
ACTION RECOGNITION USING PARTICLE FLOW FIELDS

by

KISHORE K. REDDY
B.S. Jawaharlal Nehru Technological University, India

M.S. Fachhochschule Südwestfalen, Germany

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2012

Major Professor: Mubarak Shah

c© 2012 KISHORE K. REDDY

ii

ABSTRACT

In recent years, research in human action recognition has advanced on multiple fronts

to address various types of actions including simple, isolated actions in staged data (e.g., KTH

dataset), complex actions (e.g., Hollywood dataset), and naturally occurring actions in surveil-

lance videos (e.g, VIRAT dataset). Several techniques including those based on gradient, flow,

and interest-points, have been developed for their recognition. Most perform very well in stan-

dard action recognition datasets, but fail to produce similar results in more complex, large-scale

datasets. Action recognition on large categories of unconstrained videos taken from the web

is a very challenging problem compared to datasets like KTH (six actions), IXMAS (thirteen

actions), and Weizmann (ten actions). Challenges such as camera motion, different viewpoints,

huge interclass variations, cluttered background, occlusions, bad illumination conditions, and

poor quality of web videos cause the majority of the state-of-the-art action recognition ap-

proaches to fail. An increasing number of categories and the inclusion of actions with high

confusion also increase the difficulty of the problem.

The approach taken to solve this action recognition problem depends primarily on the

dataset and the possibility of detecting and tracking the object of interest. In this dissertation, a

new method for video representation is proposed and three new approaches to perform action

recognition in different scenarios using varying prerequisites are presented. The prerequisites

have decreasing levels of difficulty to obtain: 1) Scenario requires human detection and track-

iii

ing to perform action recognition; 2) Scenario requires background and foreground separation

to perform action recognition; and 3) No pre-processing is required for action recognition.

First, we propose a new video representation using optical flow and particle advection.

The proposed “Particle Flow Field” (PFF) representation has been used to generate motion

descriptors and tested in a Bag of Video Words (BoVW) framework on the KTH dataset. We

show that particle flow fields has better performance than other low-level video representations,

such as 2D-Gradients, 3D-Gradients and optical flow.

Second, we analyze the performance of the state-of-the-art technique based on the his-

togram of oriented 3D-Gradients in spatio temporal volumes, where human detection and track-

ing are required. We use the proposed particle flow field and show superior results compared

to the histogram of oriented 3D-Gradients in spatio temporal volumes.

The proposed method, when used for human action recognition, just needs human de-

tection and does not necessarily require human tracking and figure centric bounding boxes. It

has been tested on KTH (six actions), Weizmann (ten actions), and IXMAS (thirteen actions,

4 different views) action recognition datasets.

Third, we propose using the scene context information obtained from moving and sta-

tionary pixels in the key frames, in conjunction with motion descriptors obtained using Bag of

Words framework, to solve the action recognition problem on a large (50 actions) dataset with

videos from the web. We perform a combination of early and late fusion on multiple features to

handle the huge number of categories. We demonstrate that scene context is a very important

feature for performing action recognition on huge datasets.

iv

The proposed method needs separation of moving and stationary pixels, and does not

require any kind of video stabilization, person detection, or tracking and pruning of features.

Our approach obtains good performance on a huge number of action categories. It has been

tested on the UCF50 dataset with 50 action categories, which is an extension of the UCF

YouTube Action (UCF11) Dataset containing 11 action categories. We also tested our approach

on the KTH and HMDB51 datasets for comparison.

Finally, we focus on solving practice problems in representing actions by bag of spatio

temporal features (i.e. cuboids), which has proven valuable for action recognition in recent

literature. We observed that the visual vocabulary based (bag of video words) method suffers

from many drawbacks in practice, such as: (i) It requires an intensive training stage to obtain

good performance; (ii) it is sensitive to the vocabulary size; (iii) it is unable to cope with

incremental recognition problems; (iv) it is unable to recognize simultaneous multiple actions;

(v) it is unable to perform recognition frame by frame.

In order to overcome these drawbacks, we propose a framework to index large scale

motion features using Sphere/Rectangle-tree (SR-tree) for incremental action detection and

recognition. The recognition comprises of the following two steps: 1) recognizing the local

features by non-parametric nearest neighbor (NN), and 2) using a simple voting strategy to

label the action. It can also provide localization of the action. Since it does not require fea-

ture quantization it can efficiently grow the feature-tree by adding features from new training

actions or categories. Our method provides an effective way for practical incremental action

recognition. Furthermore, it can handle large scale datasets because the SR-tree is a disk-based

v

data structure. We tested our approach on two publicly available datasets, the KTH dataset and

the IXMAS multi-view dataset, and achieved promising results.

vi

To my parents,

brother, and sister,

for their love and sacrifices.

∼

To my beloved wife,

for her support.

vii

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my advisor Dr. Mubarak Shah for giving

me an opportunity to work in Computer Vision Lab. This work would not have been possible

without his guidance, encouragement, advice and support.

I am grateful to Dr. Lei Wei, Dr. Gita Sukthankar, and Dr. Brian Moore for serving on

my committee. I would also like to thank my mentors, Dr. Naresh Cuntoor and Dr. Amitha

Perera for their help during my summer internship at Kitware. I am grateful to the support

given by Shreya Trivedi, Dr. Max Poole and Dr. Patricia Bishop during the toughest times in

my life. I sincerely thank Dr. Aman Behal for supporting me in the early years of my Ph.D.

I would also like to thank my friends and colleagues, Suraj Vemuri, Vaibhav Thakore,

Jingen Liu, Jonathan Poock , Berkan Solmaz, Enrique G. Ortiz, Vladimir Reilly, Imran Saleemi,

Subhabrata Bhattacharya, Mikel Rodriguez and several others who made my stay in Orlando

and work at Computer Vision Lab memorable.

