEXED VIDEOS IN SEMORAN DATABASE 99

6.2 SUMMARY OF EVENT RETRIEVAL USING THE SEMORAN SYSTEM 102

xii

LIST OF FIGURES

3.1 Results of Meanshift tracking for videos in different domains. (a) Surveillance

(b) Railroad Monitoring (c) Meetings. 37

3.2 Automated detection of sub-events for stealing video. Using the tracked tra-

jectories, the sub-events of each agent are detected, and frames 37, 119, 127,

and 138 of the video are shown. 38

4.1 Allen’s interval algebra describing temporal relations between durative sub-

events T1 and T2. 46

4.2 Partial graph for a sequence containing two agents performing actions simul-

taneously. The sub-events are represented by the vertices and the temporal

relationships between sub-events are shown as directed edges between vertices.

Agent1’s sub-events are greyed while Agent2’s are white to provide a visual

distinction between their sub-events. 48

xiii

4.3 Partial sub-event dependency graph for a sample video containing multiple

people performing voting events in various styles. The vertices represent the

sub-events, while the conditional probabilities between sub-events are rep-

resented by the weights on the hyperarcs. Note that a single example of

hyperarcs with cardinality of 3 and 4 are shown respectively in green and red,

to keep the figure comprehendible. Also, the circled number on the hyperarc

represents the temporal order index in Pi. 50

4.4 The estimated weight matrix and Ncut application for a novel video. (a) The

estimated weight matrix using the SDG of voting event, using Normalized cut

two voting events are automatically segmented and are shown as red and blue

patches. (b) The estimated weight matrix using the SDG of object passing

event, using Ncut the object passing event is automatically segmented and is

shown as the green patch. 52

4.5 Event detection results using normalized cuts for meeting domain test video.

(a)-(d) represent frames 328, 560, 755, and 1,375 respectively of meeting video

consisting of 1,551 frames. (e) Time indexed clustering results for meeting

video, where the top bar shows the actual event detection results and the

bottom bar denotes the ground truth of the events. 61

xiv

4.6 Event detection results using normalized cuts for surveillance domain test

video1. (a)-(d) represent frames 159, 2,388, 2,874, and 3,125 respectively of

surveillance video1 consisting of 3,580 frames. (e) Time indexed clustering

results for surveillance video1, where the top bar shows the actual event de-

tection results and the bottom bar denotes the ground truth of the events. . 62

4.7 Event detection results using normalized cuts for surveillance domain test

video2. (a)-(d) represent frame 223, 1,084, 2,191, and 2,703 respectively of

surveillance video2 consisting of 4,256 frames. (e) Time indexed clustering

results for surveillance video2. 63

4.8 Event detection results using normalized cuts for railroad monitoring domain

test video. (a)-(d) represent frames 740, 1,354, 1,966, and 2,251 respectively

of railroad monitoring video consisting of 2,260 frames. (e) Time indexed

clustering results for railroad monitoring video, where the top bar shows the

actual event detection results and the bottom bar denotes the ground truth

of the events. 64

xv

5.1 P-CASE representation for the object passing event. Each node is a sub-event

encoded by a complete case-frame, and the weights on directed edges represent

the probability of occurrence of a specific temporal relationship between sub-

events, while the weights outside the brackets (in blue) are the conditional

probabilities between sub-events. The white and grey vertices represent sub-

events of agents one and two respectively. 74

5.2 On-line extended CASE representation of video sequences. (a) Representa-

tion at frame 150/237 for the railroad monitoring video (b) PETS sequence

representation at frame 1,446/2,000. 76

6.1 Event retrieval using pre-defined queries. 90

6.2 Event retrieval using custom queries. 91

6.3 Event retrieval using query by example video. 92

6.4 Event matching using the weighted Jaccard coefficient. A predefined event

graph consisting of six vertices (case-frames) is matched with an event graph

of a video sequence consisting of 148 vertices (case-frames). The correct match

occurs at the graph node at frame 12 (the similarity maximum is indicated by

the dotted red line). From top-left to bottom-right, the pre-defined predicate

is perturbed so that a progressively greater number of cases within the case-

frames mismatch. 100

6.5 Recall level precision plots for the three domains. 102

xvi

6.6 Average time for event retrieval given a query, in the meeting (domain1),

surveillance (domain2), and railroad (domain3) domains respectively. 103

6.7 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Voting (b) Chasing . 105

6.8 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Enter and sit (b) Fighting 106

6.9 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Loading (b) Object drop 107

6.10 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Object exchange (b) Object passing 108

6.11 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Person enters danger-zone while gate arms moving (b)

Sneaking . 109

6.12 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Stand and leave (b) Stealing 110

6.13 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Train enters danger-zone while gate arms moving (b)

Unloading . 111

xvii

6.14 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Vehicle enters danger-zone while gate arms moving (b)

Vehicle exits danger-zone while gate arms moving 112

6.15 Automatically generated P-CASE representation using indexed data in Se-

moran system. (a) Vehicle stops outside danger-zone (b) Argument 113

xviii

CHAPTER 1

INTRODUCTION

Computer vision research started in the 1960’s as a summer project in artificial intel-

ligence, where the goal was to understand images by recognizing blocks and defining the

relationship between them. This problem evolved in the 1970’s to solve low level vision

problems such as object segmentation using edge detection. The 1980’s concentrated around

recovering 3D structure of objects using “shape from X” methods, where X referred to

motion, shading, and stereo. In the 1990’s, the research revolved around acquiring scene ge-

ometry and information using active vision, which involves changing the sensor orientation

and location, and use low level vision to achieve the goal. With the advent of cheap high

speed computing in the late 1990’s, research entered the video domain where motion was

used as a visual cue for object tracking and action recognition. Compared to a single image,

a sequence of images introduced a new dimension: time, and a new constraint: temporal

consistency.

With the dawn of the new millennium these low-level vision tasks such as segmentation,

object classification, and tracking have become fairly robust; but a representational gap still

exists between low-level measurements and high-level understanding of video sequences. In

1

this dissertation, I outline the approaches to learning, detection, representation, indexing

and retrieval of multi-agent events in videos to bridge this gap.

Given a set of training videos, such that each video consists of one type of event having

spatial and temporal variations, I learn the event models. This process of constructing event

models using training videos is called event learning. Since I know the type of event in each

training video, it is considered supervised learning. Using the learnt event models, I find

events in novel videos, and this process is termed as event detection.

The primary objective of this work is to detect and learn the complex interactions of the

multiple agents performing multiple actions in the form of events. I do not assume any prior

knowledge about the number of agents involved in the interaction or the length of the event.

Another objective of this work is to present a coherent representation of these events, as a

means to encode the relationships between the agents and the objects participating in an

event, and to index the detected events for future retrieval. Below I provide an overview of

proposed methods for learning, detection, representation, indexing and retrieval of multiple

agent events in videos.

1.1 Event Learning

In order to learn the events from training videos, firstly, I introduce a graph that depicts

the temporal relationships between sub-events in a video. These temporal relationships are

based on the interval algebra in [AF94], which is a more descriptive model of relationships

2

compared to the low level abstract relationship model of HMMs. The purpose of this graph

is to encode the complete temporal order of sub-events occurring in a video. The temporal

order of sub-events are further utilized in extracting the conditional dependency between sub-

events. Secondly, using this graph, I determine the sub-event dependency graph representing

the temporal conditional dependency between sub-events. The sub-event dependency graph

is the learnt event model that encodes the higher order Markov dependencies between sub-

events and is scalable to the number of agents involved in the event. The main advantages

of my event model are:

1. The temporal relations are more descriptive relationships between sub-events compared

to the low level abstract relationship models of HMMs, Dynamic Bayesian Networks

etc.

2. The event model does not make any assumptions about the length of an event.

3. The event model is scalable to the number of agents involved in an event since it models

the sub-event dependencies instead of the agent processes.

1.2 Event Detection

Event detection in novel videos proceeds by estimating a weight matrix of conditional

dependencies between the detected sub-events. The weights on edges between sub-events are

recovered using the learnt event model. This weight matrix is then used for spectral graph

3

partitioning. Thus, normalized cut is applied recursively to this weight matrix, to cluster

the highly correlated sub-events. These clusters represent the detected events for a specific

event model, and the event structure composed of sub-events and their temporal order is

extracted using graph partitioning. Furthermore, different weight matrices are estimated for

each event model, and normalized cut is applied recursively to extract all the events present

in the novel video. The main advantages of my event detection scheme are:

1. The event detection does not make any assumptions about the length of an event since

the graph clustering will cluster highly correlated events of any length.

2. The event detection is scalable to the number of agents involved in an event since the

graph clustering will cluster highly correlated events involving any number of agents.

1.3 Event Representation

In order to represent the events, I extend the CASE [F68] representation of the natural

language. CASE was primarily used for syntactic analysis of natural languages, and while it

provides a promising foundation for event representation it has several limitations for that

end. I therefore propose four critical extensions to CASE for the representation of events:

1. Accommodating multiple agents and multiple threads in an event.

2. Supporting the inclusion of temporal information into the representation.

3. Supporting the inclusion of causal information into the representation.

4

4. Accommodating variation in the temporal order of sub-events.

I also propose a novel event graph representation for the detected events in video se-

quences, having temporal relationships between sub-events. Hence, unlike almost all previ-

ous work, I use both temporal structure and an environment descriptor simultaneously to

represent an event. I also recognize the importance of representing the variations in temporal

order of sub-events, that occur in an event and encode it directly into my representation,

which I term P-CASE. These variations in the temporal order of sub-events, occur due to the

style of execution of events for different agents. The practical need for formal representation

of events is best illustrated through possible applications. These include:

(1) Surveillance : By definition, surveillance applications require the detection of pe-

culiar events. Event representations can be used for prior definition of what constitutes an

interesting event in any given domain, allowing automation of area surveillance.

(2) Annotation and Indexing : In the spirit of MPEG-7, video sequences may be an-

notated autonomously based on their content. Using an event representation, video content

may be annotated and indexed according to the occurred events.

(3) Event Browsing : Given a query for a certain event, defined in terms of an event

representation, similar instances can be retrieved from a database of annotated clips.

5

1.4 Event Indexing and Retrieval

Finally, I propose to utilize the event representation for indexing and retrieval of events.

Given the different instances of a particular event, I build an event index in the form of

P-CASE representation, encoding the variation in the temporal order of sub-events occurring

in an event. Given a query in the P-CASE representation, event retrieval is a two-level

process. At the first level, a maximum likelihood (ML) estimate is computed with the

different event models. The event model with the ML estimate provides the maximum

matching event. At the second level, I find the percentage match of the query event with

all the event instances belonging to the maximum matched event model, using a weighted

Jaccard similarity measure. The weights in the Jaccard measure are obtained using term-

frequency and inverse document frequency (TF-IDF) scheme, borrowed from Lucene full-text

indexing. In text search, the TF-IDF scheme is used to return the ranked search results,

whereas for event retrieval, the TF-IDF scheme helps in weighting the importance of a

particular case in an event. The main advantages of my event indexing and retrieval scheme

are:

1. The event indexing scheme is human readable, since the P-CASE representation is an

extension of CASE representation of natural languages.

2. The event retrieval requires less number of hits since it rules out most of the events

(and their instances) during the first level search.

6

3. The event indexing and retrieval is scalable since new events can be added to the

database.

With the different methods in my dissertation summarized, the following section outlines

the organization of the rest of the dissertation.

1.5 Organization of the Dissertation

In Chapter 2, I discuss the related work for low-level feature detection, as well as learning,

detection, representation, indexing and retrieval of events. Section 2.1 discusses the various

low-level feature detection methods such as object tracking and sub-event detection. Section

2.2 describes the event detection methods where I detail the different approaches used to

achieve the goal. Section 2.3 discuses the various event representations used to describe an

event. Section 2.4 details the current state-of-the-art in event indexing and retrieval and

discuss their limitations.

In Chapter 3, I describe the low-level feature detection and tracking methods. I further

detail the Meanshift tracker used in my experiments. I end the chapter by describing the

rule-based system used for sub-event detection. In Chapter 4, I detail how I utilize the

detected events to learn the event model. I further describe the graph clustering technique

used to detect the events in novel video. In Chapter 5, I discuss the CASE representation

of the natural language and describe its limitation for event representation. I detail the

proposed extensions to CASE representation to cater for multiple agent and multi-threaded

7

events, incorporation of temporal order of sub-events and variation in the temporal order of

sub-events. All of these extensions to the CASE representation allows the representation of

events and I term the final event representation as P-CASE.

Chapter 6 summarizes the Semoran system, which uses the P-CASE representation of

the detected events for the purpose of event indexing and retrieval. I describe the event

indexing scheme where I use P-CASE representation to build the indexed event models. I

then calculate a maximum likelihood estimate of the query event with all the event models to

find the matching event, and further utilize a weighted Jaccard measure to find the similarity

score of all instances of the matching event with the query event. Finally, in Chapter 7, I

summarize my proposed methods for event learning, detection, representation, indexing and

retrieval of multiple agent events and provide some future directions to the current work.

8

CHAPTER 2

RELATED WORK

Events are high level concepts that are composed of sub-events having a temporal order.

The agents can act independently (e.g. voting) as well as collectively (e.g. touch-down in a

football game) to perform an event. Hence, in the enterprise of machine vision, the ability to

detect and learn the observed events must be one of the ultimate goals. Another important

aspect in the artificial intelligence and multimedia communities is the ability to represent

and index the detected events for future retrieval of similar events. With the dawn of the

new millennium, the low-level vision tasks such as segmentation, object classification, and

tracking have become fairly robust. But a representational gap still exists between low-level

measurements and high-level understanding of video sequences. In this chapter, I discuss

the related work for the different steps involved in achieving high-level video understanding,

and point at their limitations for videos containing multiple agent events.

The first step towards achieving high-level video understanding is the detection and track-

ing of different agents and objects participating an event. Using the tracked trajectories of

agents and objects, the different sub-events are detected. This step is discussed in Section

2.1 where I detail the various low-level feature detection methods for reaching the goal. The

second step is the detection of events using the detected sub-events and their temporal order.

9

This is described in Section 2.2 where I detail the different event detection methods. The

third step is the representation of the detected events for human understanding, interpreta-

tion, and alert (in case of suspicious or unusual behavior). This step is given in Section 2.3

where I discuss the various event representations used to describe an event. The final step

in achieving high level understanding of videos is the indexing of events for future retrieval.

This is provided in Section 2.4 which details the current state-of-the-art in event indexing

and retrieval and discuss their limitations. I now detail the related work for each step in the

following sections.

2.1 Low-Level Feature Detection

An instance of an event is composed of directly measurable low-level actions, which are

termed sub-events, having a temporal order. In this section, I discuss the various methods

used to detect the sub-events in different domains. In order to detect sub-events, two low-

level tasks of object tracking and classification are required as a pre-requisite. Tracking is

defined as a problem of finding the trajectory of an object as it moves in the scene, while

object classification is defined as a problem of labeling what type of object is in the scene (e.g.

car or person). The various methods for object tracking and classification are discussed in

Sections 2.1.1 and 2.1.2 respectively. Once the objects are detected, tracked, and classified I

can detect the sub-events. The various sub-event detection methods are described in Section

2.1.3.

10

2.1.1 Tracking

Object tracking is one of the fundamental problems in the field of computer vision. It

has gained wide spread attention with the advent of high speed computing and increased

need for automated surveillance. Tracking is defined as a problem of finding the position of

an object as it moves along in the scene. There are several complexities in object detection

and tracking such as:

1. occlusion of objects (partial/complete/self)

2. changes in scene illumination (due to cloud cover etc.)

3. image noise (due to sensor limitations etc.)

4. size of the object (being very small)

5. shape of the object (non-rigid, articulated, etc.)

6. non-linear or non-smooth object motion

7. shadows

8. drift in object appearance model

A good tracker should be able to tackle most of the above mentioned problems by impos-

ing certain constraints on the object motion and appearance. Almost all tracking algorithms

make certain assumptions to simplify the problem. For example, most algorithms assume

11

that the object motion and appearance will change smoothly over time, some make as-

sumptions on the number and size of objects, while other make assumptions about object

appearance (e.g. skin colored) and shape (e.g. elliptical, rectangular etc.). Numerous ap-

proaches to object tracking exists, based on the domain under consideration. I discuss object

tracking in the two scenes (in which I conducted my experiments) and the interested reader

is referred to [YJS06] for a detailed review of object tracking methods.

2.1.1.1 Tracking in Surveillance Scenes

The videos in various surveillance scenes usually consist of objects that are smaller in

size, as compared to the background, and are fast moving. A background is defined as that

part of the video that either does not move/change over time or changes smoothly over time.

In surveillance videos there are usually multiple objects in the scene and they have frequent

occlusions with each other. Background subtraction techniques [SG00, JSS02] are commonly

used to detect objects in these videos. Due to the presence of multiple concurrent objects in

the scene, it is important to have consistent labelling of these objects throughout the video

sequence. That is, given two frames and a set of objects in each frame, in order to learn

the appearance model of each object I must know which object in the first set corresponds

to which object in the second set. The problem becomes even more complex when these

objects occlude each other in the scene. Thus, in the surveillance domain, a system must

detect and track objects as well as handle occlusion, entries and exits in the scene.

12

The background subtraction was initially proposed by Stauffer and Grimson [SG00] which

was further extended by Javed et al. [JSS02]. In their extension, they propose multiple levels

of processing during background subtraction. The first level is the pixel level processing that

separately uses color-based and gradient-based distributions to find pixels belonging to the

foreground or the background. The second level is the region level processing that integrates

the gradient and color information. A connected component algorithm is applied to group

all foreground pixels into regions. Any foreground region that corresponds to an object will

have high values of gradient-based background subtraction at its boundaries. This will not

be true for falsely detected regions and so they are added to the background regions. This

method handles common problems in most background subtraction algorithms such as quick

illumination changes due to adverse weather conditions, relocation of the background objects

(e.g. repositioning of a chair), and initializing the background model with moving objects.

2.1.1.2 Tracking in Meeting Scenes

Background modelling techniques detect people and vehicles fairly robustly in the surveil-

lance and railroad monitoring scenes. However, for the videos in the meeting scenes, objects

are usually present at the start of the video and they persist in field of view of the camera

throughout the entire sequence. Therefore a model of the background cannot be estimated

in such videos, and thus background subtraction techniques cannot be used for tracking.

13

Appearance-based methods such as Meanshift [CRM03] or contour-based object tracking

[YLS04] methods can be used in such scenes.

The Meanshift algorithm tracks the initially detected object using its color histogram. A

histogram captures the distribution of color in an image patch. The color space is quantized

into several discrete bins and the number of pixels with the same color are recorded in the

corresponding bin. Thus, the object model q is an m-bin histogram, representing the object’s

probability density function (pdf). In the subsequent frame, the candidate location y of an

object is characterized by its pdf p(y).

In contour-based methods, object tracking is treated as a two-class discriminant analysis

of pixels into regions belonging to object Robj and background Rbck, which depends upon ob-

ject features, energy functional, and the energy minimization technique. The object features

under consideration are appearance and shape, and the appearance features are composed of

color and texture. Pixels are clustered as object or background by the independent opinion

pooling strategy [B85]. The shape of the object is learnt over time (t), based on the object

contour Γ and is given by Pshape = P (ϕ(Rt
i)|Γt), where Ri are the object regions and ϕ is

the partitioning operator that divides the image into object and background regions.

2.1.2 Object Classification

Object classification is also one of the fundamental problems in the field of computer

vision. It has gained wide spread attention with the advent of high speed computing and

14

increased need for object categorization in automated surveillance. Classification is defined

as a problem of finding the type of an object as it moves along in the scene, using its motion

and appearance. There are several complexities in object classification such as:

1. change in object viewpoint

2. change in object pose

3. occlusion of objects (partial/complete/self)

4. image noise (due to sensor limitations etc.)

5. size of the object (being very small)

6. shape of the object (non-rigid, articulated, etc.)