Special thanks to my parents, Tatayya Babu and Jaya Lakshmi for their love, support

and encouragement throughout my life. I am also thankful to my brother Kiran Kumar, and my

sister Swapna for their love and support. Above all, I would like to thank my wife Deepti for

her personal support and patience at all times.

viii

TABLE OF CONTENTS

LIST OF FIGURES . xiii

LIST OF TABLES . xvii

CHAPTER 1: INTRODUCTION . 1

1.1 Overview and Motivation . 2

1.2 Contributions . 4

1.2.1 Particle Flow Fields to represent videos 5

1.2.2 3D - Spatio Temporal Volumes . 6

1.2.3 Scene context in web videos . 7

1.2.4 Incremental Action Recognition Using Feature-Trees 8

1.2.5 Challenging Datasets . 9

1.3 Organization of the Thesis . 10

CHAPTER 2: LITERATURE REVIEW . 11

2.1 Low-Level Representation of Video . 13

2.2 Action Recognition in Large Realistic Datasets 15

2.3 Action Recognition using Tree Data Structures 16

ix

CHAPTER 3: PARTICLE FLOW FIELD . 19

3.1 Introduction . 19

3.2 Low-Level Video Representation . 20

3.2.1 Normalized Pixel Values . 20

3.2.2 Gradients . 20

3.2.3 Optical Flow . 22

3.2.4 Particle Flow (Particle Velocity) . 23

3.3 Experiments . 25

3.4 Summary . 27

CHAPTER 4: 3D - SPATIO TEMPORAL VOLUMES 29

4.1 Introduction . 29

4.2 Histogram of Oriented 3D Spatiotemporal Gradients (3D-STHOG) 31

4.3 Histogram of Oriented Particle Flow Fields (3D-STHOPFF) 34

4.4 Experiments using 3D-STHOG . 35

4.4.1 UT-Tower Dataset . 35

4.4.1.1 Sensitivity to Scale . 36

4.4.1.2 Sensitivity to Frame Rate 38

4.4.1.3 Sensitivity to Translation (Misalignment) 38

4.4.2 VIRAT Ground Video Dataset . 40

x

4.4.3 VIRAT Aerial Video Dataset . 44

4.4.4 IXMAS Dataset . 46

4.4.5 KTH and Weizmann Datasets . 46

4.5 Experiments using 3D-STHOPFF . 47

4.6 Summary . 48

CHAPTER 5: SCENE CONTEXT FOR WEB VIDEOS 49

5.1 Introduction . 49

5.2 Analysis on large scale dataset . 51

5.2.1 Effect of increasing the action classes 53

5.3 Scene Context descriptor . 54

5.3.1 How discriminative is the scene context descriptor? 57

5.4 Fusion of descriptors . 60

5.4.1 Probabilistic Fusion of Motion and Scene Context descriptor 61

5.5 System Overview . 62

5.6 Experiments and Results . 64

5.6.1 UCF11 Dataset . 65

5.6.2 UCF50 Dataset . 67

5.6.3 HMDB51 Dataset . 69

5.6.4 KTH Dataset . 69

xi

5.7 Summary . 70

CHAPTER 6: INCREMENTAL ACTION RECOGNITION 72

6.1 Introduction . 72

6.2 Proposed method . 74

6.2.1 Feature Extraction . 75

6.2.2 Feature-tree Growing . 77

6.2.3 Action Recognition . 79

6.3 Experiments and results . 80

6.3.1 Experiments on the KTH Dataset . 82

6.3.2 Effect of number of Features, feature dimensions and Nearest Neighbors 85

6.3.3 Incremental action recognition . 87

6.3.4 Recognizing multiple actions in a video 87

6.3.5 Action Recognition in frame by frame mode 88

6.3.6 Experiments on IXMAS Multi-view dataset 90

6.4 Summary . 91

CHAPTER 7: CONCLUSION AND FUTURE WORK 93

7.1 Summary of Contributions . 93

7.2 Future Directions . 95

LIST OF REFERENCES . 97

xii

LIST OF FIGURES

Figure 2.1 Figures 1(a) and 1(b) demonstrate 3D shape flow over time for a golf

swing action seen from two different views. Figure 2 shows the 3D

action MACH filter synthesized from the “Jumping Jack” action. Figure

3 shows the space-time template volume. Figure 4(a), 4(b), and 4(c)

represent the action volumes for action “walking” from three different

views.(These figures were taken from [23], [49], [26], and [73].) 12

Figure 2.2 Bag of video words framework (local representation) 13

Figure 2.3 Screenshots from videos in the UCF50 dataset, showing the diverse ac-

tion categories. 17

Figure 3.1 Different video representations. 21

Figure 4.1 Computing the 3D-STHOG . 32

Figure 4.2 Computing 3D-STHOPFF descriptor. Grid of particle are initiated at

frame n and red pathlines are obtained using forward optical flow and

blue pathlines using backward optical flow 33

xiii

Figure 4.3 UT-Tower dataset: Recognition rate. (a) Gradient directions within a

cell are smoothed using a Gaussian filter, (b) No smoothing with fil-

ter, (c) Projected gradients are weighted by gradient magnitude, (d) No

weighting, (e) Histogram is normalized using L1-norm and, (f) using

L2-norm. 36

Figure 4.4 UT-Tower dataset: (a) Average recognition rate for different number of