7. shadows

A good classifier should be able to tackle most of the above mentioned problems by

imposing certain constraints on the object motion and appearance. Almost all classification

algorithms make certain assumptions to relax some of the above complexities and simplify the

problem. I discuss object classification using three broadly used methods: motion periodicity,

supervised learning, and semi-supervised learning based classification.

15

2.1.2.1 Motion Periodicity based Classification

These methods classify objects as person or vehicle based on the periodicity of their motion.

The intuition behind such methods is that walking people undergo periodic motion while

vehicles do not, thus periodicity detection can be used distinguish between them. Tsai et. al.

[TSKK00] analyzed certain points on the objects and periodicity was detected by analyzing

Fourier descriptors of the smoothed spatio-temporal curvature of those point trajectories.

Polana and Nelson [PN97] also recognized periodic activities using Fourier transform of point

trajectories of an object that was obtained by using normal flow. Javed and Shah [JS02]

introduced Recurrent Motion Images (RMI) to detect periodic motion. These images were

obtained by iteratively performing the XOR operation and adding the scale and motion

compensated silhouettes of the objects. Large values in the RMIs indicated periodic motion.

One limitation of all the above mentioned methods is that object trajectories are required

to compute periodicity, thus any errors in tracking also degrade the classification. In addition,

these approaches are not extendable for classification of the objects that exhibit non-periodic

motion.

2.1.2.2 Classification using Supervised Learning

The above limitation of periodicity based classifiers is overcome by learning the functions

that map the image features of a particular class to a label using training examples from that

16

class. A variety of approaches have been proposed using this methodology including naive

Bayes classifiers [SK00], Support Vector Machines (SVMs) [PP99] and Adaboost [SG00]. For

surveillance scenarios, Adaboost is particularly suitable since it has been demonstrated to

give low false alarm and high detection rates in real-time using simple Haar-like features.

Boosting is a machine learning method, that combines simple classifiers (weak learners) into

a single (strong) classifier, which is more accurate than any one of the weak learners. SVMs

have been used in different scenarios, where the method maps the feature vectors to a higher

dimension and chooses those feature vectors as support vectors, that are at the boundary

between the two classes. During testing, the new feature vector is compared to the support

vectors and the new feature is given the same class label as the support vectors that give

the highest score. The limitations of the supervised classification approaches is that they

require large number of training examples to learn the mapping functions. Also, they are

not adaptive to view and pose variations in the object.

2.1.2.3 Classification using Semi-supervised Learning

One possible means to overcome the limitation of supervised learning methods requiring

a large labeled training set is to learn from unlabeled data. A number of methods have

been developed by the machine learning and pattern recognition community for training of

classifiers using unlabeled data. The use of both labeled and unlabeled data for solving

classification tasks was introduced by Nigam et al. [NMTM00] in the area of text and

17

information retrieval. They employed the EM algorithm to infer the missing labels of the

unlabeled data. The co-training approach to learn from unlabeled data was proposed by

Blum and Mitchell [BM98]. The basic idea is to train classifiers on two independent features

(views) of the same data, using a relatively small number of examples. Then to use each

classifier’s prediction on the unlabeled examples to expand the training set of the other. Blum

and Mitchell prove that co-training can find a very accurate classification rule, starting from

a small quantity of labeled data if the two feature sets are statistically independent. Recently,

Balcan et al. [BBY04] have shown that independence between the two views of the data is

not a necessary assumption for co-training, instead weekly correlated views can also be used

for co-training.

2.1.3 Sub-Event Detection

After discussing the object detection, tracking, and classification methods, I now discuss

the sub-event detection methods. Initial approaches for sub-event detection involved meth-

ods that had pre-defined rules or constraints that formed event models. Later, event models

were learnt using training examples. The techniques broadly used for low-level sub-event

detection include rule-based systems, finite state machines (FSMs), stochastic context free

grammar (SCFG), Hidden Markov Models (HMMs) and their variants, Bayesian Networks

(BNs), and Dynamic Bayesian Networks (DBNs).

18

Rule-based system is an amalgamation of a list of functions that fire independently upon

certain conditions in the feature set being satisfied. In case of sub-event detection, each

function represents a particular sub-event that requires certain conditions in the motion

trajectories to be satisfied. Later, simultaneous firing of functions was replaced by the

concept of states that was introduced in a FSM. A FSM consists of nodes that represent

states (which have a high level meaning e.g. sub-events move or stop etc.) and arcs that

represent transition from one state to another. A transition only occurs upon certain a

condition being satisfied in a particular state. Furthermore, probabilities were added on the

arcs of a FSM to form HMM. As opposed to a FSM, an HMM looses the high level meaning

of each state and is able to detect sub-events of varying length due to its dynamic time

warping properties. An HMM is the most widely used model for sub-event detection and

activity recognition, and has several variants, Coupled HMM and Hierarchical HMM being

the most popular.

Bayesian Networks go one step further to HMMs where the structure has nodes repre-

senting states having high level meaning and arcs that represent conditional dependencies

(casuality). It is able to model static dependencies between concepts, which is further ex-

tended by Dynamic Bayesian Networks that model concept dependencies that vary with

time. Both HMMs and DBNs define hidden concepts using a set of hidden nodes. Using the

hidden nodes and the transitions, they are able to detect streams of sub-events.

A stochastic context free grammar is composed of symbols and production rules. A prob-

ability is attached to each symbol and production rule that is learnt via training examples.

19

During testing, the overall probability of a feature set is evaluated by expanding the pro-

duction rules and multiplying the probabilities using the Markovian assumption. The model

that maximizes the probability is considered the detected sub-event.

Each of the above mentioned approaches have several limitations. They either manually

encode the event models or provide constraints such as grammar or rules, to detect sub-

events in novel videos. Most of these grammar rules are hand crafted and do not work

in general scenarios. Also, the learning methods either model single person sub-events or

require prior knowledge about the number of people involved in the events and variation in

data may require complete re-training, so as to modify the model structure and parameters

to accommodate those variations. Therefore, there is no single best method for the detection

of sub-events and the choice of model varies with the domain under consideration.

2.2 Event Detection

In literature, a variety of approaches have been proposed for the detection of events

in video sequences. Most of these approaches can be arranged into three categories based

on their approach to event detection. First, there are approaches that detect events in

videos based on pre-defined event models in the form of templates, rules, or constraints.

These models are typically hand crafted. Among these include methods that utilize motion

verbs [KHN91], intermodal collaboration using domain knowledge [BJ98], spatio-temporal

motion segmentation [RA00], indexing of pose and velocity vectors of body parts [BWP02],

20

image ontology based recognition [MTB03], and taxonomy and ontology of domains [HS04].

Second, approaches that learn the event models [FMR98, BK00, IB00, HL04] using training

data have been widely used in the area of event detection. Third, approaches that do not

model the events [ZI01, RYS02, ZSV04], but utilize clustering methods for event detection.

2.2.1 Pre-defined Event Models Based Event Detection

Initial approaches for event detection involved methods that had pre-defined rules or

constraints that formed event models. Among these methods were approaches that mod-

elled events using state machines. Badler [B75] proposed event models using state graphs

and primitive rules on artificial environments. The method used prior knowledge of the envi-

ronment to resolve complex events rather than using motion information for event detection.

Ayers and Shah [AS01] also used state machines for event detection, but as opposed to the

above method, it utilized the motion data for event detection. Their method detected events

in specified areas, which restricted the system and required a priori knowledge of the environ-

ment. Haering et al. [HQS00] proposed a three level event detection model, which applied

neural networks on low-level features for object classification and shot summarization, and

state machines as the high level event model that detected events based on the output of

the low and mid-level models. Unlike previous methods, their method did not require prior

knowledge of the environment for event detection. Later, there were methods that concen-

trated on detecting periodic events based on pre-defined event models. Polana and Nelson

21

[PN93] proposed a method for detecting periodic events such as “walking of a person”, by

using Fourier transform of different point trajectories, and classified events as periodic or

non-periodic. The periodic motion was detected by averaging the fundamental frequency of

the point trajectories, but was limited to detecting periodic events that had a constant cycle

length. Yacoob and Black [YB98] also detected cyclic human motion using their parameter-

ized model, but unlike the previous method, it detected periodic events with a variable cycle

length. The detection was performed through eigenspace transformation of the observed

data to the model data using Principal Component Analysis (PCA). Though these methods

had high detection rates, they had limited application to recognition of events consisting of

repeated patterns. Further approaches utilized constraints and grammar rules for the detec-

tion of events that had variability, and did not strictly follow the event model. The various

methods in this event detection approach include causal grammar [B97], PNF propagation

of temporal constraints [PB98], dynamic perception of actions [MJ98], force dynamics [S00],

angular constraints on body components [AA01], stochastic grammars [MES03], and appear-

ance and geometric constraints [SSL04]. All the above approaches either manually encode

the event models or provide constraints such as grammar or rules, to detect events in novel

videos.

22

2.2.2 Learnt Event Models Based Event Detection

Next, I discuss approaches that learn the event models using training data, instead

of manually encoding the event models. [DB97] proposed temporal templates for event

detection. Their method utilized a Motion Energy Image (MEI) and a scalar valued Motion

History Image (MHI) to learn the temporal templates. Their method was sensitive to partial

occlusions, since the motion of the trained temporal template did not have the occluded MEI

and its associated MHI. [FMR98] detected events by learning the structure and parameters

of Dynamic Bayesian Networks (DBNs) from both complete and incomplete data. Though

their method was partially insensitive to occlusion, it was limited to inference of simple

events, and required approximations for detecting complex events.

Methods that adopt Hidden Markov Models (HMMs) [MEH99, BK00, OLW02] and its

variations such as coupled HMMs [ORP99], dynamic multi-linked HMMs [GX03], abstract

hidden Markov memory models [NBV03], and layered HMMs [XMZ03] have been widely

used in the area of event detection. These methods were the work horses for event detection

in the surveillance of indoor and office environments, and sports domains. [IB00] proposed

a Stochastic Context Free Grammar (SCFG) for event detection. The grammar rules were

assigned probabilities based on the training data and were further utilized for event detection

in novel videos. The primitive events were detected using HMMs and were parsed by the

SCFG for error detection and correction of the detected events. Other methods for event

detection using learnt event models include belief networks [IB99], shape activities [VCC03],

23

Support Vector Machines (SVMs) [HL04], and Bayesian Networks and probabilistic finite

state machines [HNB04].

The above learning methods either model single person events or require prior knowledge

about the number of people involved in the events and variation in data may require complete

re-training, so as to modify the model structure and parameters to accommodate those

variations. Also, there is no straight-forward method of expanding the domain to other

events, once training has been completed. That is, if more events are added to the current

domain or if I want to model events in a new domain, then, the existing models are re-trained

using the new data and/or the model structure is defined manually for the new events.

2.2.3 Clustering Based Event Detection

Finally, I describe approaches that do not model events, but utilize clustering techniques

for event detection. These methods of event detection include spatio-temporal derivatives

[ZI01], and co-embedding prototypes [ZSV04]. Both methods find event segments by spec-

tral graph partitioning of the weight matrix. The weight matrix is estimated by calculating

a heuristic measure of similarity between video segments. These methods assume maximum

length of an event and were restricted to a single person and a single threaded event detec-

tion. [RYS02] proposed human action recognition using spatio-temporal curvatures of 2D

trajectories. Their method initiated without an event model and formed clusters of similar

events based on their spatio-temporal curvatures. Their method is also restricted to single

24

person event detection, but it makes no assumptions about the length of an event and the

spatio-temporal curvature based event representation was also view-invariant.

2.3 Event Representation

Although there are several methods in the computer vision and pattern recognition

community that deals with the detection of events. What is missing in these approaches

is the ability to extend their abstract event models to representations related to human

understanding of events. One such natural language representation called CASE was proposed

by Fillmore [F68] for language understanding. The basic unit of this representation is a

case frame that has several elementary cases, such as an agentive, an instrumental, and

a predicate. Using these case frames Fillmore analyzed languages, treating all languages

generically.

However, CASE was primarily used for syntactic analysis of natural languages, and while

it provides a promising foundation for event representation it has several limitations for that

end. Firstly, since events are typically made up of a hierarchy of sub-events it is impossible to

describe them as a succession of case frames. Second, these sub-events often have temporal

and causal relationships between them, and CASE provides no mechanisms to represent

these relationships. Furthermore, there might be simultaneous dependent or independent

sub-events with multiple agentives, and change of location and instrumentals during events.

25

CASE was first investigated for event representation [N89], but the author did not investi-

gate the temporal structure of events as the author was not concerned with event detection.

More recently [KTF01] addressed some shortcomings in CASE for single person event detec-

tion with, SO- (source prefixed to case), GO- (goal prefixed to case) and SUB (child frame

describing a sub-event). SO- and GO- are prefixed to the LOC (locative) case mostly describing

the source and destination locations of the agent in the event. A concept hierarchy of action

rules (case frames) was used to determine an action grammar (ontology) for the sequence of

events. Also, using case frames based on events, they reconstructed the event sequence in

the form of sentences. Their method worked well for single person action analysis using the

CASE representation.

Also, there are other event representations such as hierarchical Event Representation

Language (ERL) by Nevatia et al. [NZH03], graph representation of object trajectories by

Medioni et al. [MCB01], Bayesian Networks based event representation by Hongeng et al.

[HNB04], and video event ontologies by Nevatia et al. [NHB04] that provide varying degrees

of representation to the actions and agents involved in the events. However, these works did

not address important issues of temporal and causal relationships. Moreover, no mechanisms

were proposed for multiple-agents or multi-threaded events.

26

2.4 Event Indexing and Retrieval

I can further utilize the event representation for indexing and retrieval of events in videos.

Although there is a plethora of literature devoted to content-based image retrieval evident

from the survey by Rui et al. [RHC99], most of the work is based on features retrieved from

a single image. Naphade and Huang [NH01] use HMMs to index the database, in which low-

level features are mapped to high-level concepts called multijects (which are probabilistic

multimedia objects). Other methods for probabilistic video indexing and retrieval include

Boreczky and Wilcox [BW97] that utilize audio and image features and Dimitrova et al.

[DAW00] that use text and face features for indexing and retrieval. Non-probabilistic meth-

ods include the work by Katayama and Satoh [KS97] that employ an SR-tree to index the

high dimensional feature vector and utilize nearest neighbor query search for retrieval of

relevant data.

Recently, works by Chang et al. [CCMSZ97] and Natarajan and Nevatia [NN05] utilize

video information in the feature vector for retrieval of similar videos from the database.

Chang et al. [CCMSZ97] employ color, texture, shape, motion and time information as the

feature vector for indexing and retrieval. Using their method, the user can retrieve videos

of objects that have similar color and motion trajectories. Natarajan and Nevatia [NN05] in

their EDF framework use an ontology of entities, actions and events to index the video events.

Further, they utilize relational algebra to find complex events in the database. Though the

methods proposed by Chang et al. [CCMSZ97] and Natarajan and Nevatia [NN05] are

27

promising for retrieval of video data, they lack the representative power to extend their

abstract event model to representations related to human understanding of events. Also,

these representations are not directly related to the human understanding of events, and

thus, the user cannot define the query in a human representative language.

2.5 Conclusions

In this chapter I presented the related work on object detection, tracking, and classi-

fication which was used for the detection of sub-events in videos. These sub-events form a

hierarchy to define an event and methods dealing with event detection were discussed. Fur-

thermore, different event representations were detailed that try to bridge the gap between

the low-level features and high-level concepts. Finally, I presented the work on indexing and

retrieval of image and video data.

What is missing in these approaches is the ability to model long, complex events involving

multiple agents performing multiple actions. Can these approaches be used to automatically

learn events involving an unknown number of agents? Will the learnt event model still

hold for a novel video, in the case of interfering events from an independent agent? Can

these approaches extend their abstract event model to representations related to human

understanding of events? Can events be compared on the basis of these representations?

How are these representations related to human understanding of events?

28

The above mentioned questions are discussed in detail in their respective sections but

are briefly answered here for completeness. Almost all event models require prior knowledge

about the number of agents involved in the event, where as my learnt event model is scalable

to the number of agents involved in an event. The reason is that instead of modelling agent

processes (like Hidden Markov Models, Dynamic Bayesian Networks etc.) I model the sub-

event dependency for all agents simultaneously i.e. which sub-event occurs more frequently

after another sub-event for a given event. Thus, my event model is agnostic to the number

of agents involved in the event. Also, since most methods detect events by estimating a

posterior probability of a sub-event sequence, independent agent actions in the sub-event

sequence reduces the overall posterior probability, where as I use graph clustering techniques

for event detection. Thus, my method clusters events with high edge weights within the

cluster and segments out independent agent actions as those actions have low edge weights

with the rest of the sub-events belonging to the event. Furthermore, most event models

and representations are abstract and complex, with no notion of human readability, where

as my event representation is an extension of the CASE representation that was used for

syntactic analysis of the natural language. It has explicit cases for agents, location, dative

etc. that completely describes the event. I believe it is easier for humans to relate to this

event representation.

In this dissertation, event models are learnt from training data, and are used for event

detection in novel videos. Event learning is formulated as modelling conditional dependencies

between sub-events while event detection is treated as a graph-theoretic clustering problem.

29

The novelty of my method, compared to the above mentioned methods, is the ability to detect

multiple agents performing multiple actions in the form of events, without prior knowledge

about the number of agents involved in the interaction and the length of the event. Also,

I present a coherent representation of these events as a means to encode the relationships

between agents and objects participating in an event and to index these events for future

retrieval using human understandable queries.

30

CHAPTER 3

LOW-LEVEL FEATURE DETECTION

An instance of an event is a composition of directly measurable low-level actions, which

I term sub-events, having a temporal order. In this chapter I discuss the methods to detect

these sub-events. In order to detect sub-events, three low-level tasks of object detection,

classification and tracking are addressed. The videos in various surveillance domains usually

consist of objects that are smaller in size (as compared to the background) and are fast

moving. There are usually multiple objects in the scene and they have frequent occlusions

with each other. Background subtraction techniques [SG00, JSS02] are commonly used to

detect objects in these videos. Due to the presence of multiple concurrent objects in the

scene, it is important to have consistent labelling of these objects throughout the video

sequence. That is, given two frames and a set of objects in each frame, in order to learn

the appearance model of each object I must know which object in the first set corresponds

to which object in the second set. The problem becomes even more complex when these

objects occlude each other in the scene. Thus, in the surveillance domain, a system must

detect and track objects as well as handle occlusion, entries and exits in the scene.

The background subtraction used for object detection is based on an extension of Stauffer

and Grimson [SG00] by Javed et al. [JSS02]. In their extension, they propose multiple levels

31

of processing during background subtraction. The first level is the pixel level processing that

separately uses color-based and gradient-based distributions to find pixels belonging to the

foreground or the background. The second level is the region level processing that integrates

the gradient and color information. A connected component algorithm is applied to group

all foreground pixels into regions. Any foreground region that corresponds to an object will

have high values of gradient-based background subtraction at its boundaries. This will not

be true for falsely detected regions and so they are added to the background regions. This

method handles common problems in most background subtraction algorithms such as quick

illumination changes due to adverse weather conditions, relocation of the background objects

(e.g. repositioning of a chair), and initializing the background model with moving objects.

Background modelling techniques detect people and vehicles fairly robustly in the surveil-

lance and railroad monitoring domains, however, for the meeting domain and for smaller

objects such as bags and books, the initial object identification and labelling were performed

manually. Further tracking was attained using MEANSHIFT [CRM03] algorithm, which is de-

scribed next. Though techniques like [BR94, WB96, WAD97, JS02, JSC04, SS05] could have

been used for automated object labelling and multiple agent tracking, I opted for a simpler

solution as my contribution is in event detection.

32

3.1 Meanshift Tracking

In simple terms, the Meanshift algorithm tracks the initially detected object using its

color histogram. A histogram captures the distribution of color in an image patch. The color

space is quantized into several discrete bins and the number of pixels with the same color

are recorded in the corresponding bin. Thus, the object model q is an m-bin histogram,

representing the object’s probability density function (pdf). In the subsequent frame, the

candidate location y of an object is characterized by its pdf p(y). Thus I have,

object model : q = {qu}u=1...m

m∑
u=1

qu = 1 (3.1)

object candidate : p(y) = {pu(y)}u=1...m

m∑
u=1

pu(y) = 1 (3.2)

An object is represented by an ellipsoidal region in an image. All the objects are normal-

ized to a unit circle by independently rescaling the row and column dimensions by hx and

hy respectively. Thus, the normalized object model and object candidate are given by:

qu = C

n∑
i=1

k(x2
i)δ[b(xi)− u] (3.3)

pu(y) = C

n∑
i=1

k[(y − xi)
2]δ[b(xi)− u] (3.4)

where C is the normalizing constant, xi are the pixel locations in the image, k(x) is the

gaussian kernel profile, b(x) is the histogram bin index at pixel x, and u is one of the m

histogram bins.

33

Therefore, given the object model q and its initial location y0, the summary of the

algorithm is given below:

1. Initialize the location of the target in the current frame with y0 and evaluate {pu(y0)}u=1...m

and

ρ[p(y0), q] =
m∑

u=1

√
pu(y0)qu

2. Determine the weights {wi}i=1...n using

wi =
m∑

u=1

√
qu

pu(y0)
δ[b(xi)− u]

3. Find the next location of the object using

y1 =

∑n
i=1 xiwig[(y0 − xi)

2]∑n
i=1 wig[(y0 − xi)2]

where g(x) is the derivative of the gaussian kernel profile.

4. Evaluate {pu(y1)}u=1...m and

ρ[p(y1), q] =
m∑

u=1

√
pu(y1)qu

5. While ρ[p(y1), q] < ρ[p(y0), q]

Do y1 = y0+y1

2

Evaluate ρ[p(y1), q]

6. If |y1 − y0| < ε Stop.

Otherwise, Set y0 = y1 and go to Step 2.

34

3.2 Sub-Event Detection

The sub-events are detected by a rule-based system that takes in the tracked trajectories

of entities as input. Let f(p, t) represent a continuous video signal, indexed by spatial

and temporal coordinates, respectively. By indexing on the discrete-time variable k I can

temporally represent the video signal as the set {f [x, k]} for 1 ≤ k ≤ N , where N is

the temporal support of the video signal, and x = (x, y) denotes the spatial coordinate.

Each entity is represented in terms of its label (person, object, hand, or head) and motion,

e.g. {vehiclea, ua}, where ua={(x1, y1), (x2, y2), . . . (xN , yN)} is the trajectory of vehiclea’s

centroid. Here it is assumed that the lower-level tasks of object detection, classification and

tracking have been performed for a stationary camera (as described in the previous section).

It is important to note that since it is the relative concept of motion that I am interested

in (e.g. where did agent1 move to with respect to object2?), two-dimensional projections

of three-dimensional world trajectories are sufficient for event representation, barring some

degenerate configurations.

Using the tracked trajectories, the temporally correlated sub-events were detected in

real-time and were further utilized for event learning (as described in the next chapter). A

list of all unique sub-events for the surveillance, railroad monitoring and meeting domains

are summarized in Table 3.1, and the details of the rule-based system for detecting each

sub-event is provided in Appendix A.

35

Table 3.1: SUMMARY OF UNIQUE SUB-EVENTS

Function argument sets:
Agent={set of animates, e.g. person, vehicle etc.}
Object={set of non-animates, e.g. book, gate, railway signal, etc.}
Entity=Agent

⋃
Object

Sub-event function definitions:
Moves(Entity), function detecting movement of an entity
Stops(Entity), function detecting seizure of movement of an entity
Enters(Agent), function detecting entry of an agent in the field of view
Exits(Agent), function detecting exiting of an agent from the field of view
Approaches(Agent,Entity), function detecting movement of an agent towards an entity
Leaves(Agent,Entity), function detecting movement of an agent away from an entity
Extends(Agent,{hand}), function detecting movement of an agent’s hand away from the body
Holds(Agent,Object), function detecting proximal movement of an agent with an object
Picks(Agent,Object), function detecting initial movement of an object with an agent
Passes(Agent,Agent,Object), function detecting movement of object from one agent to another
Drops(Agent,Object), function detecting seizure of object movement with agent movement
Raises({head},{hand}), function detecting positioning of an agent’s hand above head
Lowers({head},{hand}), function detecting positioning of an agent’s hand below head
Sits(Agent), function detecting seizure of movement of an agent with downward

motion
Stands(Agent), function detecting initial movement of an agent with upward motion
Pushes(Agent,Agent), function detecting quick/short movement of one agent away from

the other
Blocks(Agent,Agent,Object), function detecting occlusion of agent’s view of an object by another

agent
Crouches(Agent), function detecting downward movement of an object
Hides(Agent,Object), function detecting occlusion of an agent with an object
Emerges(Agent,Object), function detecting reappearance of an agent from behind an object
Collides(Agent,Entity), function detecting fast movement of an agent into an entity
Breaks(Agent,Entity), function detecting collision of an agent with change in entity shape
Switches(Object), function detecting change in object state i.e. signal switching on or

off

36

(a)

(b)

(c)

Figure 3.1: Results of Meanshift tracking for videos in different domains. (a)
Surveillance (b) Railroad Monitoring (c) Meetings.

3.3 Results

I performed three sets of experiments corresponding to each domain. All were imple-

mented to run in real time (30 fps) on a 2.1 GHz Pentium Machine. The three domains in

my experiments for tracking and detection of sub-events in videos were the meeting, railroad

monitoring and surveillance domains. The videos contain multiple agents that act indepen-

dently or interact with each other or objects. The results for the Meanshift tracking for

various sequences in the three domains are shown in Figure 3.1.

37

Figure 3.2: Automated detection of sub-events for stealing video. Using the
tracked trajectories, the sub-events of each agent are detected, and frames 37,
119, 127, and 138 of the video are shown.

The 57 videos in my experiments totalled 40,977 frames having 2,673 sub-events. I used

three standard video datasets, namely Performance Evaluation for Tracking and Surveillance

(PETS), Context Aware Vision using Image-based Active Recognition (CAVIAR), and Video

Analysis and Content Extraction (VACE), as well as my own videos for testing the tracking

and sub-event detection rate. An example of the sub-event detection results for stealing

event video is shown in Figure 3.2. Frame 37 shows the snapshot of moves sub-event being

performed by Person1, while Person2 drops the bag and moves forward. Frame 119 shows

the snapshot of Person4 moves in front of Person1 and blocks Person1’s view of the bag,

while Person5 approaches the bag. Frame 127 shows the snapshot of Person4 still blocking

the view of Person1, and Person5 approaches and picks the bag. Frame 138 shows Person5

38

Table 3.2: SUMMARY OF SUB-EVENT DETECTION RATE

No. of Frames Sub-Events Detected Ground Truth False Positive % Precision % Recall %

272 18 17 1 94.44 100

311 24 27 2 91.67 81.48

330 40 36 5 87.50 97.22

161 18 16 3 83.33 93.87

187 39 32 7 82.05 100

184 13 13 1 92.03 92.03

165 18 18 0 100 100

247 40 38 4 90 94.73

342 61 51 11 81.96 98.03

2000 102 108 7 93.13 87.96

335 32 29 5 84.37 93.10

402 34 28 7 79.41 96.42

237 9 10 1 88.89 80

223 4 4 0 100 100

486 12 9 3 75 100

192 9 8 1 88.89 100

moves away after picking the bag, while Person4 is still blocking the view of Person1. The

sequence of these sub-events form the steal event.

The results for the sub-event detection for selected videos are shown in Table 3.2. The

videos ranged from 161 to 2000 frames having 4 to 102 sub-events. As can be seen from

the table, the precision ranges from 75% to 100% while recall ranges from 80% to 100%.

Therefore, the rule-based system is able to detect the sub-events reasonably well, given the

object labels and their trajectories. Although these precision and recall values are lower

than the state-of-the-art in sub-event detection methods that use Hidden Markov Models,

Dynamic Bayesian Networks, Stochastic Context Free Grammar, etc. which are in the

39

high 90s; our main contribution is in multi-agent event detection which requires sub-event

detection as a pre-processing step. The point of using a method that obtains sub-optimal

results is that our method of multi-agent event detection is not sensitive to the sub-event

detection errors of insertion, deletion, and substitution errors, and is able to detect events

fairly robustly (see next chapter for details).

3.4 Discussion

Object detection, tracking, and classification are usually a preprocessing step in a surveil-

lance system. Once these tasks are performed a typical surveillance system detects sub-events

of people or objects in the camera’s field of view, generates computational models of the ob-

served events using the detected sub-events, and generates alerts to a human supervisor when

suspicious or abnormal event patterns are detected. Sub-events of the tracked objects are

detected by a rule-based system, which are further utilized in the building of computational

models to represent the observed event. Building computational models for events, however,

is not an easy task due to the loss of one dimension when the 3D world points are projected

onto a 2D camera image. In the next chapter, I describe my method of detecting events

using the detected sub-events.

40

CHAPTER 4

EVENT LEARNING AND DETECTION

In the previous chapter, I used tracked trajectories to detect the temporally correlated

sub-events in real-time. These sub-events are further utilized for learning the event structure

and to detect events in novel video, which is the focus of this chapter. An event is a high-

level concept that is composed of sub-events (actions) having a temporal order. There are

several difficulties involved in event detection which are described below:

1. Variation in Temporal Order of Sub-events: The complexity of the event model

increases with the increase in the variation in the temporal order of sub-events, since

the event model captures the variation in each person’s actions.

2. Number of Agents: Modeling the agent interactions becomes more complex with the

increase in the number of agents involved in an event. This is true since the event model

captures the variation in each person’s actions. Also, most of the event models capture

each agent’s process and their interactions, thus, if the number of agents changes in the

novel video, the event detection will fail. For example, if event model captured 2 agent

interaction and the novel video has the same event being performed by 3 agents, the

event will not be detected as the event model does not capture 3 agent interactions.

41

3. Length of an Event: The complexity of event model increases with the length of

an event, since the event model captures the variation in each person’s actions. Most

of the methods assume a certain length of an event, so that the complexity the event

model is reduced. But the event detection in these methods fail if the length of an

event in the novel video exceeds their assumption.

4. Interference in Event Sequence: An event may not be detected in the novel video

if the event sequence has actions performed by an independent agent. For example, if

2 agents are involved in a fight event while a 3rd agent is acting independently, then

his actions will cause interference in the sub-event sequence of the fight event. This

will result in the misdetection of the fight event, since the event model did not have

the independent agent sub-events.

5. Uncertainty in Sub-event detection: The problem of event detection may be

aggravated if the underlying vision system may have insertion, deletion, or substitution

errors in the sub-event detection. An insertion error occurs when the vision system

falsely detects the presence of a sub-event, also known as false positive. A deletion error

occurs when the vision system misdetects the presence of a sub-event, also known as

true negative. A substitution error occurs when the vision system misclassifies the

detected sub-event.

42

In literature, a variety of approaches have been proposed for the detection of events in

video sequences. Most of these approaches can be arranged into three categories based on

their approach to event detection:

1. Pre-defined Event Model: These approaches detect events in videos based on pre-

defined event models. Among these methods were approaches that modelled events

using state machines. Further approaches utilized constraints and grammar rules for

the detection of events that had variability, and did not strictly follow the event model.

The various methods in this event detection approach include causal grammar, PNF

propagation of temporal constraints, angular constraints on body components, stochas-

tic grammars, and appearance and geometric constraints. All the above approaches

either manually encode the event models or provide constraints such as grammar or

rules, to detect events in novel videos.

2. Learnt Event Model: These approaches learn the event models using training data

and have been widely used in the area of event detection. Among these methods were

approaches that modelled events using temporal templates for event detection. Other

approaches that utilized training data for learning the event model include Dynamic

Bayesian Networks (DBNs), Hidden Markov Models (HMMs), coupled HMMs, dy-

namic multi-linked HMMs, abstract hidden Markov memory models, layered HMMs,

Stochastic Context Free Grammar (SCFG), belief networks, shape activities, Support

Vector Machines, Bayesian Networks, and probabilistic finite state machines. The

above learning methods either model single person events or require prior knowledge

43

about the number of people involved in the events and variation in data may require

complete re-training, so as to modify the model structure and parameters to accom-

modate those variations. Also, there is no straight-forward method of expanding the

domain to other events, once training has been completed.

3. Clustering based Methods: These approaches that do not model the events but uti-

lize clustering methods for event detection. These methods of event detection include

spatio-temporal derivatives, co-embedding prototypes, and spatio-temporal curvatures

of 2D trajectories. The first two methods find event segments by spectral graph parti-

tioning of the weight matrix. The weight matrix is estimated by calculating a heuristic

measure of similarity between video segments. The last method initiated without an

event model and formed clusters of similar events based on their spatio-temporal cur-

vatures. These methods were restricted to a single person and a single threaded event

detection. The first two methods also assumed a maximum length of an event while

the spatio-temporal curvature based event representation had the advantage of being

view-invariant.

My approach to event detection is a hybrid of the learning and clustering based event

detection. I use graph clustering for event detection in the novel videos, but instead of

using a heuristic based similarity measure (used by above approaches) to construct the

weight matrix, I utilize training data to learn the event models that are further used for

event detection in novel videos. In my approach, Event learning is formulated as modelling

conditional dependencies between sub-events while event detection is treated as a graph-

44

theoretic clustering problem. The novelty of my method is the ability to detect multiple

agents performing multiple actions in the form of events, without prior knowledge about the

number of agents involved in the interaction and without making any assumptions about

the length of an event. I now describe each of these steps in detail in the following sections.

4.1 Learning the Event Model

In order to learn the event models from training videos, firstly, I introduce a graph

that depicts the temporal relationships between sub-events in a video. These temporal re-

lationships are based on the interval algebra in [AF94], which is a more descriptive model

of relationships compared to the low level abstract relationship model of HMMs. The pur-

pose of this graph is to encode the complete temporal order of sub-events occurring in a

video. The temporal order of sub-events are further utilized in extracting the conditional

dependency between sub-events. Thus, secondly, using this graph, I determine the sub-event

dependency graph representing the temporal conditional dependency between sub-events.

The sub-event dependency graph is the learnt event model that encodes the higher order

Markov dependencies between sub-events and is scalable to the number of agents involved

in the event.

45

AFTER

MEET

OVERLAP

STARTS

DURING

FINISHES

EQUAL

T
1 2

T

Figure 4.1: Allen’s interval algebra describing temporal relations between dura-
tive sub-events T1 and T2.

4.1.1 Capturing Temporal Order of Sub-events using Allen’s Temporal Algebra

Events are rarely instantaneous and are often defined by the temporal order of their

sub-events. The temporal structure of events in a video can be intuitively represented as

a Directed Acyclic Graph (DAG), with each vertex corresponding to a sub-event, and each

edge corresponding to the temporal relationship between two vertices (e.g. AFTER). The

graph is directed since there is a temporal order between sub-events and acyclic since time

is monotonically increasing. More formally, my graph is a DAG, G = (V,E) where V =

{v1, v2, ..., vn}; vi ∈ C, and C is the set of n automatically measured sub-events; E =

{e1, e2, ..., em}, where ei ∈ T and ei are directed edges, and T is the set of temporal variables

in the interval algebra of [AF94]. I use this algebra to represent seven temporal relationships1

as shown in Figure 4.1. The entire list of temporal relations, for two sub-events T1 and T2 is

as follows,

1A minor modification was made by replacing BEFORE with AFTER for ease of use

46

AFTER : T start
2 > T end

1

MEETS : T end
1 = T start

2

DURING : (T start
1 < T start

2) ∧ (T end
1 > T end

2)

FINISHES : (T end
1 = T end

2) ∧ (T start
1 < T start

2)

OVERLAPS : (T start
1 < T start

2) ∧ (T end
1 > T start

2) ∧ (T end
1 < T end

2)

EQUAL : (T start
1 = T start

2) ∧ (T end
1 = T end

2)

STARTS : (T start
1 = T start

2) ∧ (T end
1 6= T end

2)

A naive formulation of the problem would be to consider a complete graph for estimating

the conditional dependencies between sub-events. The problem with the complete graph

formulation is that sub-events are not dependent on all their predecessor sub-events, rather

they are dependent on their proximal predecessor sub-events. For example, a person raising

a hand at the start of the video has nothing to do with picking a book sub-event, occurring

after a few minutes have passed. Thus transitive reduction based upon proximity x is applied

to the video event graph. This does not imply that I constrain my events to be a maximum

of x length, rather it denotes that the events are composed of x-1th order Markov chain of

sub-events. That is, each sub-event is conditionally dependent upon (at most) x-1 parent

sub-events, which is true for most of the events in the considered domains. An example

graph for a small sequence containing a voting event is shown in Figure 4.2.

47

moves

enters moves

raises

DURING

picks

lowers

DURING

MEETS

OVERLAPS

DURING

DURING

AFTER

AFTER

OVERLAPS

MEETS

DURING

MEETS

DURING

STARTS

Figure 4.2: Partial graph for a sequence containing two agents performing actions
simultaneously. The sub-events are represented by the vertices and the temporal
relationships between sub-events are shown as directed edges between vertices.
Agent1’s sub-events are greyed while Agent2’s are white to provide a visual
distinction between their sub-events.

4.1.2 Event Modeling using Edge-Weighted Directed Hypergraph

Using the graph of a training video, I automatically learn the event model in the form of

the Sub-event Dependency Graph (SDG). I model the events by estimating the conditional

dependencies between unique sub-events that occur in a video. Thus, the SDG is the learnt

event model that encodes the higher order Markov conditional dependencies between unique

sub-events. The reason for estimating higher order Markov dependencies is that the sub-

events are usually conditionally dependent upon more than one parent sub-events. The SDG

is represented by an Edge-Weighted Directed Hypergraph (EWDH). More formally, an SDG is

a hypergraph G = (V, E, W) having a number of vertices V = {v1, v2, ..., vn} representing n

unique sub-events present in an event. Hyperarcs E = {e1, e2, ..., em} are backward arcs (B-

arcs), where each B-arc is an ordered pair of vertices ei = (Pi, vi) such that Pi ⊆ V , and Pi is

48

representing the temporally ordered parent sub-events of vi. Also, W = {w1, w2, ..., wm} are

the weights on the B-arcs, which represent the conditional dependencies of child sub-events

upon a sequence of parent sub-events.