cells in the x and y directions (M,N). Length of cells along the temporal

axis is fixed, T = 2, and no overlap is used. (b) Effect of frame rate on

recognition rate. 37

Figure 4.5 UT-Tower dataset: Recognition rate vs. frame rate. 38

Figure 4.6 UT-Tower dataset: Recognition rate as a function of ±m pixel shift,

m = 0, . . . , 10. The solid lines show the rates when the bounding boxes

(for both training and testing data) were padded on all sides before shift-

ing. Dotted lines show the rates when only the testing data was padded,

and not the training bounding boxes. 39

Figure 4.7 UT-Tower dataset: Translating bounding boxes for a carrying (left-to-

right) action by more than 5 pixels means loss of discriminability. . . . 40

Figure 4.8 Sample images from the VIRAT ground video dataset. Different in-

stances of exiting vehicle. 41

Figure 4.9 VIRAT Ground Video dataset: Comparing recognition rate between an-

notated bounding boxes and computed ones, and with and without bal-

anced samples during SVM training. 43

xiv

Figure 4.10 Sample images from VIRAT Aerial Video Dataset 44

Figure 5.1 The effect of increasing the number of actions on the UCF YouTube

Action dataset’s 11 actions by adding new actions from UCF50 using

only the motion descriptor. Standard Deviation (SD) and Mean are also

shown next to the action name. 54

Figure 5.2 Moving and stationary pixels obtained using optical flow. 55

Figure 5.3 Key frame selection from a given video. 58

Figure 5.4 Performance of scene context descriptor on different number of key

frames. 58

Figure 5.5 Effect of increasing the number of actions on the UCF YouTube Action

dataset’s 11 actions by adding new actions from UCF50, using only the

scene context descriptor. Standard Deviation (SD) and Mean are shown

next to the action name. 59

Figure 5.6 Performance of different methods to fuse scene context and motion de-

scriptors on UCF50 dataset. 61

Figure 5.7 Proposed approach. 63

Figure 5.8 Confusion table for UCF11 dataset using our approach. 66

Figure 5.9 Confusion table for UCF50 using our approach. 67

Figure 5.10 Performance as new actions are added to UCF YouTube (UCF11) Dataset

from the UCF50 dataset. 71

xv

Figure 6.1 The framework of action recognition using feature-tree. 76

Figure 6.2 Tree structure defined by the intersection of bounding spheres and bound-

ing rectangles. 77

Figure 6.3 Some examples of KTH dataset actions. 82

Figure 6.4 Confusion table on KTH data set for 5 persons used in Random Forest. . 83

Figure 6.5 Confusion table on KTH data set for 5 persons used to grow feature-tree. 84

Figure 6.6 Performance comparison of using feature-tree on spatiotemporal fea-

tures. The number of features is increased from 10 to 200 and the near-

est neighbor search is increased from 1 to 50. 86

Figure 6.7 Plot shows the effect on recognition performance with incremental ex-

amples from the new category added into the feature-tree. 88

Figure 6.8 Classification and localization of two actions happen in the same video.

The red features are classified into boxing, and blue is walking. 89

Figure 6.9 Performance by increasing the number of frames considered in voting. . 90

Figure 6.10 Performance by increasing the number of frames considered in voting. . 92

xvi

LIST OF TABLES

Table 3.1 5 fold cross-validation on KTH dataset using different low-level video

representations . 27

Table 3.2 The performance on KTH by different bag of visual words approaches. . 27

Table 4.1 VIRAT Ground Video Dataset: Number of event-level annotated bound-

ing boxes and object-level boxes for training and testing. The numbers

in parentheses are the number of 3D spatiotemporal volumes extracted. . 42

Table 4.2 VIRAT Aerial Video dataset: Confusion matrix in recognizing station-

ary and moving actions. 45

Table 4.3 Performance comparison between 3D-STHOG and 3D-STHOPFF in

KTH, Weizmann and IXMAS datasets 47

Table 5.1 Action Datasets . 50

Table 5.2 Performance of different motion descriptors on the KTH Dataset 52

Table 5.3 Performance comparison on KTH dataset 70

Table 6.1 Nearest Neighbor Search. 81

Table 6.2 Main steps of Action recognition using feature-tree. 81

Table 6.3 The performance of the different bag of visual words approaches. 85

xvii

CHAPTER 1: INTRODUCTION

Vision is one of the most important senses used by humans to comprehend information

from the environment. Computer vision is a field developed to duplicate the human vision’s

ability to automatically understand the surroundings using cameras. Over the past few decades,

action recognition has been a very active research topic in computer vision. With over 35

hours of video uploaded every minute on YouTube, and thousands of surveillance cameras

on the ground and in the air, the need for reliable, automatic, and real-time computer vision

algorithms to do human/vehicle detection, tracking, action recognition, video retrieval, and

crowd monitoring has never been more important than it is now. In recent years, action and

gesture recognition has been used for human-computer interaction in console video games.

In this thesis, the focus is on effectively representing motion and static information in

videos, while simultaneously facilitating real-time incremental action recognition. The pro-

posed representation of video will produce a better representation of motion in videos for re-

liable feature representation. The importance of scene and context in action recognition is

explored, and an effective way to represent this static information is proposed. This thesis also

proposes a framework, based on local features and tree data structures, for indexing to achieve

real-time incremental action recognition.

1

1.1 Overview and Motivation

Video-sharing websites like YouTube consists of millions of movie clips, broadcast

videos, and amateur videos generated by users using their hand-held cameras or cell phone

cameras. Amateur videos are particularly noisy, low quality, and have poor lighting conditions

compared to movie or broadcast clips. Detecting a specific action or event in an amateur

video is of significant interest to government agencies, to identify suspicious activities. This

task can be challenging, and demands a reliable representation of video, feature detection and

extraction, and a robust classification or retrieval algorithm. Video surveillance from building

rooftops and airborne vehicles plays a major role in the war against crime, both domestically

and internationally. Public video surveillance is frequently being used as a traffic safety tool.