An ordinary graph is a 2-uniform hypergraph, where k-uniform signifies that each hyper-

edge has a cardinality of k vertices. I do not enforce a k-uniform hypergraph, rather I allow

the hypergraph to have a maximum x edge cardinality (4 in my experiments). This allows

the encoding of conditional probabilities of sub-events vi, having a maximum of x-1 parent

sub-events. The equations for estimating the weights wi on hyperarcs ei for cardinality of

X ∈ {2, 3, 4} are respectively given by (1), (2), and (3):

P (vt
i |vt−1

j) =
P (vt

i , v
t−1
j)

P (vt−1
j)

(4.1)

P (vt
i |vt−1

j , vt−2
k) =

P (vt
i , v

t−1
j , vt−2

k)

P (vt−1
j |vt−2

k)P (vt−2
k)

(4.2)

P (vt
i |vt−1

j , vt−2
k , vt−3

l) =
P (vt

i , v
t−1
j , vt−2

k , vt−3
l)

P (vt−1
j |vt−2

k , vt−3
l)P (vt−2

k , vt−3
l)

(4.3)

where vt
i represents a sub-event i occurring at index t, and Agent(vt

i) = Agent(vb
a) (a ∈ {j, k, l}, b ∈

{t-1, t-2, t-3}), which enforces the current and parent sub-events to be performed by the same

agent. This is necessary since sub-events performed by different agents are not conditionally

dependent on each other. If both the agents are involved in a sub-event, there is a conditional

dependency between their sub-events. Equation (4.1) represents the conditional probability

of sub-event vi occurring at time index t, given that sub-event vj occurred at t-1. Similarly,

equation (4.2) represents the conditional probability of sub-event vi occurring at t, given

that sub-event vj occurred at t-1, which was preceded by the sub-event vk that occurred at

t-2. An example of a partial SDG estimated from a video containing voting events is given

49

moves stops lowersraises

0.125

0.25

0.125

0.5

0.25

0.25

0.25

0.25

0.33

0.33

0.33

0.33

0.66

0.66

0.5

1
2

2
13

Figure 4.3: Partial sub-event dependency graph for a sample video containing
multiple people performing voting events in various styles. The vertices repre-
sent the sub-events, while the conditional probabilities between sub-events are
represented by the weights on the hyperarcs. Note that a single example of
hyperarcs with cardinality of 3 and 4 are shown respectively in green and red,
to keep the figure comprehendible. Also, the circled number on the hyperarc
represents the temporal order index in Pi.

in Figure 4.3. In the figure, the B-arc of cardinality 4 represents P(stops|moves,lowers,raises)

i.e. the probability of ‘stop’ occurring after a sequence of ‘raises’, ‘lowers’ and ‘moves’ sub-

events. Note that the SDG captures all the variations in temporal order of sub-events as well

as the conditional dependencies of all sub-events in a video. The SDG is also scalable to the

number of agents involved in an event, as it will accumulate the conditional dependencies

between sub-events, that are being performed by various agents.

50

4.2 Event Detection

After learning all the event models ξi in a supervised manner, event detection is defined

as clustering the highly correlated chain of sub-events present in the novel video. Given

the graph of detected sub-events in a novel video, I estimate a weight matrix of conditional

dependencies between sub-events using the learnt event model. This weight matrix is used

for spectral graph partitioning. Thus, normalized cut is applied recursively to this weight

matrix in order to cluster the highly correlated sub-events. These clusters represent the

detected events for a specific event model and the event structure composed of sub-events

and their temporal order is extracted using graph partitioning. Furthermore, different weight

matrices are estimated for each event model, and normalized cut is applied recursively, to

extract all the events present in the novel video.

4.2.1 Estimating the Probabilistic Weight Matrix of Sub-event Dependencies

In order to determine the probabilistic weight matrix for a specific event model ξp, I

generate a graph G of the detected sub-events in the novel video and obtain θp (edge weights

representing conditional probabilities) from the learnt event model (SDG). Each edge weight

wij between two nodes of G is estimated using:

wαβ = P (vt
l |Pa(vt

l)) = P (vt
l |vt−1

k , vt−2
j , vt−3

i)

51

(a)

(b)

Figure 4.4: The estimated weight matrix and Ncut application for a novel video.
(a) The estimated weight matrix using the SDG of voting event, using Normal-
ized cut two voting events are automatically segmented and are shown as red
and blue patches. (b) The estimated weight matrix using the SDG of object
passing event, using Ncut the object passing event is automatically segmented
and is shown as the green patch.

where α is the index of sub-event vt
l , and β is the index of Pa(vt

l) sub-event. Pa(vt
l)

is the oldest parent sub-event that vt
l conditionally depends upon such that Pa(vt

l) ∈

{vt−1
k , vt−2

j , vt−3
i }. Note that a sub-event may be dependent upon one or two parent sub-

events, hence the conditional probabilities from hyperarcs of cardinality one and two re-

spectively are inserted from the SDG to the weight matrix. Summarily, the above weight

estimation assigns higher weights to the longer chain of sub-events that occur frequently in

52

the training video of ξp. The final weight matrix Ŵp is an upper triangle, since G is a directed

acyclic graph. The weight matrix is made symmetric by W̃p = Ŵp + Ŵ T
p [D04], where Ŵ T

p

is the transpose matrix of Ŵp. The Ncut minimization function for weight matrices Wp and

W̃p are equivalent, and the proof is given in Appendix B.

4.2.2 Graph Clustering using Normalized Cuts

Normalized cut [SM00] is an unbiased method of partitioning a graph V , into two (or

more) segments A and B, since it uses a global criterion for graph segmentation rather than

focusing on the local features. The global criterion is given by:

Ncut(A,B) =
cut(A,B)

asso(A, V)
+

cut(A,B)

asso(B, V)

where cut(A,B) =
∑

u∈A,v∈B w(u, v), w(u, v) is the edge weight between vertices u and v,

and asso(A, V) =
∑

u∈A,v∈V w(u, v). If the Ncut criterion is minimized, then the graph is

partitioned at the edges with the minimum cut weight. The two partitions have maximum

association within, and minimum disassociation between their respective partitions. The

minimization of the Ncut criterion is achieved by finding the second smallest eigenvector of

the generalized eigensystem:

(D −W)x = λDx

53

where D is a N × N diagonal matrix with d(i) =
∑

j w(i, j) as the diagonal elements, W

is a N × N symmetric weight matrix, and λ and x are the eigenvalues and eigenvectors,

respectively.

4.2.2.1 Algorithm

The sub-event clustering algorithm using normalized cuts is summarized below:

1. Compute the weight matrix W and estimate the diagonal matrix D.

2. Solve (D−W)x = λDx to obtain the eigenvector with the second smallest eigenvalue

and use it to bipartition the graph by finding the splitting point such that the Ncut is

minimized.

3. Decide if the current partition should be subdivided by checking that Ncut and average

edge weight (that determines the association within a partition) are below their respec-

tive thresholds and then recursively repartition the segmented parts (if necessary).

The sub-event clusters determined by normalized cuts are the maximally correlated sub-

events, given the likelihood estimates of the chain of sub-events. These segmented events

have high weights between sub-events within the cluster and relatively low weights between

sub-events outside the cluster. An example weight matrix, estimated using the SDGs of

voting and object passing events and their segmentation obtained after recursive application

of Ncut, is shown in Figure 4.4.

54

Table 4.1: SUMMARY OF TRAINING VIDEOS

Event Name Total Frames Sub-Events Events

Voting 2938 221 26

Argument 913 82 7

Object Passing 532 70 4

Stealing 1386 129 4

Chasing 680 55 3

Fighting 2492 137 4

Object Exchange 1805 94 3

Object Drop 4484 81 4

Loading 761 62 3

Unloading 1485 38 6

Sneaking 2259 77 3

Railroad Event1 2731 199 17

Railroad Event2 2314 85 6

Railroad Event3 1228 44 4

Railroad Event4 1577 131 10

Railroad Event5 1745 93 4

Railroad Domain Events
Event1: Vehicle Stops outside danger zone
Event2: Vehicle entering zone while gate arms are in motion
Event3: Vehicle exiting zone while gate arms are in motion
Event4: Person enters danger zone while signal is on
Event5: Train crossing while gate arms are in motion

4.3 Results

I performed experiments for event detection in videos for the meeting, railroad monitoring

and surveillance domains. These videos contain multiple agents that act independently or

interact with each other or objects. In my experiments, the videos in all domains totalled

194,519 frames comprising of 11,540 sub-events and 1013 events. I used seven standard video

55

datasets as well as other videos for training and testing the event detection framework. A

total number of 494 videos were adopted for training 16 events. The summary of event

learning using different datasets is provided in Table 4.2. The two sections in the table show

the standard dataset and my dataset description respectively.

Table 4.2: SUMMARY OF DIFFERENT DATASETS USED FOR EVENT LEARNING

Dataset Name Videos Total Frames Events Sub-Events

NIST 6 2480 11 214

Kojima 20 2406 29 264

Sadiye 10 6461 13 104

VACE 40 18724 118 1296

PETS 143 45430 343 2040

CAVIAR 33 28692 91 1507

ETISEO 32 33184 131 1870

Alexei 12 1894 12 48

FDOT 85 14271 98 1524

Meeting 37 4383 37 373

Surveillance 30 15352 35 673

Railroad 46 9595 51 552

The voting, argument and object passing events are from the meeting domain. The

stealing, chasing, fighting, object exchange, object drop, loading, unloading, and sneaking

events are from the surveillance domain. The vehicle stops outside danger-zone, vehicle

entering danger-zone while gate arms are in motion, vehicle exiting danger-zone while gate

arms are in motion, person enters danger-zone while signal is on, and train crossing while

gate arms are in motion are from the railroad monitoring domain. The number of event

56

instances necessary for training the event model depends upon the variation in the temporal

order of sub-events present in each event.

Using the learnt event models, event detection in novel video proceeded by estimating the

weight matrices for each event model. Furthermore, normalized cuts are applied to obtain

event clusters in the novel video. The results for event detection using normalized cuts

are respectively summarized in Figures 4.5, 4.6, 4.7, and 4.8 for the meeting, surveillance

and railroad monitoring domains. Figure 4.5(a) and (d) show snapshots of the voting event

in progress, Figure 4.5(b) depict the object passing event, while Figure 4.5(c) shows the

argument event. Figure 4.6(a) shows the snapshot of stealing event, Figure 4.6(b) shows the

fighting event, Figure 4.6(c) depict the chasing event, while Figure 4.6(d) portray the object

exchange event under progress. Figure 4.7(a) shows the loading event in progress, Figure

4.7(b) depict the object drop event, Figure 4.7(c) shows the snapshot of sneaking event,

while Figure 4.7(d) portray the stealing event. Figure 4.8(a) show the vehicle entering

danger zone event, Figure 4.8(b) depict train entering the zone, Figure 4.8(c) portray person

entering danger zone event, while Figure 4.8(d) show the snapshot of vehicle exiting the

danger zone event.

The precision and recall values for test videos are estimated using Precision =
∑

i,j ψ(tdej
i)∑

i,j ψ(dej
i)

and Recall =
∑

i,j ψ(tdej
i)∑

i,j ψ(tej
i)

respectively, where ψ(tdej
i) is the true detected sub-events, ψ(dej

i) is

the detected sub-events, and ψ(tej
i) is the true sub-events, belonging to the ith cluster of the

jth event. A summary of event detection results with precision and recall values is supplied

in Table 4.3. As can be seen from the table, the precision and recall values drop significantly

57

across different test videos. The reason for such a drop is that the experiments were setup

to test the robustness and stability of the event detection method for increasing complexity

in multiple agent events in the videos. Thus, the meeting test video had the simplest events

with minimal interaction between multiple agents. Surveillance video1 had slightly more

complex events with multiple agent interaction. Surveillance video2 had even more complex

events with heavy multiple agent interactions. Finally, railroad monitoring test video had

the most complex events with simultaneous multiple agent and independent agent events.

Thus, the precision and recall values dropped about 15% for this video compared to the

meeting test video. But the overall event detection results are fairly decent and none of the

current methods in literature (to the best of my knowledge) tackle such complex events with

such high precision and recall values..

Table 4.3: RESULTS OF TESTING VIDEOS

Test Video Frames Events Sub-Events Precision % Recall %

Meeting 1551 15 224 92.8 87.9

Surveillance Video1 3580 13 335 92.5 88.9

Surveillance Video2 4256 12 209 77.5 88.5

Railroad Monitoring 2260 9 307 85.6 79.8

4.4 Discussion

In order to learn the events from training videos, firstly, I introduce a graph that depicts

the temporal relationships between sub-events in a video. These temporal relationships are

58

based on the interval algebra in [AF94], which is a more descriptive model of relationships

compared to the low level abstract relationship model of HMMs. The purpose of this graph

is to encode the complete temporal order of sub-events occurring in a video. The temporal

order of sub-events are further utilized in extracting the conditional dependency between sub-

events. Secondly, using this graph, I determine the sub-event dependency graph representing

the temporal conditional dependency between sub-events. The sub-event dependency graph

is the learnt event model that encodes the higher order Markov dependencies between sub-

events and is scalable to the number of agents involved in the event. The main advantages

of my event model are:

1. The temporal relations are more descriptive relationships between sub-events compared

to the low level abstract relationship models of HMMs, Dynamic Bayesian Networks

etc.

2. The event model does not make any assumptions about the length of an event.

3. The event model is scalable to the number of agents involved in an event since it models

the sub-event dependencies instead of the agent processes.

Event detection in novel videos proceeds by estimating a weight matrix of conditional

dependencies between the detected sub-events. The weights on edges between sub-events are

recovered using the learnt event model. This weight matrix is then used for spectral graph

partitioning. Thus, normalized cut is applied recursively to this weight matrix, to cluster

the highly correlated sub-events. These clusters represent the detected events for a specific

59

event model, and the event structure composed of sub-events and their temporal order is

extracted using graph partitioning. Furthermore, different weight matrices are estimated for

each event model, and normalized cut is applied recursively to extract all the events present

in the novel video. The main advantages of my event detection scheme are:

1. The event detection does not make any assumptions about the length of an event since

the graph clustering will cluster highly correlated events of any length.

2. The event detection is scalable to the number of agents involved in an event since the

graph clustering will cluster highly correlated events involving any number of agents.

60

(a) (b)

(c) (d)

(e)

Figure 4.5: Event detection results using normalized cuts for meeting domain
test video. (a)-(d) represent frames 328, 560, 755, and 1,375 respectively of
meeting video consisting of 1,551 frames. (e) Time indexed clustering results for
meeting video, where the top bar shows the actual event detection results and
the bottom bar denotes the ground truth of the events.

61

(a) (b)

(c) (d)

(e)

Figure 4.6: Event detection results using normalized cuts for surveillance domain
test video1. (a)-(d) represent frames 159, 2,388, 2,874, and 3,125 respectively
of surveillance video1 consisting of 3,580 frames. (e) Time indexed clustering
results for surveillance video1, where the top bar shows the actual event detection
results and the bottom bar denotes the ground truth of the events.

62

(a) (b)

(c) (d)

(e)

Figure 4.7: Event detection results using normalized cuts for surveillance domain
test video2. (a)-(d) represent frame 223, 1,084, 2,191, and 2,703 respectively
of surveillance video2 consisting of 4,256 frames. (e) Time indexed clustering
results for surveillance video2.

63

(a) (b)

(c) (d)

(e)

Figure 4.8: Event detection results using normalized cuts for railroad monitoring
domain test video. (a)-(d) represent frames 740, 1,354, 1,966, and 2,251 respec-
tively of railroad monitoring video consisting of 2,260 frames. (e) Time indexed
clustering results for railroad monitoring video, where the top bar shows the
actual event detection results and the bottom bar denotes the ground truth of
the events.

64

CHAPTER 5

EVENT REPRESENTATION

The event clusters obtained through Ncut, in the form of temporally related sub-events,

do not provide a sufficient interface between humans and computers. Although the event

clusters represent the sub-events performed by various agents in an event, they do not pro-

vide details about the event. For example, the object exchange event is represented as a

temporally related sequence of moves, holds, passes, holds and moves sub-events. This rep-

resentation does not provide the details about what was being passed or which hand was

the object being held. This chapter focuses on an extension of an existing natural language

framework to an event representation that provides a plausible interface between humans

and computers.

Let us first describe what are the desirable features of a good representation. A good

event representation should have the following:

1. Reconstructability: Given an event representation, the user should be able to infer

the complete details of the event i.e. who was involved in the event, how was the event

performed (the order of sub-events), what objects (if any) were transferred during the

event, etc.

65

2. Scalability: Given an event representation, the user should be able to scale the rep-

resentation to other events in different domains.

3. Modular: Given an event representation, the user should be able to add more elements

to the representation.

4. Uniqueness: Given an event, the generated representation should be unique i.e. no

redundant elements should be present in the representation to generate a one-to-many

mapping.

5. Similarity: Given an event representation, the user should be able to find similar

instances using a distance metric.

6. Completeness: Given an event representation, the user should be able to define any

type of event with the given representation constructs/elements.

In literature, there are several event representations that have certain advantages and

limitations over other representations. These event representations are broadly categorized

into two methods: representations that use first-order predicate logic and representations

that utilize graphical schemas. Among the representations that use first-order predicate logic

include CYC [CYC01] and VERL [NHB04]. CYC was an artificial intelligence project that

started in 1984 with the goal of assembling a comprehensive common sense knowledge based

ontology, enabling artificial intelligence applications to perform human-like reasoning. CYC

knowledge base is built up of several million human-defined assertions, rules, facts, predicates

66

and common sense ideas. The common sense reasoning is based on first-order predicate logic

with the language syntax similar to Lisp programming language. More recently, Nevatia et

al. [NHB04] proposed a video event ontology by using their Video Event Representation

Language (VERL). Their event representation is based on causal relationships based on

conditionals and sequences of sub-events. The different event representation elements are

defined using functions and linked via temporal logic encoded using Allen’s temporal algebra

[AF94]. Using their event representation, they are able to represent both single and multiple

agent events. There are several disadvantages of first-order predicate logic based event

representations. First, the complexity of the system in terms of concepts and predicates in

the system and difficulty in adding to the system by hand. Second, scalability problems

including reification of constants and difficulty in adding more concepts. Third, the related

difficulty in measuring the completeness of the system, given the predicates and concepts.

Among the representations that utilized graphical schemas include hierarchical Event

Representation Language (ERL) [NZH03], graph representation of object trajectories [MCB01],

P-Net representation of human actions [SHMBE04], Factor Graph representation of seman-

tics [NKHR00], and Bayesian Networks based event representation [HNB04] that provide

varying degrees of representation to the actions and agents involved in the events. How-

ever, most of these works did not explicitly address important issues of temporal (except

for P-Net) and causal relationships. Moreover, most of the event structures were encoded

manually by observing the activities in a video and no mechanisms were proposed for human

language based queries of multiple-agent or multi-threaded events.

67

The representation of my choice is called CASE that was proposed by Fillmore [F68] for

natural language understanding. The basic unit of this representation is a case frame that

has several elementary cases, e.g. agentive, instrumental and predicate. However, CASE was

primarily used for syntactic analysis of natural languages, and while it provides a promising

foundation for event representation it has several limitations for that end. I therefore propose

an extended event representation that addresses the shortcomings of CASE. I also recognize

the importance of representing the variations in the temporal order of sub-events, occurring

in an event, and encode it directly into my representation, which I term P-CASE. These

variations in the temporal order of sub-events occur due to the style of execution of events

for different agents. Finally, I automatically learn the event structure from training videos

and encode the event ontology using P-CASE. This has a significant advantage, since the

domain experts need not go through the tedious task of determining the structure of events

by browsing all the videos in the domain.

5.1 CASE Framework

CASE was proposed by Fillmore [F68] for natural language understanding and was pri-

marily used for syntactic analysis of natural languages. The basic unit of this representation

is a case frame that has several elementary cases. The description of the basic cases used by

Fillmore is as follows, explained through an example:

Jack carefully advised Jim about the presentation in the meeting room using examples

68

1. PRED: predicate

A function name or a label given to the case-frame i.e. advised

2. AG: agentive

Main person or entity actively involved in a sub-event i.e. Jack

3. I: instrumental

Device used by the agentive during the sub-event i.e. examples

4. D: dative

The person or entity affected by the actions of the agentive i.e. Jim

5. LOC: locative

The location of the sub-event i.e. meeting room

6. OBJ: objective

The neutral acted upon by the agentive during the sub-event i.e. presentation

7. FAC: factative

The state or action supporting the predicate i.e. carefully

The collection of all case-frames forms the CASE framework. The above example in

case-frame notation is given below:

[PRED: advised, AG: Jack, D: Jim, I: examples, OBJ: presentation,

LOC: meeting room, FAC: carefully]

69

In my representation, the case-frames correspond to sub-events, and the collection of these

sub-events form the event. While the CASE framework provides a promising foundation for

event representation, it has several limitations to that end, which are discussed in the next

section.

5.2 Extended CASE

In this section I discuss the four extensions to the CASE framework. Firstly, in order to

capture both multi-agent and multi-thread events, I introduce a hierarchical CASE represen-

tation of events in terms of sub-events and case-lists. Secondly, since the temporal structure

of events is critical to understanding and hence representing events, I introduce temporal

logic into the CASE representation based on the interval algebra in [AF94]. Thirdly, I recog-

nize the importance of causal relationships between sub-events and extend CASE to allow the

representation of such causality between sub-events. Lastly, I recognize the importance of

representing the variations in the temporal order of sub-events, that may occur in an event,

and encode the probabilities directly into my event representation.

5.2.1 Hierarchical Representation

Except in constrained domains, events typically involve multiple agents engaged in sev-

eral dependent or independent actions. Thus, any representation of events must be able to

capture the composite nature of real events. To represent multiple objects, I introduce the

idea of having case-lists of elements for a particular case. For example, if there are two or

70

more agents involved in an event, CASE cannot represent it in a case-frame as it only allows

one agentive in the representation, therefore I add them in a case-list within AG,

[PRED: move, AG:{ person1, person2 }, ...]

To represent multiple threads I introduce the concept of sub-event lists (SUB case). An

example is shown below to clarify the concept:

“Clyde robs the bank with the help of Bonnie who distracted the cashier by talking to him”

[PRED: rob, AG: Clyde, OBJ: Bank, SUB: {

[PRED: distract, AG: Bonnie, D: cashier],

[PRED: talk, AG:{ Bonnie, cashier }] }]

In the above example, there are three sub-events occurring simultaneously, which cannot

be represented in CASE representation as it only allows a single sub-event to occur at a

particular time.

5.2.2 Temporal Logic

It should be immediately evident to the reader that the above event representation

is ambiguous as temporal relations have not been defined. When did Bonnie talk to the

cashier? Was it before, during or after the rob event? In order to have an unambiguous

representation, I need to incorporate temporal relations in my representation.

71

Events are rarely instantaneous and often largely defined by the temporal order and

relationships of their sub-events. In order to represent temporal relationships of sub-events,

I introduce temporal logic into the CASE representation based on the interval algebra of

[AF94]. Since temporal relationships exist between sub-events, they are represented on the

directed edges between parent and child sub-events. Consider, once again, the above example

of the steal event by Bonnie and Clyde. The case frames with the temporal logic incorporated

are,

[PRED: rob, AG: Clyde, OBJ: Bank]

[PRED: distract, AG: Bonnie, D: cashier]

[PRED: talk, AG: { Bonnie, cashier }]
OVERLAPSOVERLAPS

DURING

The above directed event graph representation is an extension of the tree structure of

CASEE [HSS04], where each directed edge represents a temporal parent-child relationship.

The tree structure depicted a temporal relation with only its parents and not sibling sub-

events (i.e. no OVERLAPS relationship between distract and talk sub-events) and thus had

ambiguity in representing the complete order of sub-events. This is explained through the

following example:

time

distract

rob

talk

1) Talk is

AFTER distract

distract

talk

2) Talk MEETS

distract

talk

3) Talk OVERLAPS

distract

distract

72

With sub-event ‘distract’ occurring DURING ‘rob’ sub-event, and ‘talk’ OVERLAPS ‘rob’

sub-event; there are three temporal possibilities between the ‘distract’ and ‘talk’ sub-events:

1) talk is AFTER distract, 2) talk MEETS distract, or 3) talk OVERLAPS distract. Thus,

without the temporal relationship between distract and talk, there is ambiguity in temporal

order of sub-events in the event representation. This ambiguity in the order of sub-events is

resolved using the above graph representation.

5.2.3 Causality

In understanding the nature of events, the causal relationships between the constituent

sub-events are indispensable. Some events might not occur if certain conditions were not

satisfied, while some events may be dependent on other events. In order to explain this

concept I show a simplistic example below,

“Caravaggio pulled the chair therefore Michelangelo fell down.”

[PRED: pull, AG: Caravaggio, OBJ: chair, CAUSE:

[PRED: fell, D: Michelangelo, FAC: down]]

In the above example, Michelangelo would not have fallen down if Caravaggio had not pulled

the chair. Therefore the ‘fell’ and ‘pull’ event have a causal relationship.

73

movesmoves holdsholds holdsholdspassespasses

(OVERLAPS=1.0) x 0.54

(OVERLAPS=1.0) x 0.86

(OVERLAPS=1.0)

x 0.25

(AFTER=0.15, OVERLAPS=0.85) x 0.75

movesmoves

(OVERLAPS=1.0) x 1.0

(OVERLAPS=1.0) x 0.14(OVERLAPS=1.0) x 0.46

Figure 5.1: P-CASE representation for the object passing event. Each node is
a sub-event encoded by a complete case-frame, and the weights on directed
edges represent the probability of occurrence of a specific temporal relationship
between sub-events, while the weights outside the brackets (in blue) are the con-
ditional probabilities between sub-events. The white and grey vertices represent
sub-events of agents one and two respectively.

5.2.4 Variation in Temporal Order

The above mentioned extensions to CASE provide a plausible interface for event represen-

tation. But events rarely occur with the same temporal order of sub-events. The variations

in the temporal order of sub-events occur due to the different styles of execution of events

by various agents present in the video. Thus, I modify the extended CASE representation to

encode the temporal variations present in events.

Given the detected sub-events and SDG for a training video, I estimate the probabilistic

weight matrix using the procedure described in previous chapter. Each vertex in the weight

matrix is encoded with a complete case-frame, instead of just the sub-event and agent infor-

mation. Further application of normalized cuts to the weight matrix segments the different

the event instances.

74

After obtaining the different event instances, the conditional dependencies between sub-

events are estimated using equation (4.1) while the variation weights wj
i in temporal rela-

tionships are computed using wj
i =

ψ(T j
i)∑n

k T j
k

, where wj
i denotes the ith weight for the jth edge,

ψ(T j
i) is the frequency of occurrence of the ith temporal relationship for the jth edge, and

∑n
k Tk is the normalizing factor representing all the n temporal relationships in the interval

algebra for the jth edge. The extended CASE representation is further modified by intro-

ducing these conditional dependencies and temporal variation weights wj
i on directed edges

of the segmented event graph. The final event representation is termed P-CASE, and an

example of object passing event representation is shown in Fig.5.1.

One might argue that the SDG should be a sufficient event representation that inherently

captures the variations in temporal order of sub-events. It should be noted that the SDG

only encodes the conditional dependencies between unique sub-events. In contrast, P-CASE

encodes all the sub-events with their temporal order that occur in an event. Also, it encodes

more information, such as which agent performed what sub-event, that is lost while encoding

the SDG. As shown in Figure 5.1, P-CASE encodes the variations in moves, holds, passes,

holds and moves sub-events, while the SDG would only encode the conditional dependencies

between moves, holds, and passes sub-events.

Furthermore, P-CASE has several advantages over existing event representations. First,

it simultaneously uses both temporal structure and an environment descriptor to represent

an event. Second, various events may have alternate starting sub-events, e.g. ‘holds’ may

be before ‘moves’ in the given example. The ability to encode events with alternate starting

75

sub-events is yet another advantage that the previous representations lacked. Third, I find

the most likely sequence of sub-events by finding the sequence with the maximum likelihood

estimate (see details in results section). Finally, the representation is scalable to the number

of agents involved in an event. A complete list of the most likely sequence of sub-events

extracted from the P-CASE representation of the railroad monitoring domain is provided in

the next section.

(a)

(b)

Figure 5.2: On-line extended CASE representation of video sequences. (a) Repre-
sentation at frame 150/237 for the railroad monitoring video (b) PETS sequence
representation at frame 1,446/2,000.

76

5.3 Results

I performed automatic annotation of events and sub-events in videos of different domains

using my P-CASE representation. Firstly, I automatically generated case frames in real-time,

corresponding to the detected sub-events. Figure 5.2 shows snapshots of individuals inter-

acting in an unconstrained environment and their corresponding sub-event representations.

Secondly, these temporally related sub-events were encoded in a graph and events were seg-

mented using Ncut (as described above). These segmented events were further utilized for

automated event annotation of the videos in the meeting, surveillance and railroad mon-

itoring domains. Event-based retrieval of video is an interesting application of this video

annotation scheme, and both the annotation and retrieval schemes are proposed in the next

chapter. The automatically extracted event ontology using the P-CASE representation for

the railroad monitoring domain is given in the next section.

5.3.1 P-CASE Representation for Railroad Monitoring Domain

Given the P-CASE representation of an event, I find the most likely sequence of sub-events

by calculating the maximum likelihood estimate of all event instances using:

EML(ei) = argmax(ei)P (ei|E) (5.1)

77

where, ei are all the event instances belonging to the event E, where P (ei|E) is computed

using:

P (ei|E) = P (s1, s2, ..., sn|E)

= P (s1|E)
n−1∏
j=1

P (sj+1, t
j+1
j |sj, E)P (sj+1|sj, E)

where, s1, ..., sn are the sub-events belonging to event instance ei, n are the number of

sub-events in the event instance, and tj+1
j is the temporal relationship between sj and sj+1.

Thus, the likelihood estimate of the following event instance belonging to the object passing

P-CASE (shown in Fig.5.1) is calculated by:

P(holds moves passes holds moves| Object_Passing)

= P(holds) (P(moves | holds) P(moves,OVERLAPS | holds)) (P(passes | moves) P(passes,AFTER | moves)) (P(holds | passes)

P(holds,OVERLAPS | passes)) (P(moves | holds) P(moves,OVERLAPS | holds))

= 1.0 x (1.0 x 0.46) x (0.15 x 0.75) x (1.0 x 0.86) x (1.0 x 1.0) = 0.0445

Overlaps After Overlaps Overlaps

The following is the most likely P-CASE representation for the 10 events in the railroad

monitoring domain. Note that for ease of notation and visualization, the temporal relations

are given inside the case-frame as was done in CASEE [HSS04], instead of being on an edge

between case-frames. Thus, I automatically estimate the most likely sequence of sub-events

for all the events, and is the same representation that was derived manually by sifting through

hours of videos in [HSS04].

78

Domain Entities

Vehicle A vehicle in the universe

Person A person in the universe

Train A train on the tracks

Gate Gate at the railroad crossing

Signal Signal at the railroad crossing

Zone1 Zone covering the area of activation for the signal

Zone2 Zone covering a designated high-risk area

Tracks The tracks that the train travels on

Domain Predicates Moves, Enters, Exits, Switches, Signals, Breaks, Collides, Stops.

Domain Events

1. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle stops outside

Zone2

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

[PRED: Stops, AG: Vehicle, LOC: Zone2, FAC: Outside, AFTER: Moves]]]]

2. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle stops inside

Zone2

79

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

[PRED: Stops, AG: Vehicle, LOC: Zone2, FAC: Inside, AFTER: Moves]]]]

3. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle breaks the

gate arm while entering Zone2

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

[PRED: Enters, AG: Vehicle, LOC: Zone2, DURING: Moves, SUB:

[PRED: Breaks, AG: Vehicle, OBJ: Gate, DURING: Enters]]]]]

4. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle breaks the

gate arm while exiting Zone2

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

[PRED: Exits, AG: Vehicle, LOC: Zone2, DURING: Moves, SUB:

[PRED: Breaks, AG: Vehicle, OBJ: Gate, DURING: Exits]]]]]

80

5. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle enters while

gate is in motion

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

[PRED: Enters, AG: Vehicle, LOC: Zone2, DURING: Moves]]]]

6. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle exits while

gate is in motion

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

[PRED: Exits, AG: Vehicle, LOC: Zone2, DURING: Moves]]]]

7. Vehicle collides with train

[PRED: Moves, AG: Train, LOC: Zone2, FAC: Inside, SUB:

[PRED: Moves, AG: Vehicle, FAC: Inside, LOC: Zone2, DURING: Move, SUB:

[PRED: Collides, AG: { Vehicle, Train }, AFTER: Moves]]]

8. Person being hit by train

[PRED: Moves, AG: Train, LOC: Zone2, FAC: Inside, SUB:

[PRED: Moves, AG: Person, FAC: Inside, LOC: Zone2, DURING: Move, SUB:

81

[PRED: Collides, AG: { Person, Train } ,AFTER: Moves]]]

9. Person enters zone2 while signal was switched on

[PRED: Switches, OBJ: Signal, FAC: On, SUB:

[PRED: Moves, AG: Person, LOC: Zone2, FAC: Towards, OVERLAPS: Switches, SUB:

[PRED: Enters, AG: Person, LOC: Zone2, AFTER: Moves]]]

10. Train entering zone2 while gates are in motion

[PRED: Moves, OBJ: Gates, FAC: Down, SUB:

[PRED: Moves, AG: Train, LOC: Zone2, FAC: Towards, OVERLAPS: Moves, SUB:

[PRED: Enters, AG: Train, LOC: Zone2, DURING: Moves]]

5.4 Discussion

In order to represent the events, I extend the CASE [F68] representation of the natural lan-

guage. CASE was primarily used for syntactic analysis of natural languages, and while it provides

a promising foundation for event representation it has several limitations for that end. I therefore

propose four critical extensions to CASE for the representation of events:

1. Accommodating multiple agents and multiple threads in an event.

2. Supporting the inclusion of temporal information into the representation.

82

3. Supporting the inclusion of causal information into the representation.

4. Accommodating variation in the temporal order of sub-events.

I also proposed a novel event graph representation for the detected events in video sequences,

having temporal relationships between sub-events. Hence, unlike almost all previous work, I use

both temporal structure and an environment descriptor simultaneously to represent an event. I also

recognize the importance of representing the variations in temporal order of sub-events, that occur

in an event and encode it directly into my representation, which I term P-CASE. These variations in

the temporal order of sub-events, occur due to the style of execution of events for different agents. It

should also be noted that only definite causal relations are represented by the CAUSE case, instead

of using temporal relationship. While the proposed extension allows the representation of causal

relationships, it is noted that causal relationships cannot be inferred from video measurements

alone. In other words, it is impossible to make a distinction between two successive events, and

two causal events without some reasoning. Thus, from the point of view of on-line processing

of measurements, videos are represented in terms of a temporal representation. Events and sub-

events are arranged in a hierarchy according to the order of their temporal incidence and duration.

Inferring causality solely from these temporal representations is a promising future direction. The

next chapter describes the event indexing scheme that utilizes the P-CASE representation, which is

further used for event based retrieval of videos.

83

CHAPTER 6

EVENT INDEXING AND RETRIEVAL

The semantic nature of event representation in P-CASE would allow two additional func-

tionalities: (1) an accessible video retrieval system, indexed based on the semantics of events

that occurred. In time-critical situations (e.g. after the London bombing, it took several days

to sift through the video evidence), indexing videos in terms of events would allow users to

browse the video database based on semantic precepts rather than sequentially piece through

hours of raw video. (2) It would allow analysts to flag specify events of interest as they oc-

cur. The P-CASE framework reasons about events in terms of agents, actions, and objects

allowing human input into the processes that occur within the system.

Although there is a plethora of literature devoted to content-based image retrieval evi-

dent from the survey by Rui et al. [RHC99], most of the work is based on features retrieved

from a single image. Methods that utilize probabilistic image indexing and retrieval include

Boreczky and Wilcox [BW97] that utilize audio and image features and Dimitrova et al.

[DAW00] that use text and face features for indexing and retrieval. Non-probabilistic meth-

ods include the work by Katayama and Satoh [KS97] that employ an SR-tree to index the

high dimensional feature vector and utilize nearest neighbor query search for retrieval of

relevant data. Recently, works by Natarajan and Nevatia [NN05] utilize video information

84

in the feature vector for retrieval of similar videos from the database. Natarajan and Nevatia

[NN05] in their EDF framework use an ontology of entities, actions and events to index the

video events. Further, they utilize relational algebra to find complex events in the database.

Naphade and Huang [NH01] use Factor Graphs (FGs) to index the database. The factor

graphs are dependency mapping functions that map low-level features to high-level concepts

called multijects. The low-level features used include color, texture, edginess (edge regions),

shape, and motion. While, multijects are probabilistic multimedia objects that belong to

either of the three categories: objects (vehicle, person, etc.), sites (indoor, outdoor, beach,

etc.), or events (explosion, walking, running, etc.). The dependencies between the multijects

are modelled using the factor graphs where the dependencies are estimated using training

data, while the factor graph structure is manually constructed. The event (concept) retrieval

is achieved via inference using the sum-product algorithm. Though the above methods are

promising for retrieval of video data, they lack the representative power to extend their

abstract event model to representations related to human understanding of events.

Also, there are several content-based video retrieval tools that include IBM’s Multime-

dia Analysis and Retrieval System (MARVEL) [MARVEL], University of Cental Florida’s

PEGASUS [PEGASUS], and Columbia University’s VideoQ [CCMSZ97]. MARVEL allows

searching over large video repository using automatically generated semantic labels. The

MARVEL system consists of two components: the MARVEL multimedia analysis engine

and the MARVEL multimedia search engine. The MARVEL multimedia analysis engine

applies multi-modal machine learning techniques to model semantic concepts in video from

85

automatically extracted audio, speech, and visual content. It automatically assigns labels

(with confidence scores) to new video data to reduce manual annotation load and improve

searching and organizes semantic concepts using ontologies that exploit semantic relation-

ships for improving detection performance. For example, if in a video clip, the system

indicates the presence of sky, water, sand, and people then the confidence score for detecting

beach are boosted. Furthermore, all of this boosting information are learned automatically

by the system by extracting correlations and statistical information using training examples.

The MARVEL multimedia retrieval engine fuses multimedia semantics-based searching with

other search techniques (speech, text, meta-data, audio-visual features, etc.). It also com-

bines content-based (low-level features), model-based (semantic concepts), and text-based

(automatic speech recognition) searching for video searching.

PEGASUS utilizes text (Optical Character Recognition and Automatic Speech Recogni-

tion), image regions, word histogram and color histogram as the feature vector and indexes

the videos using an SR-tree. The user queries are in the form of keywords with logical oper-

ators and the system initially returns the results based on text search. The user can further

refine the search results by selecting relevant results and deselecting irrelevant results. The

user can also utilize image region, word or color histogram based query refinement during the

interactive search. The final query results are ranked based on the Earth Mover’s distance.

VideoQ employs color, texture, shape, motion and time information as the feature vector

for indexing the videos. Using VideoQ, the user can retrieve videos of objects that have

similar color and motion trajectories. The user queries can be either of the two types: query

86

by example or query by sketch. The user supplies a video for ‘query by example’ and system

returns similar videos from the database. The user sketches a trajectory for ‘query by sketch’

and the system returns videos with similar motion trajectories.

Furthermore, there are a few event representations that attempt to utilize their represen-

tations for retrieval of similar events and concepts. Among these representations are those

that use first-order predicate logic for inference and retrieval and include CYC [CYC01] and

VERL [NHB04]. CYC was an artificial intelligence project that started in 1984 with the goal

of assembling a comprehensive common sense knowledge based ontology, enabling artificial

intelligence applications to perform human-like reasoning. CYC knowledge base is built up

of several million human-defined assertions, rules, facts, predicates and common sense ideas.

The common sense reasoning is based on first-order predicate logic with the language syntax

similar to Lisp programming language. The summary of the CYC elements are as follows:

1. Constants: The concept name in CYC are termed constant.

2. Individuals: Individual items such as Paris, Bill Gate etc.

3. Collections: Collective items such as trees which contains all types of individual tree

elements. A member of the collection is termed an instance of that collection. E.g. an

oak tree is an instance of the tree collection.

4. Truth Functions: Functions that can applied to one or more concepts and return a

true or false value.

87

5. Functions: Functions that produce new terms from the given ones using inference.

E.g. fruit-function when provided with a plant type collection will return a collection

of fruits produced by those plants.

6. Predicates: Special functions in CYC.

7. Isa: Predicate that describes that one element is an instance of another. E.g. George-

Bush isa President-of-US.

8. Generalize: Predicate that describes that one collection is a sub-collection of another.

E.g. Generalize Oak Tree (i.e. oak is a sub-collection of tree).