All these tasks require reliable detection, tracking, and action or event recognition algorithms.

In the case of aerial surveillance, the challenges are enormous due to the moving camera, low

resolution, and occlusion. Gesture and action recognition algorithms are increasingly being

used for human-computer interaction in both medicine to save lives, and console video games

to entertain people.

Accurate human action recognition has wide array of applications ranging from surveil-

lance to video games. In general, the goal is to automatically recognize the action performed

by one or more persons, given a sequence of images. A broad arrays of solutions have been

proposed over the past 20 years to solve this problem. The key to accurate action recognition

is the video representation used to generate the feature, and secondly the feature representation

itself. In recent years, significant attention has been given to motion based feature approaches,

which are considered to be most relevant for action recognition [8].

2

Research in image processing has shown that images can be represented using the pixel

intensity or the gradients. David Lowe [39] proposed one of the best feature representation

methods called Scale-Invariant Feature Transform (SIFT), which is based on image gradients.

Video can also be represented using the raw pixel intensity, spatial gradients, or optical flow

between consecutive frames. Pixel intensity values, spatial (2D) and temporal (3D) gradients

have been successfully used, but it is obvious to use optical flow to generate a feature descriptor

that represents motion in the video. Similar to the SIFT descriptor for images, PCA-Cuboids

(Intensities, gradients or optical flow) [12], 3DSIFT [51], 3DHOG [27], HOG, and HOF [30]

have been proposed for videos based on pixel intensities, gradients, and optical flow. We

believe that a better and powerful representation of video to do feature representation is needed

to understand the motion in videos and also, it is equally important to understand the scene and

context in the video.

Furthermore, the initial action recognition datasets captured in a controlled environment

lacked the realistic scenarios like scale variation, view point variation, multiple actors in the

scene, moving camera, noise, and low frame rate. Datasets such as KTH, Weizmann, and

IXMAS fall in this category called clean datasets. These so-called clean datasets have given

rise to approaches that assume human detection by background subtraction, tracking joints, 3D

representation of actions, human centric bounding boxes, and template based methods.

In recent years, challenging action recognition datasets have been released. The level of

complexity in the datasets has increased on many fronts for example, the number of categories,

categories with subtle differences, number of videos in dataset, and the camera motion in the

videos. UCF11, UCF-Sports, Hollywood dataset, UCF50, and VIRAT (Rooftop) datasets are a

3

few realistic datasets released to the community in the last few years. Most of the approaches

developed on clean datasets are practically not possible to apply to these new datasets, or if

applied would not perform as expected.

1.2 Contributions

In this thesis, we work on the most basic aspect of the action recognition task i.e., a

robust representation of the motion in videos in order to extract reliable motion features and

do action recognition in web videos, aerial and ground surveillance videos. We demonstrate

the importance of using static information in action recognition by introducing a scene-context

descriptor. We also propose the use of data structures at the local interest point level descriptors

to perform incremental action recognition. This work is a step towards a unified solution to

perform action recognition in environments with dynamic background and moving cameras,

and to address the incremental action recognition problem. Our major contributions in this

thesis are as follows:

• Using Particle Flow Field (PFF) as a low-level representation of video, which has better

performance than optical flow or gradients.

• Using 3D-Spatio Temporal Volumes (3D-STV) on the entire human bounding box, and

using a histogram of oriented 3D-Gradients and Particle Flow Fields to represent an

action.

• Understanding the scene and context in key frames, and using it in conjunction with the

motion descriptors.

4

• Developing a framework to do incremental action recognition using data structures based

indexing on local interest point descriptors.

• Creating a huge dataset of actions to understand the challenges of large and complex

datasets, and address problem, partially, by probabilistic fusion of motion and scene

context descriptors.

1.2.1 Particle Flow Fields to represent videos

Videos can be represented using raw pixel values, gradients, or optical flow. In this

work, we propose a better low-level representation of the video “Particle Flow Field” (PFF)

which is based on optical flow and particle advection. Optical flow at each pixel gives the

information of where that pixel moved in the next frame. This representation basically consists

of the motion information of each pixel between two consecutive frames. In order to have better

understanding of how a pixel moves and evolves, we do particle advection where each pixel in

a given frame is considered as a particle and we comprehend the motion of the particle over a

time period. Unlike optical flow which shows the velocity of a particle in two frames, particle

flow field captures the velocity of the same particle in n consecutive frames. Particle Flow Field

implicitly has the information to generate particle trajectories. Our low-level representation

PFF is novel in the following ways:

• “Particle Flow Field” is a more robust representation of motion in videos than optical

flow.

5

• PFF can be substituted in any action recognition framework where gradients and optical

flow are used.

• Motion descriptors generated using PFF have better performance than other low-level

representations such as gradients and optical flow in Bag of Visual Words framework.

1.2.2 3D - Spatio Temporal Volumes

3D-Spatio temporal volumes (3D-STV) are obtained by stacking the bounding boxes

of the detected human. The generated 3D-STV should be figure-centric, which demands good

human detection and tracking. In this work, we propose using 3D-Gradients and PFF in a spatio

temporal volume as low-level representation of the video. The underlying idea is an extension

of 3D-Gradients [27] used at the interest point level in a Bag of Visual Words framework. Our

work has the following contributions:

• Robust representation of motion in spatio temporal volumes using 3D-Gradients and

PFF.

• Motion descriptors generated using PFF have better performance than 3D-Gradients in

3D-Spatio temporal volume framework.

• Detailed set of experiments are done to understand the sensitivity of the proposed ap-

proach to scale, frame rate, and translation.

• Experimental results on six datasets: UT-Tower, VIRAT ground and aerial, IXMAS,

KTH, and Weizmann datasets.

6

• Unlike 3D-Gradients, PFF does not require tracking of a human to generate figure-centric

bounding boxes.

1.2.3 Scene context in web videos

Detection and tracking of humans is a challenging problem in itself. Instead of per-

forming human detection and tracking, we propose separating moving and stationary pixels

using optical flow, and introducing the notion of scene and context. In this work, we study the

effect of large datasets on performance, and propose a Bag of Visual Word framework that can

address issues with real life action recognition datasets (UCF50). The main contributions of

this work are the following:

• Provide an insight into the challenges of large and complex datasets, such as UCF50.

• We propose the use of moving and stationary pixels information, obtained from optical

flow, to generate a scene context descriptor.

• We show that as the number of actions to be categorized increases, the scene context

plays a more important role in action classification.

• We propose the idea of early fusion schema for descriptors obtained, which were ob-

tained from moving and stationary pixels, to understand the scene context, and finally

perform a probabilistic fusion of scene context descriptor and motion descriptor.

To the best of our knowledge, no one has attempted action/activity recognition on such

a large scale dataset (50 action categories) consisting of videos taken from the web (uncon-

strained videos) using only visual information.

7

1.2.4 Incremental Action Recognition Using Feature-Trees

The bag of visual words approach has been successfully used in the field of computer

vision. However, the majority of issues with the bag of visual words model are caused by

training-based quantization (visual vocabulary construction). In this chapter, we propose a

feature-tree structure to avoid training-based quantization. Our proposed method has many

advantages compared to the vocabulary-based action recognition approaches:

• First, we can effectively and efficiently integrate indexing and recognition using our pro-

posed feature-tree. As a result, we successfully avoid any intensive training (vocabulary

construction and category model training).

• Second, the feature-tree grows when additional training features are added from the new

training examples or new categories, making it very useful for incremental action recog-

nition in a variety of realistic applications.

• Third, it provides a disk-based data structure, which makes our recognition system scal-

able for a large scale dataset.

• Finally, the recognition is faster than real time. For example, for the KTH dataset, each

feature query takes 0.02s, and if each frame has approximately 3 features, it only takes

0.06s for the frame-based recognition, and the performance is still competitive. Ob-

viously, our system can also be used to detect multiple actions which are happening

simultaneously and localize them.

8

1.2.5 Challenging Datasets

One of the goals of this thesis is to propose methods that can be utilized in real world

applications. In order to achieve this, we have collected and released highly complex and huge

datasets, and performed extensive experiment using the approaches proposed in this thesis.

• UCF50: This dataset is an extension of the UCF YouTube dataset (UCF11). The ex-

tended dataset has a total of 50 action categories taken from YouTube, totaling to 6676

videos. The dataset is challenging in the following regards:

– Huge number of videos and 50 action categories

– Moving camera

– Not focused on the region of interest

– Poor quality of video, presence of compression artifacts, and low frame rate

• UCF-ARG: UCF - Aerial Rooftop Ground dataset is a multi-view human action dataset.

10 different actions performed by 12 actors were recorded from a ground camera, a

rooftop camera at a height of 100 feet, and an aerial camera mounted to a helium balloon.

The UCF-ARG dataset was not used in this thesis. The aerial view has the following

challenges:

– Low resolution, Scale variation, and View variations

– Top view has the problem of self-occlusion

– Few pixels on human or region of interest

9

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 summarizes the different ap-

proaches in action recognition by reviewing the existing literature. Chapter 3 introduces the

proposed new low-level video representation “Particle Flow Field” (PFF). In Chapter 4, 3D-

Gradients and the proposed PFF are used in 3D-Spatio Temporal Volumes, obtained using hu-

man detection and tracking. Chapter 5 proposes the use of scene context information obtained

by background and foreground separation, in conjunction with motion information to improve

action recognition in web videos. Chapter 6 presents the feature-tree framework to perform

incremental action recognition using SR-Trees. Finally, Chapter 7 concludes the thesis with a

summary of contributions and the possible future work.

10

CHAPTER 2: LITERATURE REVIEW

Over the past two decades, a wide variety of approaches have been used to solve the

problem of action recognition. Recent surveys provide a detailed description of the literature

in action recognition [57], [47]. In [47], the approaches were broadly classified as global and

local methods.

Global Representation: Global representation is obtained by detecting and tracking

the person, then stacking the sequence of the obtained region of interest (ROI) into a 3D spa-

tio temporal volume. 3D shape context [17], a combination of silhouettes and flow [26], 3D

shape flow over time [23], differential geometric properties [73] of the volume, and MACH

filter [49] have all been used to represent the 3D spatio temporal volume. Global methods have

shown good performance when the objects are localized and clearly visible. However, occlu-

sion or temporal variation is not handled effectively. Though temporal state-space models seem

promising on certain actions, they have limited generalizability. Moreover, the performance is

sensitive to model characteristics, such as order and state-specific distributions. Therefore

state-space models are not well suited for a general analysis of human action recognition per-

formance. Parts-based approaches are also not ideal because of the insufficient number of

pixels on the target.