More recently, Nevatia et al. [NHB04] proposed a video event ontology by using their

Video Event Representation Language (VERL). Their event representation is based on causal

relationships based on conditionals and sequences of sub-events. The different event repre-

sentation elements are defined using functions and linked via temporal logic encoded using

Allen’s temporal algebra [AF94]. Using their event representation, they are able to represent

both single and multiple agent events. The summary of the VERL elements are as follows:

1. Process: Tightly coupled actions with necessary causality e.g. washing your car.

2. Activity: Loosely coupled actions with causality not being necessary e.g. my washing

my car every Saturday last year.

3. Cause: Causal relation producing a change.

88

4. Change: Effect of cause in properties or actions.

5. Sequence: Two sub-events occurring one after the other.

6. Iteration: Repeating of events ‘n’ times.

7. Alteration: Choose between alternating events (OR relationship).

8. Conditionals: Actions occurring based on conditions.

9. Interruptions/Resumptions: Pause/resume of a process.

10. Fork/Join: Parallel/sequential execution of a process.

There are several disadvantages of first-order predicate logic based event representations.

First, the complexity of the system in terms of concepts and predicates in the system and

difficulty in adding to the system by hand. Second, scalability problems including reifica-

tion of constants and difficulty in adding more concepts. Third, the related difficulty in

measuring the completeness of the system, given the predicates and concepts. Fourth, these

representations are not directly related to the human understanding of events, and thus, the

user cannot define the query in a human representative language.

Keeping the limitations of the above tools, representations, and methods I built the

Semoran system for the indexing and retrieval of events in videos, which is described next.

89

Figure 6.1: Event retrieval using pre-defined queries.

6.1 Semoran System

The goal of the Semoran system is to have a user friendly event retrieval system. It

takes in user inputs in either of the three forms for event retrieval:

1: Using Pre-Defined Queries in P-CASE Representation

The user can select a particular event and the system will return the relevant events from

the database as shown in Figure 6.1.

90

Figure 6.2: Event retrieval using custom queries.

2: Using Custom Queries in P-CASE Representation

The user can create a custom event by filling in the cases and the system will return the

relevant events from the database as shown in Figure 6.2.

3: Using Query by Example Video

The user can supply a query in the form of a video. The video has the tracked trajectories

of the different objects stored in a file. The system reads them and generates the case-

91

Figure 6.3: Event retrieval using query by example video.

frames, which forms the query and relevant events from the database are returned as shown

in Figure6.3.

Once the query is constructed, the system then searches the entire database and returns

the matched videos to the user. The user can then play the returned videos, look at the

actions performed by various agents in the storyboard, and visualize the actions in P-CASE

representation. Internally, the system performs a two-level search. At the first level, the

system matches the query with the different event models indexed in the database, using

92

maximum likelihood estimates. Once it finds a match, at the second level, it performs a

thorough search with all the relevant events belonging to the matched model, using weighted

Jaccard similarity. The details of event indexing and retrieval follow.

6.2 Event Indexing

Given the different instances of a particular event extracted using normalized cut I can

index the events in P-CASE representation using the method described in section 5.2.4. Note

that this indexing scheme preserves the order of predicate occurrence, which was a limitation

of all predecessor indexing methods. I next compare P-CASE with well known event models

and end the section by listing the advantages of P-CASE over existing methods.

6.2.1 Comparison of P-CASE with HMMs

Hidden Markov Models (HMMs) are the most widely used event models for activity

recognition. I provide its strengths and weaknesses compared to P-CASE as follows:

1. P-CASE is a static graph where the number of nodes are pre-determined based on the

high-level concepts i.e. sub-events in an event, while HMM is a non-static graph where

the number of hidden nodes are unknown and are estimated based on training data.

2. P-CASE has each node representing a high-level concept while HMM’s node represents

a hidden variable that has no high-level concept associated with it.

93

3. P-CASE can model/represent events having any number of agents while HMM can

model single agent events, where as its variant Coupled HMM can model two agent

interactive events, but the number of agents has to be known as a prior.

4. P-CASE has temporal relations on arcs that uniquely represents the complete order of

sub-events, while HMM can have self-loops on nodes but it cannot count how many

times to loop, thus there is ambiguity in the order and duration of sub-events.

5. Both P-CASE and HMMs derive the model structure and parameters automatically

using training examples but HMMs have a more complex and abstract model structure

with unknown number of nodes, while P-CASE is more human readable structure with

known nodes (equal to the number of sub-events in events).

6. Both P-CASE and HMMs can be used to detect events by finding the maximum likeli-

hood estimates with all the event models, given a novel video (see the next section for

details).

7. P-CASE builds models by assuming a closed world problem i.e. it requires knowledge

of all the sub-events as a prior, while HMM does not require this and it builds its

model structure independent of that knowledge by adding more hidden nodes to fit

the model, given the training videos.

94

6.2.2 Comparison of P-CASE with Bayesian Networks

Bayesian Networks (BNs) are the used for modeling multiple agent events for activity

recognition. I provide its strengths and weaknesses compared to P-CASE as follows:

1. Both P-CASE and BN are static graphs.

2. P-CASE is a directed graph while BNs are Directed Acyclic Graphs (DAGs) therefore

BN inference (or likelihood estimation) is bottom up, using the marginal probabili-

ties, as there are no cycles while P-CASE estimates maximum likelihood by function

maximization (see the next section for details).

3. Both P-CASE and BNs have nodes representing high-level concept.

4. P-CASE has temporal relations on arcs that uniquely represents the complete order of

sub-events, while BNs have conditional probabilities on their arcs which just encodes

that a certain node occurs after another node. Thus, P-CASE has more temporal

information encoded.

5. P-CASE derive the model structure and parameters automatically using training exam-

ples but BN structure are usually more complex and is usually derived manually while

the parameters are derived automatically.

6. Both P-CASE and BN can model/represent events having any number of agents.

95

Both HMMs and BNs lack the representative power to extend their abstract event model

to representations related to human understanding of events. Also, they lack the ability to

uniquely represent the complete order of sub-events, which is necessary for indexing of events

for future retrieval.

6.3 Event Retrieval

After indexing the events using the P-CASE representation, event retrieval is a two step

process. Given a query in the P-CASE representation, I first find the Maximum Likelihood

(ML) estimate of the query event with the different event models. The model that has the

ML estimate of the query event is the maximum matching event. The ML is calculated

using:

EML(q) = argmaxEi
P (q|Ei)

where, Ei is the event, q is the query, P (q|Ei) is the likelihood term calculated using:

P (q|Ei) = P (s1, s2, ..., sn|Ei)

= P (s1|Ei)
n−1∏
j=1

P (sj+1, t
j+1
j |sj, Ei)P (sj+1|sj, Ei)

where, s1, ..., sn are the sub-events belonging to query event q, n are the number of sub-events

in the query event, and tj+1
j is the temporal relationship between sj and sj+1. Note that the

user does not need to supply all the cases inside each case-frame used in the search query.

96

E.g. instead of searching for events in which “Omar passes a yellow book”, the user can

search for all events in which “anyone passes any book”. This is achieved by enumerating

all possible agentives (persons) and datives (books) in the search query and matching it to

all stored events in the database.

At the second level of search, I find the percentage match of the query event with all the

event instances belonging to the maximum matched event model. For that purpose I use

the weighted Jaccard measure to find similarity scores between the query event and all event

instances. Two case-frames Ci and Cj are matched using the weighted Jaccard measure

given by:

ρ(Ci, Cj) =

∑n
k=1 wkI(ψ(cik, cjk = 1))∑n

k=1 wkI(ψ(cik, cjk = 1)) +
∑n

k=1 wkI(ψ(cik, cjk = 0))

where, I(x) is the indicator function, wk are the weights calculated using the TF-IDF scheme

(described later) and ψ(x, y) is the pair-wise comparison of each case cik and cjk where:

The weights wk in the Jaccard measure are obtained using term-frequency and inverse

document frequency (TF-IDF) scheme, borrowed from Lucene full-text indexing. The term-

frequency in the given document gives a measure of the importance of the term within the

particular document. The inverse document frequency is a measure of the general importance

of the term. It is given by the log of the number of all documents divided by the number of

documents containing the term. Thus,

97

TF =
Ni∑
k Nk

TF − IDF = TF.log(
D

dj ⊃ ti
)

where Ni is the number of occurrences of the considered term, D is the total number of

documents in the corpus, and dj ⊃ ti is the number of documents where the term tj appears

such that Nj 6= 0. A high weight in TF-IDF is reached by a high term-frequency (in the given

document) and a low document frequency of the term in the whole collection of documents.

Thus, the weights tend to filter out common terms. TF-IDF is a statistical technique used to

evaluate how important a word is to a document. The importance increases proportionally

to the number of times a word appears in the document but is offset by how common the

word is in all of the documents in the collection or corpus. TF-IDF is often used by search

engines to find the most relevant documents to a user’s query. Whereas for event retrieval,

the TF-IDF scheme helps in weighting the importance of a particular case in an event. The

final ranking of the event instances is based on the weighted Jaccard measure with the query

event, returned in descending order of percentage matching.

6.4 Results

I performed experiments for event indexing and retrieval in videos for the meeting,

railroad monitoring and surveillance domains. These videos contain multiple agents that act

98

Table 6.1: SUMMARY OF INDEXED VIDEOS IN SEMORAN DATABASE

Dataset Name Videos Total Frames Events Sub-Events

NIST 6 2480 11 214

Kojima 20 2406 29 264

Sadiye 10 6461 13 104

VACE 40 18724 118 1296

PETS 143 45430 343 2040

CAVIAR 33 28692 91 1507

ETISEO 32 33184 131 1870

Alexei 12 1894 12 48

FDOT 85 14271 98 1524

Meeting 37 4383 37 373

Surveillance 30 15352 35 673

Railroad 46 9595 51 552

Meeting Test 15 1551 15 224

Surveillance Test 25 7836 25 544

Railroad Test 8 2260 9 307

independently or interact with each other or objects. The indexed videos, in all domains

(in my experiments) totalled 194,519 frames, having 11,540 sub-events and 1013 events. A

total number of 541 videos were adopted for indexing 16 events. I used seven standard video

datasets as well as other videos for indexing the database and testing the event retrieval

using Semoran system. The summary of event indexing using different datasets is provided

in Table 6.1. The three sections in the table show the standard dataset, my dataset, and

event retrieval testing dataset respectively.

A weighted Jaccard distance was used as a metric for retrieving relevant events from

the database. The evaluation of the Jaccard Coefficient is shown in Figure 6.4, where its

99

20 40 60 80 100120140
0

0.5

1

co
ef

fic
ie

nt
EXACT MATCH

20 40 60 80 100120140
0

0.5

1

co
ef

fic
ie

nt

ONE MISMATCH

20 40 60 80 100120140
0

0.5

1

co
ef

fic
ie

nt

TWO MISMATCHES

20 40 60 80 100120140
0

0.5

1

frame number

co
ef

fic
ie

nt

THREE MISMATCHES

20 40 60 80 100120140
0

0.5

1

frame number

co
ef

fic
ie

nt

FOUR MISMATCHES

20 40 60 80 100120140
0

0.5

1

frame number

co
ef

fic
ie

nt

FIVE MISMATCHES

Similarity
Maxima

Figure 6.4: Event matching using the weighted Jaccard coefficient. A prede-
fined event graph consisting of six vertices (case-frames) is matched with an
event graph of a video sequence consisting of 148 vertices (case-frames). The
correct match occurs at the graph node at frame 12 (the similarity maximum is
indicated by the dotted red line). From top-left to bottom-right, the pre-defined
predicate is perturbed so that a progressively greater number of cases within
the case-frames mismatch.

robustness to event matching is depicted. I also estimated the average precision for the

ranked event retrieval results using:

Average Precision =

∑N
r=1 Precision(r)

Number of relevant events retrieved

where, N is the total number of events retrieved and r is the rank of the retrieved event.

Since the retrieved events are ranked based on percentage match of the weighted Jaccard

measure with the query event, I calculate the recall level precision estimates that provide a

better picture of the ranking in event retrieval used in the Semoran system. The resulting

100

plots in the meeting, surveillance, and railroad monitoring domains are shown in Figure 6.5.

As can be seen from the figure, the meeting event queries return the best ranked events from

the database, followed by surveillance event queries and then the railroad monitoring domain

queries. The reason behind such a ranking is that the meeting events are simpler and easily

distinguishable from the rest of the events. The railroad events are the most complicated

events with large variation in the order of sub-events. To make matters worse they are

also similar to other railroad events, differing by a few keywords in the query. Thus, the

ranked results for railroad monitoring queries are the worst among the three domains. The

surveillance domain is composed of simple as well as complicated events, thus their ranked

results fall in between the meeting and railroad monitoring event ranking.

The estimation of recall level precision plot is explained through the following example.

Suppose 17 events are retrieved and there are 10 relevant events in the database. Also, the

ranking of the retrieved events is R, R, I, R, R, I, I, R, R, R, R, I, I, R, R, I, I; where R

= relevant event and I = irrelevant event. Firstly, calculate the average precision at recall

values of {0.1, 0.2, ... 1.0}, as shown in the following table, and secondly, fit a spline to these

points to draw the recall level precision plot:

4/5=0.80.4

3/4=0.750.3

5/8=0.6250.5

2/2=1.00.2

1/1=1.00.1

Avg. Prec.Recall

4/5=0.80.4

3/4=0.750.3

5/8=0.6250.5

2/2=1.00.2

1/1=1.00.1

Avg. Prec.Recall

9/14=0.640.9

8/11=0.720.8

10/15=0.671.0

7/10=0.70.7

6/9=0.670.6

Avg. Prec.Recall

9/14=0.640.9

8/11=0.720.8

10/15=0.671.0

7/10=0.70.7

6/9=0.670.6

Avg. Prec.Recall

101

Figure 6.5: Recall level precision plots for the three domains.

A summary of event retrieval results with average precision (non-interpolated) values is

supplied in Table 6.2. The average non-interpolated precision is computed by averaging the

precision at recall values of {0.1, 0.2, ... 1.0}.

Table 6.2: SUMMARY OF EVENT RETRIEVAL USING THE SEMORAN
SYSTEM

Test Video Query Events Average Precision (non-interpolated) %

Meeting 15 91.19

Surveillance 25 79.71

Railroad Monitoring 9 82.27

102

Figure 6.6: Average time for event retrieval given a query, in the meeting (do-
main1), surveillance (domain2), and railroad (domain3) domains respectively.

I also evaluated the time taken for event retrieval for varying size of event database, given

query events, in Figure 6.6. I ran the Semoran system in Matlab 7.0 on a Intel Core Duo 2

E6600 machine running at 2.4 GHz with 2 GB of RAM. Each query was run 10 times with

varying size of event database and the average time taken for each query is plotted for the

three different domains.

6.5 Discussion

In this chapter, I described the Semoran system that is built for indexing and retrieval

of events. Given the different instances of a particular event, I build an event index in the

form of P-CASE representation. Given a query in the P-CASE representation, event retrieval

103

is a two-level process. At the first level, a ML estimate is computed with the different

event models. The event model with the ML estimate provides the maximum matching

event. At the second level, I find the percentage match of the query event with all the

event instances belonging to the maximum matched event model, using a weighted Jaccard

similarity measure. The weights in the Jaccard measure are obtained using term-frequency

and inverse document frequency (TF-IDF) scheme, borrowed from Lucene full-text indexing.

In text search, the TF-IDF scheme is used to return the ranked search results, whereas for

event retrieval, the TF-IDF scheme helps in weighting the importance of a particular case

in an event. The main advantages of my event indexing and retrieval scheme are:

1. The event indexing preserves the order of predicate occurrence that is necessary for

event retrieval.

2. The event indexing scheme is incremental, thus the event model is updated incremen-

tally using the new event instances, instead of recalculating the event model using all

previous and new event instances.

3. The event retrieval requires less number of hits since it rules out most of the events

(and their instances) during the first level search.

4. The event indexing and retrieval is scalable since new events can be added to the

database.

104

moves raises lowersstops

(OVERLAPS=1.0) x 0.42

(AFTER=0.67, OVERLAPS=0.33) x 0.18

(AFTER=1.0) x 0.82

(OVERLAPS=0.95,

AFTER=0.05) x 0.87

(OVERLAPS=1.0) x 0.13

(OVERLAPS=1.0) x 0.58

(OVERLAPS=0.64,

AFTER=0.36) x 1.0

(a)

moves moves exitsapproaches

(OVERLAPS=1.0) x 0.75

(AFTER=1.0) x 0.25

(OVERLAPS=1.0) x 0. 5

(OVERLAPS=0.67,

MEETS=0.33) x 0.375

(AFTER=1.0) x 0.125

(OVERLAPS=1.0) x 1.0

(b)

Figure 6.7: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Voting (b) Chasing

105

enters
moves stopssits

(OVERLAPS=1.0) x 0.97

(MEETS=0.37) x 0.03

(OVERLAPS=0.96,

AFTER=0.04) x 0.97

(AFTER=1.0) x 0.03

(AFTER=1.0) x 0.0345 (OVERLAPS=0.9643,

MEETS=0.0357) x 0.9655

(a)

moves pushes pushesmoves

(OVERLAPS=0.92,

MEETS=0.08) x 0.93

(AFTER=1.0) x 0.07

(AFTER=1.0) x 0.08

(OVERLAPS=0.92,

MEETS=0.08) x 0.92

(OVERLAPS=0.76,

MEETS=0.08,

AFTER=0.16) x 0.42

(OVERLAPS=0.77,

MEETS=0.08,

AFTER=0.15) x 0.5

(AFTER=1.0) x 0.08

(b)

Figure 6.8: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Enter and sit (b) Fighting

106

moves picks dropsmoves

(OVERLAPS=0.875,

AFTER=0.125) x 0.53
(OVERLAPS=0.85,

MEETS=0.15) x 0.47

(OVERLAPS=0.875,

AFTER=0.125) x 0.53

(OVERLAPS=0.85,

MEETS=0.15) x 0.47

(OVERLAPS=1.0) x 0.875

(AFTER=1.0) x 0.125

(MEETS=1.0) x 1.0

(a)

holds moves dropsstops

(AFTER=1.0) x 0.06

(OVERLAPS=0.875,

MEETS=0.125) x 0.94 (AFTER=1.0) x 1.0(OVERLAPS=1.0) x 1.0

(OVERLAPS=0.93,

MEETS=0.7) x 1.0

(b)

Figure 6.9: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Loading (b) Object drop

107

moves holds stopspasses

(OVERLAPS=0.9,

AFTER=0.1) x 0.71

(AFTER=1.0) x 0.07

(OVERLAPS=1.0) x 0.22

(AFTER=1.0) x 1.0

(OVERLAPS=0.75,

MEETS=0.25) x 0.81

holds

(OVERLAPS=1.0) x 1.0

(OVERLAPS=1.0) x 0.19

(a)

movesmoves holdsholds holdsholdspassespasses

(OVERLAPS=1.0) x 0.54

(OVERLAPS=1.0) x 0.86

(OVERLAPS=1.0)

x 0.25

(AFTER=0.15, OVERLAPS=0.85) x 0.75

movesmoves

(OVERLAPS=1.0) x 1.0

(OVERLAPS=1.0) x 0.14(OVERLAPS=1.0) x 0.46

(b)

Figure 6.10: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Object exchange (b) Object passing

108

switches moves enters

(OVERLAPS=0.44, MEETS=0.07,

AFTER=0.49) x 0.71

(DURING=0.91,

AFTER=0.09) x 0.29

moves

(OVERLAPS=1.0) x 1.0

(OVERLAPS=0.875,

AFTER=0.125) x 0.95

(OVERLAPS=1.0) x 0.05

(a)

moves
enters

emerges/stands

hides/sits

(OVERLAPS=1.0) x 0.75

moves enters

(OVERLAPS=0.75,

AFTER=0.25) x 1.0

(MEETS=1.0) x 0.25

(OVERLAPS=1.0) x 1.0

exits

(AFTER=1.0) x 1.0

(OVERLAPS=1.0) x 0.5

(AFTER=1.0) x 0.5

(b)