Local Representation: Local representation typically involves detecting spatio tem-

poral interest points [29] [13] and representing a local region (2D or 3D or spatio temporal)

11

Figure 2.1: Figures 1(a) and 1(b) demonstrate 3D shape flow over time for a golf swing action

seen from two different views. Figure 2 shows the 3D action MACH filter synthesized from

the “Jumping Jack” action. Figure 3 shows the space-time template volume. Figure 4(a), 4(b),

and 4(c) represent the action volumes for action “walking” from three different views.(These

figures were taken from [23], [49], [26], and [73].)

around the interest point using a descriptor. In [29], 3D Harris corner points were detected

based on spatio temporal variations. The detected interest points are often not stable. The

stability issue was addressed in [13] by using Gaussian and Gabor filters in space and time,

respectively. Wang et al. [60] showed that dense sampling of interest points outperforms inter-

est point detectors. HOG ([10], [30]), HOF [30], 3DSIFT [52], eSURF [65], and HOG3D [27]

have been successfully used in a bag of feature framework. In HOG3D [27], 3D spatio tempo-

ral gradient orientations are quantized using regular polyhedrons. It was shown to outperform

HOG and HOF in the Hollywood and KTH datasets. The bag of feature framework lacks the

12

Figure 2.2: Bag of video words framework (local representation)

temporal aspect and fails to distinguish between dual actions, such as loading and unloading,

opening and closing, and getting in and out of vehicles, which involve similar types of motion

but in reverse temporal order.

2.1 Low-Level Representation of Video

Standard action recognition approaches propose a higher level of interpretation as men-

tioned above based on different low-level representations of videos. Good low-level video

representation help to design algorithms that disregard irrelevant information like the back-

13

ground, color of the clothes, and variation in illumination and are robust to variations in scale,

view-point and subtle variations in actions.

A video is a sequence of images, and the temporal information from those images is

important in defining an action. The raw information from the video is the pixel color or in-

tensity information. The spatio temporal variation of this pixel information can help identify

the actions, but not necessarily understand the actions fully. The temporal aspect can be intro-

duced by taking a series of patches with intensities. However, the pixel information could be

redundant and is variant to color, lighting conditions, etc. As demonstrated by Johansson [22]

using moving light displays (MLDs), the static information remains meaningless compared to

the relative motion. Information related to the background, the color of the clothes, and il-

lumination conditions do not help in action recognition. The spatial gradients (2D-Gradients)

could make it invariant to color and illumination, and spatio temporal gradients (3D-Gradients)

can help bring the temporal aspect into consideration. Raw pixel intensities and gradients have

been successfully used in tasks related to single image and videos. Since the task of action

recognition is based on a sequence of frames and understanding the different motion patterns

in the video [12] [31] [10] [27], the optical flow computed between consecutive frames has

proven to be a good low-level representation of video [12] [31]. Silhouettes [26] and 3D vol-

ume shapes [17] have also been used to represent the videos for action recognition, which

require good foreground and background segmentation.

14

2.2 Action Recognition in Large Realistic Datasets

Categorizing a huge number of classes has been a bottleneck for many approaches

in image classification/action recognition. Deng et al. [11] demonstrated the challenges of

performing image classification on 10,000 categories. Recently, Song et al. [55] and Zhao et

al. [62] attempted to categorize a huge numbers of video categories using text, speech, and

static and motion features. Song et al. [55] used visual features, such as color histograms, edge

features, face features, SIFT, and motion features, and showed that text and audio features

outperform visual features by a huge margin.

Template based methods [5], modeling the dynamics of human motion using finite state

models [20] or hidden Markov models [66], and Bag of Features models [36, 12, 37, 68] (BOF)

are a few well known approaches taken to solve action recognition. Most of the recent work

has been focused on BOF in one form or another. However, most of this work is limited to

small and unconstrained datasets.

Extracting reliable features from unconstrained web videos has been a challenge. Ac-

tion recognition in realistic videos was addressed recently by Laptev et al. [32] and Liu et

al. [36, 37]. Liu et al. [36] proposed pruning the static features using PageRank and motion

features using motion statistics. Fusion of these pruned features produced a significant increase

in the performance on the UCF11 dataset. Ikizler et al. [21] used multiple features from the

scene, object, and person, and combined them using a Multiple MIL (multiple instance learn-

ing) approach. Fusion of multiple features extracted from the same video has gained significant

15

interest in recent years. A study by Snoek et al. [58] does a comparison of early and late fusion

of descriptors.

There has been no action recognition work done on huge datasets using only visual

features. In this thesis we propose a framework which can handle these challenges.

2.3 Action Recognition using Tree Data Structures

Action recognition using bag of visual words has been widely explored recently, and

very impressive results have been reported on the public KTH dataset [12] [37] [30] [33] [68].

However, to the best of our knowledge, the use of tree data structures to integrate indexing,

recognition, and localization has not been explored for action recognition.

Tree data structure has been widely used in visual recognition. For instance, kd-tree [3]

has been used for fast image matching [39] [2]. However, it might reconstruct the entire tree if

it is seriously unbalanced, due to dynamic update [25]. Therefore, it is not scalable and unable

to handle a large scale feature dataset efficiently. Vocabulary-based methods (bag of visual

words) are proposed to reduce the number of features by quantization, for compact visual rep-

resentation [14] [12] [37] [53] [45] [33] [67]. Recently, varied tree-based approaches have been

proposed to construct vocabulary trees. Nister et al. [45] used hierarchical k-means to quickly

compute very large vocabularies. Random Forest models have been successfully utilized for

recognition. Instead of using Random Forest as a classifier, Moosmann et al. [43] used similar

techniques to construct random vocabulary trees in a supervised mode. This obtained signifi-

cantly better performance than the unsupervised vocabulary construction approaches, such as

k-means. Since most vocabulary construction methods are training-based, they are unable to

16

Baseball Pitch Basketball Shooting BikingBench Press Billiards

Breaststroke Clean and Jerk DrummingDiving Fencing

Golf Swing High Jump Horse RidingHorse Race Hula Hoop

Javelin Throw Juggling Balls Jump RopeJumping Jack Kayaking

Lunges Military Parade Nun chucksMixing Batter Pizza Tossing

Playing Guitar Playing Piano Playing ViolinPlaying Tabla Pole Vault

Pommel Horse Pull Ups Push UpsPunch Rock Climbing Indoor

Rope Climbing Rowing Skate BoardingSalsa Spins Skiing

Ski jet Soccer Juggling TaiChiSwing Tennis Swing

ThrowDiscus Trampoline Jumping Walking with a dogVolleyball Spiking Yo Yo

Figure 2.3: Screenshots from videos in the UCF50 dataset, showing the diverse action cate-

gories.