Figure 6.11: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Person enters danger-zone while gate arms moving (b)
Sneaking

109

moves stops exits

(OVERLAPS=1.0) x 0.52

(AFTER=1.0) x 0.48

(AFTER=0.97, OVERLAPS=0.03) x 0.96 (AFTER=1.0) x 0.04

(a)

drops blocks picksapproaches

(AFTER=1.0) x 1.0

moves

(OVERLAPS=1.0) x 1.0

(OVERLAPS=0.95,

AFTER=0.05) x 1.0
(OVERLAPS=0.85,

AFTER=0.15) x 1.0

(b)

Figure 6.12: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Stand and leave (b) Stealing

110

moves moves enters

(OVERLAPS=0.5,

MEETS=0.05,

DURING=0.33

AFTER=0.12) x 1.0

(OVERLAPS=0.38,

MEETS=0.05,

DURING=0.52

AFTER=0.05) x 1.0

(OVERLAPS=1.0) x 1.0

(a)

moves picks dropsmoves

(OVERLAPS=0.75,

AFTER=0.25) x 0.57 (OVERLAPS=1.0) x 0.43

(OVERLAPS=0.75,

AFTER=0.25) x 0.57

(OVERLAPS=1.0) x 0.43

(OVERLAPS=1.0) x 0.75

(AFTER=1.0) x 0.25

(MEETS=1.0) x 1.0

(b)

Figure 6.13: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Train enters danger-zone while gate arms moving (b)
Unloading

111

moves switches entersmoves

(OVERLAPS=1.0) x 0.12

(OVERLAPS=0.1875,

AFTER=0.8125) x 0.38

(OVERLAPS=0.39,

DURING=0.61) x 0.5

(OVERLAPS=0.25,

AFTER=0.75) x 1.0

(DURING=1.0) x 1.0

(a)

moves switches exitsmoves

(OVERLAPS=0.4,

DURING=0.6) x 0.2

(OVERLAPS=0.15,

AFTER=0.85) x 0.3

(OVERLAPS=0.55,

DURING=0.45) x 0.5

(OVERLAPS=0.21,

AFTER=0.79) x 1.0

(DURING=1.0) x 1.0

(b)

Figure 6.14: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Vehicle enters danger-zone while gate arms moving (b)
Vehicle exits danger-zone while gate arms moving

112

moves switches stopsmoves

(AFTER=1.0) x 0.33

(OVERLAPS=0.13,

DURING=0.07,

AFTER=0.8) x 0.21

(MEETS=0.14,

DURING=0.14,

AFTER=0.72) x 0.46

(OVERLAPS=0. 15,

MEETS=0.06,

AFTER=0.79) x 0.93

(AFTER=1.0) x 1.0

(AFTER=1.0) x 0.07

(a)

moves moves movesstops

(OVERLAPS=0.92,

AFTER=0.08) x 0.58

moves

(OVERLAPS=0.91,

DURING=0.09) x 0.33

(OVERLAPS=0.91,

DURING=0.09) x 0.08

(OVERLAPS=0.92,

AFTER=0.08) x 0.58

(OVERLAPS=0.91,

DURING=0.09) x 0.33

(OVERLAPS=0.92,

DURING=0.08) x 0.08

(OVERLAPS=0.917,

AFTER=0.083) x 0.75

(OVERLAPS=0.909,

AFTER=0.091) x 0.25

(b)

Figure 6.15: Automatically generated P-CASE representation using indexed data
in Semoran system. (a) Vehicle stops outside danger-zone (b) Argument

113

CHAPTER 7

SUMMARY AND FUTURE WORK

The problem of detecting events in a video involving multiple agents and their interac-

tion was identified. Event models were learnt from training videos having variations in the

number of agents and the temporal order of sub-events. Event learning was formulated in a

probabilistic framework, and the learnt event models were used for event detection in novel

videos. Event detection was treated as a graph theoretic clustering of sub-events having high

association within the event clusters and low association outside the clusters. I demonstrated

my event learning and detection methods on videos in the railroad monitoring, surveillance

and meeting domains. The current limitation of the event learning and detection method is

that it assumes a closed world problem and thus requires the knowledge of the sub-events

that may occur in an event. Future research in this area may involve removing such a

constraint for event learning and detection.

Future theoretical development of the event learning and detection approaches can be

strengthened via inclusion of research from teamwork theory. Saavedra et al. [SEV93]

developed an elegant framework to understand interdependence in teams by describing a

set of complex interdependencies: (a) task interdependence, (b) goal interdependence, and

(c) feedback interdependence. Future work in multi-agent event learning and detection

114

might benefit from considering these variations in coordination. First, task interdependence

describes the degree to which the individuals within a team have to interact when performing

their task. Saavedra et al. state that this can vary along four levels: pooled, sequential,

reciprocal, or team interdependence. Under pooled interdependence, each team member

performs his own task and this is pooled. With regard to sequential interdependence, this is

said to occur when a team member’s output is required for another team member’s input. In

reciprocal interdependence, a given team member’s output becomes another member’s input

and vice versa. Last, the highest form of coordinated teamwork is team interdependence,

where group members jointly diagnose the problem at hand and collaborate to complete a

task. Second, goal interdependence classifies individual goals (for example, minimize your

own exposure to enemy observation) and team goals (for example, try to minimize the team’s

exposure to enemy observation). Note that in large teams, there is likely to be combinations

of these types of goals, that is, both team and individual goals are issued. Third, feedback

interdependence varies based upon how it is delivered to individual team members or to the

team and whether individual results are provided or team results are provided, that is, it can

vary along the lines of limiting the knowledge of results or changing the focus of feedback

(e.g., showing only the team’s overall progress but not that of the individuals).

Also, the problem of formally representing events occurring in a video sequence using

measurements in terms of object labels and tracks was identified. In order to represent

events, cases were added to the original CASE framework to support multi-agent/thread,

temporal logic and causal relationships. An event representation was developed to cater for

115

the temporal variations in the sub-events, and event ontologies were automatically extracted

from training videos. Experiments were performed on real sequences for the on-line genera-

tion of P-CASE for human interaction. The essence of the proposition here is that, based on

the temporal relationships of the agent motions and a description of its state, it is possible

to build a formal description of an event. Although the P-CASE representation can represent

causality, my methods do not infer causality, and thus is an interesting future direction to

this work.

I also proposed the event-based indexing and retrieval of video. To that end, the Se-

moran system was developed that takes in user inputs in either of the three forms for event

retrieval: using pre-defined queries in P-CASE representation, using custom queries in P-CASE

representation, or query by example video. The system then searches the entire database

and returns the matched videos to the user. The user can then play the returned videos,

look at the actions performed by various agents in the storyboard, and visualize the actions

in P-CASE representation. Internally, the system performs a two-level search. At the first

level, the system matches the query with the different event models indexed in the database,

using maximum likelihood estimates. Once it finds a match, at the second level, it performs a

thorough search with all the relevant events belonging to the matched model, using weighted

Jaccard similarity.

There are several future directions to this work with possible exploratory solutions as

follows:

116

1. Unusual Behavior Detection: Unusual behaviors can be detected using P-CASE by

learning what constitutes ‘normalcy’ in each scene in terms of interaction of individuals

and materials. Thus, if an event involving multiple individuals occurs, such as a crowd

forming or an unusual interaction between persons with a low probability of occurrence,

the video will be flagged and the event will be construed as an unusual activity. In this

way, in addition to analyzing the behavior of individuals, exploration of analyzing the

behavior of groups as well as to detect anomalies in a scene is an interesting direction

of future research.

2. Video Summarization: For video summarization, the system may automatically

generate the summary of the given video by extracting and stitching clips containing

important events.

3. Query by Sketch: For query by sketch, the user may input the query in the form of

motion trajectories of various individuals and the system returns the events containing

that kind of motion.

4. Query in Human Sentence: For query in human sentences, the user may input the

query in the form of a sentence and the system extracts the relevant keywords and

automatically generate the P-CASE representation for retrieval of relevant events.

5. Situation Level Indexing: Future theoretical development of event indexing might

be strengthened by adapting the situation level indexing. Comprehension models look

more at the integration of information over time and they may help deal with more

117

complex forms of event indexing. Specifically, a complex plot unfolds in the video

and viewers have little difficulty sequencing and integrating this type of input. At

present, the current work is still only analogous to “sentence level” parsing, where as

considering models that go beyond sentence comprehension to understand how entire

sets of sentences and even paragraphs and pages of text are integrated to form a

“situation model” of that text. One of the early prevalent theories is by Kinsch [K88]

called the construction integration model [KV78]. These models can be ported from

text and extended to videos for the detection and indexing of long complex events in

videos.

118

APPENDIX A: SUB-EVENT DETECTION RULES

119

1. Moves(Entity)

If |previous Entity position− current Entity position| > Threshold

return true

2. Stops(Entity)

If |previous Entity position− current Entity position| < Threshold

return true

3. Enters(Agent)

If NOT (in fov(previous Agent position)) AND in fov(current Agent position)

return true

4. Exits(Agent)

If NOT (in fov(current Agent position)) AND in fov(previous Agent position)

return true

5. Approaches(Agent,Entity)

If current distance(Agent, Entity) < previous distance(Agent, Entity)

return true

6. Leaves(Agent,Entity)

If current distance(Agent, Entity) > previous distance(Agent, Entity)

return true

120

7. Extends(Agent,{hand})

If current distance(Agent, {hand}) > previous distance(Agent, {hand})

return true

8. Holds(Agent,Object)

If current distance(Agent,Object) < Threshold AND Moves(Agent)

AND Moves(Object)

return true

9. Picks(Agent,Object)

If previous distance(Agent, Object) > Threshold AND Holds(Agent, Object)

return true

10. Passes(Agent1,Agent2,Object)

If Holds(Agent1, Object) AND Drops(Agent1, Object) AND Holds(Agent2, Object)

return true

11. Drops(Agent,Object)

If previous distance(Agent, Object) < Threshold AND

current distance(Agent, Object) > Threshold

return true

12. Raises({head},{hand})

If current position(Above({hand}, {head})) AND

121

previous position(Below({hand}, {head}))

return true

13. Lowers({head},{hand})

If current position(Below({hand}, {head})) AND

previous position(Above({hand}, {head}))

return true

14. Sits(Agent)

If previous y position(Agent) > current y positon(Agent) AND NOT (Move(Agent))

return true

15. Stands(Agent)

If previous y position(Agent) < current y positon(Agent) AND Move(Agent)

return true

16. Pushes(Agent1,Agent2)

If previous distance(Agent1, Agent2) < Threshold AND

current distance(Agent1, Agent2) > Threshold AND

Leaves(Agent1, Agent2)

return true

17. Blocks(Agent1,Agent2,Object)

If current distance(Agent1, Agent2) < Threshold AND

122

current distance(Agent1, Object) > current distance(Agent2, Object)

return true

18. Crouches(Agent)

If previous y position(Agent) > current y positon(Agent) AND Move(Agent)

return true

19. Hides(Agent,Object)

If previous distance(Agent, Object) < Threshold AND Exits(Agent) AND

in fov(Object)

return true

20. Emerges(Agent,Object)

If current distance(Agent,Object) < Threshold AND Enters(Agent) AND

previous frame(in fov(Object))

return true

21. Collides(Agent,Entity)

If previous distance(Agent, Entity) > Threshold AND

current distance(Agent, Entity) < Threshold AND Stops(Agent) AND Stops(Entity)

return true

22. Breaks(Agent,Entity)

If Collides(Agent, Entity) AND

123

is different(previous shape(Agent), current shape(Agent))

return true

23. Switches(Object)

If is different(previous shape(Object), current shape(Object))

return true

124

APPENDIX B: PROOF OF EQUIVALENCY FOR W AND W̃

BASED MINIMIZATIONS

125

Given W , the global criterion for minimization of Ncut function is given by:

Ncut(A,B) = min[
cut(A,B)

asso(A, V)
+

cut(A,B)

asso(B, V)
]

= min[

∑
i∈A,j∈B P (vj|vi) +

∑
i∈A,j∈B P (vi|vj)∑

i∈A,k∈I P (vk|vi)

+

∑
i∈A,j∈B P (vj|vi) +

∑
i∈A,j∈B P (vi|vj)∑

j∈B,k∈I P (vk|vj)
]

where I = A
⋃

B, and since W is symmetric therefore P (vj|vi) = P (vi|vj). Thus the above

equation is equivalent to:

Ncut(A,B) = min[

∑
i∈A,j∈B 2P (vj|vi)∑
i∈A,k∈I P (vk|vi)

+

∑
i∈A,j∈B 2P (vj|vi)∑
j∈B,k∈I P (vk|vj)

] (7.1)

Similarly, given W̃ , the global criterion for minimization of Ncut function is given by:

Ncut(A,B) = min[

∑
i∈A,j∈B 2P (vj|vi) +

∑
i∈A,j∈B 2P (vi|vj)∑

i∈A,k∈I P (vk|vi) +
∑

i∈A,k∈I P (vi|vk)

+

∑
i∈A,j∈B 2P (vj|vi) +

∑
i∈A,j∈B 2P (vi|vj)∑

j∈B,k∈I P (vk|vj) +
∑

j∈B,k∈I P (vj|vk)
]

and since W̃ = Ŵ + Ŵ T , where Ŵ is upper triangle matrix, therefore P (vi|vj) =

P (vi|vk) = P (vj|vk) = 0. Thus the above equation is reduced to:

Ncut(A,B) = min[

∑
i∈A,j∈B 2P (vj|vi)∑
i∈A,k∈I P (vk|vi)

+

∑
i∈A,j∈B 2P (vj|vi)∑
j∈B,k∈I P (vk|vj)

] (7.2)

Since both equations (7.1) and (7.2) minimize the same function, thus it is equivalent to

deal with W and W̃ .

126

APPENDIX C: MOST LIKELY SEQUENCE OF SUB-EVENTS

FOR EVENTS IN SEMARON SYSTEM

127

Given the P-CASE representations of events, I find the most likely sequence of sub-events

by calculating the maximum likelihood estimate of all event instances using the method

described in section 5.3.1. The following are the automatically extracted most likely sequence

of sub-events for the events in the Semoran system:

1. Argument:

[PRED: Moves, AG: Person1, D: hand, FAC: up-right, SUB:

[PRED: Moves, AG: Person2, D: hand, FAC: up-left, OVERLAPS: Moves, SUB:

[PRED: Stops, AG: Person1, D: hand, OVERLAPS: Moves, SUB:

[PRED: Moves, AG: Person1, D: hand, FAC: down-left, OVERLAPS: Stops, SUB:

[PRED: Moves, AG: Person2, D: hand, FAC: down-right, OVERLAPS: Moves]]]]]

2. Chasing:

[PRED: Moves, AG: Person1, FAC: up-right, SUB:

[PRED: Moves, AG: Person2, FAC: up-right, OVERLAPS: Moves, SUB:

[PRED: Approaches, AG: Person2, D: Person1, OVERLAPS: Moves]]]

3. Enter and Sit:

[PRED: Enters, AG: Person1, SUB:

[PRED: Moves, AG: Person1, FAC: down-right, OVERLAPS: Enters, SUB:

[PRED: Sits, AG: Person1, OVERLAPS: Moves, SUB:

128

[PRED: Stops, AG: Person1, OVERLAPS: Sits]]]]

4. Fighting:

[PRED: Moves, AG: Person1, FAC: up-left, SUB:

[PRED: Pushes, AG: Person1, D: Person2, OVERLAPS: Moves, SUB:

[PRED: Moves, AG: Person2, FAC: down-right, OVERLAPS: Pushes, SUB:

[PRED: Pushes, AG: Person2, D: Person1, OVERLAPS: Moves, SUB:

[PRED: Moves, AG: Person1, FAC: down-left, OVERLAPS: Pushes]]]]]

5. Loading:

[PRED: Moves, AG: Person1, FAC: up-right, SUB:

[PRED: Picks, AG: Person1, OBJ: box, OVERLAPS: Moves, SUB:

[PRED: Moves, AG: Person1, FAC: up-left, OVERLAPS: Picks, SUB:

[PRED: Drops, AG: Person1, OBJ: box, LOC: truck, OVERLAPS: Moves]]]]

6. Object Drop:

[PRED: Holds, AG: Person1, OBJ: bag, SUB:

[PRED: Moves, AG: Person1, FAC: down-right, OVERLAPS: Holds, SUB:

[PRED: Stops, AG: Person1, OVERLAPS: Moves, SUB:

[PRED: Drops, AG: Person1, OBJ: bag, AFTER: Stops, SUB:

129

[PRED: Moves, AG: Person1, FAC: up-right, OVERLAPS: Drops]]]]]

7. Object Exchange:

[PRED: Moves, AG: Person2, FAC: down-right, SUB:

[PRED: Holds, AG: Person2, OBJ: bag, OVERLAPS: Moves, SUB:

[PRED: Moves, AG: Person2, FAC: up-right, OVERLAPS: Holds]]]

8. Object Passing:

[PRED: Holds, AG: Person2, D: left-hand, OBJ: paper, SUB:

[PRED: Moves, AG: Person2, D: left-hand, FAC: down-left, OVERLAPS: Holds, SUB:

[PRED: Passes, AG: {Person2,Person1}, D: hand, OBJ: paper, OVERLAPS: Moves, SUB:

[PRED: Holds, AG: Person1, D: right-hand, OBJ: paper, OVERLAPS: Passes, SUB:

[PRED: Moves, AG: Person1, D: right-hand, FAC: up-left, OVERLAPS: Holds]]]]]

9. Sneaking:

[PRED: Hides, AG: Person1, OBJ: bushes, SUB:

[PRED: Moves, AG: Person2, FAC: up-right, AFTER: Hides, SUB:

[PRED: Enters, AG: Person2, OBJ: door, OVERLAPS: Moves, SUB:

[PRED: Emerges, AG: Person1, OBJ: bushes, OVERLAPS: Enters, SUB:

[PRED: Moves, AG: Person1, FAC: up-left, OVERLAPS: Emerges, SUB:

130

[PRED: Enters, AG: Person1, OBJ: door, OVERLAPS: Moves]]]]]]

10. Stand and Leave:

[PRED: Moves, AG: Person1, FAC: up-right, SUB:

[PRED: Stops, AG: Person1, OVERLAPS: Moves, SUB:

[PRED: Moves, AG: Person1, FAC: up-left, AFTER: Stops, SUB:

[PRED: Exits, AG: Person1, AFTER: Moves]]]]

11. Stealing:

[PRED: Drops, AG: Person1, OBJ: box, SUB:

[PRED: Blocks, AG: {Person2,Person3}, D: Person1, AFTER: Moves, SUB:

[PRED: Approaches, AG: Person5, OBJ: box, OVERLAPS: Blocks, SUB:

[PRED: Picks, AG: Person5, OBJ: box, OVERLAPS: Approaches, SUB:

[PRED: Moves, AG: Person5, FAC: down-left, OVERLAPS: Picks]]]]]

12. Unloading:

[PRED: Moves, AG: Person1, FAC: up-right, SUB:

[PRED: Picks, AG: Person1, OBJ: box, LOC: truck, OVERLAPS: Moves, SUB:

[PRED: Moves, AG: Person1, FAC: up-left, OVERLAPS: Picks, SUB:

131

[PRED: Drops, AG: Person1, OBJ: box, LOC: cart, OVERLAPS: Moves]]]]

13. Voting:

[PRED: Moves, AG: Person1, D: left-hand, FAC: up-left, SUB:

[PRED: Raises, AG: Person1, D: left-hand, OVERLAPS: Moves, SUB:

[PRED: Stops, AG: Person1, D: left-hand, OVERLAPS: Raises, SUB:

[PRED: Lowers, AG: Person1, D: left-hand, AFTER: Stops]]]]

14. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle stops outside

Zone2

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

[PRED: Stops, AG: Vehicle, LOC: Zone2, FAC: Outside, AFTER: Moves]]]]

15. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle enters while

gate is in motion

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

132

[PRED: Enters, AG: Vehicle, LOC: Zone2, DURING: Moves]]]]

16. train approaches ⇒ signal switches on ⇒ gate arm moves down ⇒ vehicle exits while

gate is in motion

[PRED: Moves, AG: Train, OBJ: Signal, LOC: Zone1, FAC: Towards, SUB:

[PRED: Switches, OBJ: Signal, FAC: On, AFTER: Moves, SUB:

[PRED: Moves, OBJ: Gate, FAC: Down, AFTER: Switches, SUB:

[PRED: Exits, AG: Vehicle, LOC: Zone2, DURING: Moves]]]]

17. Person enters zone2 while signal was switched on

[PRED: Switches, OBJ: Signal, FAC: On, SUB:

[PRED: Moves, AG: Person, LOC: Zone2, FAC: Towards, OVERLAPS: Switches, SUB:

[PRED: Enters, AG: Person, LOC: Zone2, AFTER: Moves]]]

18. Train entering zone2 while gates are in motion

[PRED: Moves, OBJ: Gates, FAC: Down, SUB:

[PRED: Moves, AG: Train, LOC: Zone2, FAC: Towards, OVERLAPS: Moves, SUB:

[PRED: Enters, AG: Train, LOC: Zone2, DURING: Moves]]

133

LIST OF REFERENCES

[AA01] Ali, A., and Aggarwal, J. K. 2001. Segmentation and Recognition of Continuous
Human Activity. In IEEE Workshop of International Conference on Computer Vision,
pp.28-38.

[AF94] Allen, J. F., and Ferguson, G. 1994. Actions and Events in Interval Temporal Logic.
In Journal of Logic Computation, vol.4(5), pp.531-579.

[AS01] Ayers, D., and Shah, M. 2001. Monitoring Human Behavior from Video Taken in an
Office Environment. In Image and Vision Computing, vol.19, pp.833-846.

[BJ98] Babaguchi, N., and Jain, R. 1998. Event Detection from Continuous Media. In Proc.
of International Conference on Pattern Recognition, pp.1209-1212.

[B75] Badler, N. 1975. Temporal Scene Analysis: Conceptual Description of Object Move-
ments. In University of Toronto Technical Report No. 80.

[BBY04] M. Balcan, A. Blum, and K. Yang. 2004. Co-training and expansion: Towards
briding the- ory and practice. In Eighteenth Annual Conference on Neural Information
Processing Systems.

[BR94] Ben-Arie, J., and Rao, K. R. 1994. Optimal Template Matching by Non-Orthogonal
Image Expansion Using Restoration. In International Journal of Machine Vision and
Applications, vol.7(2), pp.69-81.

[BWP02] Ben-Arie, J., Wang, Z., Pandit, P., and Rajaram, S. 2002. Human Activity Recog-
nition Using Multidimensional Indexing. In IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, vol.24(8), pp.1091-1104.

[B85] J. O. Berger. 1985. Statistical decision theory and Bayesian analysis. In 2nd edition,
Springer-Verlag, New York.

[BM98] A. Blum and T. Mitchell. 1998. Combining labeled and unlabeled data with co-
training. In 11th Annual Conference on Computational Learning Theory.

[BW97] Boreczky, J. and Wilcox, L. 1997. A HMM Framework for Video Segmentation using
Audio and Image Features. In International Conference on Acoustics, Speech and Signal
Processing.

134

[B97] Brand, M. 1997. Understanding Manipulation in Video. In International Conference
on Face and Gesture Recognition, pp.94-99.

[BK00] Brand, M., and Kettnaker, V. 2000. Discovery and Segmentation of Activities in
Video. In IEEE Transactions of Pattern Analysis and Machine Intelligence, vol.22(8),
pp.844-851.

[CCMSZ97] Chang, S., Chen, W., Meng, H., Sundaram, H., and Zhong, D. 1998. A Fully
Automated Content Based Video Search Engine Supporting Spatio-Temporal Queries.
In IEEE Transactions of Circuits Systems and Video Technology, vol.8(5), pp.602-615.

[CRM03] Comaniciu, D., Ramesh, V. and Meer, P. 2003. Kernel-based object tracking. In
IEEE Transactions of Pattern Analysis and Machine Intelligence, vol.25(5), pp.564-577.

[DB97] Davis, J. W., and Bobick, A. F. 1997. The Representation and Recognition of Hu-
man Movement Using Temporal Templates. In Proc. of Computer Vision and Pattern
Recognition, pp.928-934.

[DAW00] Dimitrova, N., Agnihotri, L., and Wei, G. 2000. Video Classification based on
HMM using Text and Faces. In Proc. of European Conference on Signal Processing.

[D04] Ding, C. 2004. Tutorial on Spectral Clustering. In International Conference on Ma-
chine Learning.

[F68] Fillmore, C. J. 1968. The Case for CASE. In Bach, E. and Harms, R. eds., Universals
in Linguistic Theory, pp.1-88, New York, NY:Holt, Rinehart, and Winston.

[FMR98] Friedman, N., Murphy, K., and Russell, S. 1998. Learning the Structure of Dy-
namic Probabilistic Networks. In Proc. Conference on Uncertainty in Artificial Intelli-
gence (UAI), pp.139-147, Madison, WI.

[GX03] Gong, S., and Xiang, T. 2003. Recognition of Group Activities using Dynamic Proba-
bilistic Networks. In Proc. of International Conference on Computer Vision, pp.742-749.

[HQS00] Haering, N., Qian, R. J., and Sezan, M. I. 2000. A Semantic Event-Detection
Approach and Its Application in Wildlife Hunts. In IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol.10(6), pp.857-868.

[HS04] Hakeem, A., and Shah, M. 2004. Ontology and Taxonomy Collaborated Framework
for Meeting Classification. In Proc. of International Conference on Pattern Recognition,
pp.219-222.

[HSS04] Hakeem, A., Sheikh, Y., and Shah, M. 2004. CASEE: A Hierarchical Event Rep-
resentation for the Analysis of Videos. In Proc. of American Association of Artificial
Intelligence (AAAI), pp.263-268.

135

[HS05] Hakeem, A., and Shah, M. 2005. Multi-Agent Event Learning, Detection, and Rep-
resentation in Videos. Accepted for publication in Proc. of American Association of
Artificial Intelligence (AAAI).

[HL04] Harville, M., and Li, D. 2004. Fast, Integrated Person Tracking and Activity Recog-
nition with Plan-View Templates from Single Stereo Camera. In Proc. of Computer
Vision and Pattern Recognition, pp.398-405.

[HNB04] Hongeng, S., Nevatia, R, and Bremond, F. 2004. Video-Based Event Recognition:
Activity Representation and Probabilistic Recognition Methods. In Computer Vision
and Image Understanding, vol.96(2), pp.129-162.

[IB99] Intille, S., and Bobick, A. F. 1999. A Framework for Recognizing Multi-agent Ac-
tion from Visual Evidence. In Proc. of American Association of Artificial Intelligence
(AAAI), pp.518-525.

[IB00] Ivanov Y. A., and Bobick A. F. 2000. Recognition of Visual Activities and Interac-
tions by Stochastic Parsing. In IEEE Transactions of Pattern Analysis and Machine
Intelligence, vol.22, pp.852-872.

[JSS02] Javed, O., Shafique, K., and Shah., M. 2002. A Hierarchical Approach to Robust
Background Subtraction Using Color and Gradient Information. In Workshop on Motion
and Video Computing, pp.22-27.

[JS02] Javed, O., and Shah, M. 2002. Tracking and Object Classification for Automated
Surveillance. In Proc. of European Conference on Computer Vision, pp.343-357.

[JSC04] Javed, O., Shah, M., and Comaniciu, D. 2004. A Probabilistic Framework for Object
Recognition in Video. In Proc. of International Conference on Image Processing.

[KS97] Katayama, N., and Satoh, S. 1997. The SR-tree: An Index Structure for High-
Dimensional Nearest Neighbor Queries. In Proc. of ACM SIGMOD, pp.369-380.

[KV78] W. Kintsch, and T. Van Dijk. 1978. Toward a model of text comprehension and
production. In Psychological Review, vol.85(5), pp.363-394.

[K88] W. Kintsch. 1988. The role of knowledge in discourse comprehension: a construction-
integration model. In Psychological Review, vol.95, pp.163-182.

[KTF01] Kojima, A., Tamura, T. and Fukunaga, K. 2001. Natural Language Description of
Human Activities from Video Images Based on Concept Hierarchy Actions. In Interna-
tional Journal of Computer Vision, vol.50, pp.171-184.

[KHN91] Koller, D., Heinze, N., and Nagel, H. H. 1991. Algorithmic Characterization of
Vehicle Trajectories from Image Sequences by Motion Verbs. In Proc. of Computer
Vision and Pattern Recognition, pp.90-95.

136

[MTB03] Maillot, N., Thonnat, M., and Boucher, A. 2003. Towards Ontology Based Cogni-
tive Vision. In Proc. of International Conference of Vision Systems, pp.44-53.

[MJ98] Mann, R., Jepson, A. 1998. Towards the Computational Perception of Action. In
Proc. of Computer Vision and Pattern Recognition, pp.794-799.

[MCB01] Medioni, G., Cohen, I. , Brmond, F., Hongeng S., and Nevatia, R. 2001. Event
Detection and Analysis from Video Streams. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol.23(8), pp. 873-889.

[MES03] Minnen, D., Essa, I., and Starner, T. 2003. Expectation Grammars: Leveraging
High-Level Expectations for Activity Recognition. In Proc. of Computer Vision and
Pattern Recognition, pp.626-632.

[MEH99] Moore, D. J., Essa, I. A., and Hayes, M. H. 1999. Exploiting Human Actions and
Object Context for Recognition Tasks. In Proc. of International Conference of Computer
Vision, pp.80-86.

[NKHR00] Naphade, M., Kozintsev, I., Huang, T., and Ramchandran, K. 2000. A factor
graph framework for semantic indexing and retrieval in video. In Workshop on Content
Based Access to Image and Video Libraries, CVPR, pp.35-39.

[NH01] Naphade, M. and Huang, T. 2001. A Probabilistic Framework for Semantic Video
Indexing, Filtering, and Retrieval. In IEEE Transactions on Multimedia, pp.141-151.

[NN05] Natarajan, P. and Nevatia, R. 2005. EDF: A framework for Semantic Annotation of
Video. In Proc. of International Conference of Computer Vision, pp.1876-1886.

[N89] Neumann, B. 1989. Natural Language Description of Time Varying Scenes. In Waltz,
D. eds., Semantic Structures: Advances in Natural Language Processing, pp.167-206,
Hillsdale, NJ: Lawrence Erlbaum Associates.

[NZH03] Nevatia, R., Zhao, T., and Hongeng, S. 2003. Hierarchical Language-Based Repre-
sentation of Events in Video Streams. In IEEE Workshop on Event Mining, Madison,
WI.

[NHB04] Nevatia, R., Hobbs, J., and Bolles, B. 2004. An Ontology for Video Event Repre-
sentation. In IEEE Workshop on Event Detection and Recognition.

[NBV03] Nguyen, N. T., Bui, H. H., Venkatesh, S. and West, G. 2003. Recognising and Mon-
itoring High-Level Behaviours in Complex Spatial Environments. In Proc. of Computer
Vision and Pattern Recognition, pp.620-625.

[NMTM00] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. 2000. Text classifica-
tion from labeled and unlabeled documents using EM. In Maching Learning, vol.30(2),
pp.103-134.

137

[ORP99] Oliver, N., Rosario, and B., Pentland, A. 1999. A Bayesian Computer Vision Sys-
tem for Modelling Human Interaction. In Proc. of International Conference of Computer
Vision Systems, pp.255-272.

[OLW02] Ozer, B., Lv, T., and Wolf, W. 2002. A Bottom-up Approach for Activity Recogni-
tion in Smart Rooms. In Proc. of International Conference on Multimedia Expo, pp.917-
920.

[PP99] C. Papageorgiou and T. Poggio. 1999. Trainable pedestrian detections. In Interna-
tional Conference on Image Processing.

[PB98] Pinhanez, C., and Bobick, A. 1998. Human Action Detection Using PNF Propagation
of Temporal Constraints. In Proc. of Computer Vision and Pattern Recognition, pp.898-
904.

[PN93] Polana, R., and Nelson, R. 1993. Detecting Activities. In Proc. of Computer Vision
and Pattern Recognition, pp.2-7.

[PN97] Polana, R., and Nelson, R. 1997. Detection and recognition of periodic, non-rigid
motion. In International Journal of Computer Vision, vol.23(3), pp.261-282.

[RYS02] Rao, C., Yilmaz, A., and Shah, M. 2002. View-Invariant Representation and Recog-
nition of Actions. In International Journal of Computer Vision, vol.50, pp.203-226.

[RHC99] Rui, Y., Huang, T., and Chang, S. 1999. Image Retrieval: Current Techniques,
Promising Directions And Open Issues . In Journal of Visual Communication and Image
Representation, vol.10(4), pp.39-62.

[RA00] Rui, Y., Anandan, P. 2000. Segmenting Visual Actions Based on Spatio-Temporal
Motion Patterns. In Proc. of Computer Vision and Pattern Recognition, pp.111-118.

[SEV93] R. Saavedra, P. Earley, and L. Van Dyne. 1993, Complex Interdependence in Task-
Performing Groups. In Journal of Applied Psychology, vol.78, pp.61-72.

[SK00] H. Schneiderman and T. Kanade. 2000. A statistical method for 3d object detection
applied to faces and cars. In International Conference on Computer Vision and Pattern
Recognition.

[SS05] Shafique, K., and Shah, M. 2005. A Noniterative Greedy Algorithm for Multiframe
Point Correspondence. In IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol.27(1), pp.51-65.

[SM00] Shi, J., and Malik, J. 2000. Normalized Cuts and Image Segmentation. In IEEE
Transactions of Pattern Analysis and Machine Intelligence, vol.22(8), pp.888-905.

138

[SHMBE04] Shi, Y., Huang, Y., Minnen, D., Bobick, A., and Essa, I. 2004. Propagation
Networks for recognition of partially ordered sequential action. In Proc. of Computer
Vision and Pattern Recognition, pp.862-870.

[S00] Siskind, J. M. 2000. Visual Event Classification via Force Dynamics. In Proc. of Amer-
ican Association of Artificial Intelligence (AAAI), pp.149-155, Menlo Park, CA:AAAI
Press.

[SSL04] Smith, P., Shah, M., and Lobo, N. 2004. Integrating and Employing Multiple Levels
of Zoom for Activity Recognition. In Proc. of Computer Vision and Pattern Recognition,
pp.928-935.

[SG00] Staffer, C., and Grimson., W. E. L. 2000. Learning Patterns of Actvity Using Real-
Time Tracking. In IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol.22(8), pp.747-757.

[TSKK00] P. Tsai, M. Shah, K. Keiter, and T. Kasparis. 1994. Cyclic motion detection for
motion based recognition. In Pattern Recognition.

[VCC03] Vaswani, N., Chowdhury, A. R., and Chellapa, R. 2003. Activity Recognition Using
the Dynamics of the Configuration of Interacting Objects. In Proc. of Computer Vision
and Pattern Recognition, pp.633-642.

[WB96] Wang, Z., and Ben-Arie, J. 1996. Optimal Ramp Edge Detection Using Expan-
sion Matching. In IEEE Trans. Pattern Analysis and Machine Intelligence, vol.18(11),
pp.1092-1098.

[WAD97] Wren, C. R., Azarbayejani, A., Darrel, T., and Pentland, A. P. 1997. Pfinder:
Real-Time Tracking of the Human Body. In IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol.19(7), pp.780-785.

[XMZ03] Xu, G., Ma, Y., Zhang, H., and Yang, S. 2003. A HMM Based Semantic Analysis
Framework for Sports Game Event Detection. In Proc. of International Conference on
Image Processing, pp.25-28.

[YB98] Yacoob, Y., and Black, M. 1998. Parameterized Modeling and Recognition of Activ-
ities. In Proc. of International Conference on Computer Vision, pp.120-127.

[YLS04] A. Yilmaz, X. Li, and M. Shah. 2004. Contour-based object tracking with occlusion
handling in video acquired using mobile cameras. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol.26(11).

[YJS06] Yilmaz, A., Javed, O., and Shah, M. 2006. Object tracking: A survey. In ACM
Compuing Survey. vol.38(4)

139

[ZI01] Zelnik-Manor, L., and Irani, M. 2001. Event Based Analysis of Video. In Proc. of
Computer Vision and Pattern Recognition, pp.123-130.

[ZSV04] Zhong, H., Shi, J., and Visontai, M. 2004. Detecting Unusual Activity in Video. In
Proc. of Computer Vision and Pattern Recognition, pp.819-826.

[CAVIAR03] CAVIAR: Context Aware Vision using Image-based Active Recognition. More details
at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

[CYC01] CYC: http://www.cyc.com.

[MARVEL] MARVEL: Multimedia Analysis and Retrieval System. More details at
http://www.research.ibm.com/marvel/details.html.

[PEGASUS] PEGASUS: http://www.cs.ucf.edu/ vision/projects/pegasus/pegasus.html.

[PETS01] PETS: Performance Evaluation for Tracking and Surveillance. More details at
http://www.cvg.cs.rdg.ac.uk/PETS-ICVS/pets-icvs-db.html.

[VACE01] VACE: Video Analysis and Content Exploitation. More details at
http://www.informedia.cs.cmu.edu/arda/vaceI integrate.html.

140

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Event Learning
	1.2 Event Detection
	1.3 Event Representation
	1.4 Event Indexing and Retrieval
	1.5 Organization of the Dissertation

	CHAPTER 2 RELATED WORK
	2.1 Low-Level Feature Detection
	2.1.1 Tracking
	2.1.2 Object Classification
	2.1.3 Sub-Event Detection

	2.2 Event Detection
	2.2.1 Pre-defined Event Models Based Event Detection
	2.2.2 Learnt Event Models Based Event Detection
	2.2.3 Clustering Based Event Detection

	2.3 Event Representation
	2.4 Event Indexing and Retrieval
	2.5 Conclusions

	CHAPTER 3 LOW-LEVEL FEATURE DETECTION
	3.1 Meanshift Tracking
	3.2 Sub-Event Detection
	3.3 Results
	3.4 Discussion

	CHAPTER 4 EVENT LEARNING AND DETECTION
	4.1 Learning the Event Model
	4.1.1 Capturing Temporal Order of Sub-events using Allen's Temporal Algebra
	4.1.2 Event Modeling using Edge-Weighted Directed Hypergraph

	4.2 Event Detection
	4.2.1 Estimating the Probabilistic Weight Matrix of Sub-event Dependencies
	4.2.2 Graph Clustering using Normalized Cuts

	4.3 Results
	4.4 Discussion

	CHAPTER 5 EVENT REPRESENTATION
	5.1 CASE Framework
	5.2 Extended CASE
	5.2.1 Hierarchical Representation
	5.2.2 Temporal Logic
	5.2.3 Causality
	5.2.4 Variation in Temporal Order

	5.3 Results
	5.3.1 P-CASE Representation for Railroad Monitoring Domain

	5.4 Discussion

	CHAPTER 6 EVENT INDEXING AND RETRIEVAL
	6.1 Semoran System
	6.2 Event Indexing
	6.2.1 Comparison of P-CASE with HMMs
	6.2.2 Comparison of P-CASE with Bayesian Networks

	6.3 Event Retrieval
	6.4 Results
	6.5 Discussion

	CHAPTER 7 SUMMARY AND FUTURE WORK
	APPENDIX A: SUB-EVENT DETECTION RULES
	APPENDIX B: PROOF OF EQUIVALENCY FOR W AND W' BASED MINIMIZATIONS
	APPENDIX C: MOST LIKELY SEQUENCE OF SUB-EVENTS FOR EVENTS IN SEMARON SYSTEM
	LIST OF REFERENCES