17

update the vocabulary dynamically. This significantly limits their applications in the real world.

In order to overcome this, Yeh et al. [71] proposed a forest-based method to create adaptive

vocabularies, which can update the vocabulary without reconstructing the entire tree. It is ef-

ficient for image retrieval; however, it still requires re-training the category models for recog-

nition when the vocabulary has been updated using the new training examples or categories,

because the image representations have been changed with the update of the vocabulary.

Using trees to index the bag of features and then perform recognition on it, has not

been addressed extensively. Randomized trees have been used in [34] and [42] for image view

recognition. They used simple binary trees and split a node by checking the entropy of point

labels. Boiman et al. [6] also used kd-tree for fast feature search in their image classification.

However, used only simple trees, which do not support efficient dynamic update. They are not

suitable for large scale datasets or applications with dynamic environments.

Little work has been done in the action recognition area using trees to index bag of

spatiotemporal features. Instead of detecting spatiotemporal interest points, Mikolajczyk et

al. [42] detected local static features from each frame, then trained the vocabulary forest by hi-

erarchical k-means. They obtained good results on the KTH dataset. However, their approach

also faces the problem of dynamic update of vocabulary, so it is unable to cope with incre-

mental action recognition for most real applications. Besides, their system is not real time.

In this thesis, we propose the use of feature-trees to address issues such as incremental action

recognition and frame-by-frame action recognition, and develop a real-time action recognition

system.

18

CHAPTER 3: PARTICLE FLOW FIELD

3.1 Introduction

Extensive research has been done on designing robust motion descriptors for action

recognition in the computer vision field. Action recognition approaches can be broadly cat-

egorized into global and local representations, as discussed in Chapter 2. Irrespective of the

approach or the framework, different video representations [12] [72] [59] [57] like raw pixel

values, gradients, optical flow, 2D shape/contours, Silhouettes, and 3D volume shapes, have

been used as the building block for descriptor generation. Some video representations are in-

variant to illumination, a person’s clothing, scale, and view point and others simply consider

edges or the motion at pixel level. Each video representation has its own advantages, draw-

backs, and challenges. For instance, the optical flow computed is usually noisy, silhouettes and

2D shape need good segmentation and background subtraction, and 3D volumes need complex

pre-processing steps.

In this chapter, a robust video representation “Particle Flow Field” (PFF) is proposed,

which is based on optical flow and particle advection. Experimental results on KTH dataset

using the Bag of Video Words (BoVW) framework show that the proposed particle flow field

outperforms video representations like spatial gradients (2D-Gradients), spatio temporal gra-

dients (3D-Gradients), and optical flow.

19

3.2 Low-Level Video Representation

A video is a sequence of still images through which the motion in the scene is rep-

resented. This spatio-temporal variation in pixel intensity is a massive amount of raw infor-

mation, which does not necessarily help understand and recognize the action/activity in the

video. Johansson [22] showed in his classic experiment that humans can understand the action

by seeing only point light sources placed at a few limb joints with no additional information.

Over the past few decades, many different ideas have been proposed to achieve a robust video

representation on which reliable action recognition systems can be developed. In this section

we describe a few low-level representations, and propose a new representation.

3.2.1 Normalized Pixel Values

In videos, the intensity at each pixel varies spatially and temporally. The variation in

this raw intensity information at every pixel is shown in Figure 3.1(a), which can help one

better understand the video. Dollar et al. [12] used normalized pixel values, but reported low

performance compared to other video representations like gradient and optical flow. The reason

is clearly that most of the intensity information, such as background and color of the clothes,

is not relevant to the task of understanding and identifying the action performed in the video.

3.2.2 Gradients

Gradients have been used as robust image and video representation [12] [31] [10] [27].

Each pixel in the gradient image helps extract relevant information, e.g. edges, to do reliable

action recognition. Gradients can be computed at every spatio-temporal location (x, y, t) in any

20

Figure 3.1: Different video representations.
21

direction in a video. In general, gradients (Gx, Gy, Gt) are extracted in horizontal, vertical, and

temporal directions, respectively, by convolving the images with a filter to obtain approximate

derivatives. Sobel filter for horizontal and vertical gradients are as shown:

Gx =

−1 0 +1

−2 0 +2

−1 0 +1

 ∗ A and Gy =

−1 −2 −1

0 0 0

+1 +2 +1

 ∗ A,

where A is an image and ∗ denotes convolution operation. Figure 3.1(b,c) shows the spatial

gradients commonly referred to as 2D-Gradients, where as Figure 3.1(b,c,d) depicts the spatio-

temporal gradients referred to as 3D-Gradients. The orientation and magnitude of (Gx, Gy, Gt)

have been successfully used by [31] and [27] for action recognition.

3.2.3 Optical Flow

Optical flow describes the approximate motion of each pixel between two consecutive

frames. In a broader sense, one can obtain apparent motion (velocity) of regions or moving

objects in a video. Since actions are defined by the motion of body parts, optical flow tends to

be a better low-level representation of a video, to build a reliable motion descriptor. The optical

flow between two consecutive frames f1 and f2 is represented by V = (u, v), where u and v

are the horizontal and vertical components of optical flow. Optical flow at a pixel location

(x, y) can be represented as V (x, y) = (u(x, y), v(x, y)). Given a sequence of n frames S =

{f1, f2, . . . , fn} from a video, the collection of optical flows from all consecutive frames in S

can be defined as a time-dependent optical flow field V (t), where t = 1, 2, . . . , n − 1. The

Lucas-Kanade optical flow algorithm [40] has typically been used to compute the optical flow

22

between consecutive frames. The recently proposed optical flow algorithm by Lui et al., [35]

provides better optical flow than Lucas-Kanade [40], but is slow. Figure 3.1(d) shows a sample

color coded optical flow, obtained using the code provided by [35]. Optical flow has been

successfully used by [12] and [31] for action recognition, however the majority of optical flow

algorithms are not accurate, and their accuracy depends on the parameters.

3.2.4 Particle Flow (Particle Velocity)

For a given sequence of n frames S = {f1, f2, . . . , fn}, a grid of particles is placed

on the first frame f1 and moved across all the n frames using the optical flow field V (t). The

process of moving the particles using time-dependent optical flow fields O(t) (3D volumes of

optical flow fields) is called particle advection, which results in Particle Trajectories [1], also

known as Pathlines, as depicted in Figure 3.1(f). Let (xi(t), yi(t)) be a particle position at time

t, where t = 1, 2 . . . , n, i = 1, 2 . . . , N , and N is the number of particles. Particle advection is

performed to estimate the location of the particle i at time (t + 1) by interpolating the optical

flow at the sub-pixel level. As performed in [1], the new location (xi(t + 1), yi(t + 1)) is

estimated by numerically solving the following equations:

xi(t+ 1) = xi(t) + u(xi(t), yi(t)), (3.1)

yi(t+ 1) = yi(t) + v(xi(t), yi(t)) (3.2)

The optical flow or velocity along a particle’s path (trajectory) is called Particle Flow

or Particle Velocity, which is shown in Figure 3.1(e). The trajectory of a particle i from frames

t = 1, 2 . . . , n is represented as:

(3.3)ti = {[xi(1), yi(1)], [xi(2), yi(2)], . . . , [xi(n− 1), yi(n− 1))]},

23

and similarly, the particle flow of a particle i from frames t = 1, 2 . . . , n is represented as:

(3.4)pi = {[u(xi(1), yi(1)), v(xi(1), yi(1))], [u(xi(2), yi(2)), v(xi(2), yi(2))],
. . . , [u(xi(n− 1), yi(n− 1)), v(xi(n− 1), yi(n− 1))]},

where u(xi(t), yi(t)) and v(xi(t), yi(t)) are the horizontal and vertical components of optical

flow of the ith particle at location (xi(t), yi(t)) and t = 1, 2, . . . , n − 1. Particle Flow Field

(PFF) for a time period of T starting at time t is represented by:

P t+T
t = {p1, p2, . . . , pN}, (3.5)

and Particle Flow Map (PFM) is represented by:

T t+Tt = {t1, t2, . . . , tN}, (3.6)

where N is the number of particles initiated at time t and tracked till time (t+ T).

Particle Flow Maps and Particle Trajectories have been used to do scene flow segmen-

tation in videos ([1] and [41]). In order to understand the background dynamics, one has to

constantly initiate particles at the same location and understand their behavior with respect to

time, which was studied by Mehran et al. and calls them streaklines. According to [41], streak-

lines represent the locations of all particles at a given time that passed through a particular

point.

In action recognition, the focus is on the foreground and particle flow is more appro-

priate compared to streaklines [41] and Particle Flow Maps [1]. As described earlier, particle

flow is being used to study the velocity at which the particles move over time. This informa-

tion is implicitly available in particle trajectories which were used by [70]. In [70], chaotic

24

invariant features are extracted to generate the motion descriptor. The derivative of the particle

trajectories gives the velocity of the particle at different times, which is particle flow (particle

velocity). Likewise, particle trajectories can be obtained using Particle Flow Fields, i.e. the

evolution of particles over time.

3.3 Experiments

In order to evaluate the performance of different low-level video representations, we

performed experiments on the KTH dataset. The KTH dataset has 6 actions categories, per-

formed 4 times by 25 actors. Motion descriptors are extracted from the interest points, which

were detected using Dollar’s detector [12]. At every interest point location (x, y, t) , we ex-

tract a 3D cuboid of dimension W × H × T , where W and H are the width and height of

the patch, respectively, and T is the number of patches. 3D-Cuboid is a collection of patches

with (x, y, t) as the center point. The extracted 3D-Cuboid is represented using the following

low-level representations:

2D-Gradient: At any given interest point location in a video (x, y, t), a 3D cuboid is

extracted. The brightness gradient is computed in the horizontal and vertical direction in this

3D cuboid, which gives rise to 2 channels (Gx, Gy).

3D-Gradient: The gradient along temporal direction is also considered in the extracted

3D cuboid, which gives rise to 3 channels (Gx, Gy, Gt).

Optical Flow: The Lucas-Kanade optical flow [40] is computed between consecutive

frames in the 3D cuboid centered at (x, y, t) to obtain 2 channels (Vx, Vy).

25

Particle Flow Field: A dense grid of particles is initiated in the first patch of the

extracted 3D cuboid. The computed Lucas-Kanade optical flow is used to advect the particles

to generate the 2 channels (Px, Py) of the particle flow field.

The obtained channels in each representation are flattened into a vector, and PCA is

applied to reduce the dimension. All of the above descriptors are extracted from the same

location of the video and the experimental setup is identical. We use BOF paradigm and SVM

to evaluate the performance of each descriptor.

Bag of Video Words (BoVW) Framework: Interest points are detected from every

training video using Dollar’s detector [12]. At each of these interest points, a 3D-Cuboid is

extracted and is represented using different low-level representations. The channels obtained

from each representation are flattened into a long vector, as explained above, which leads to a

high dimension descriptor. PCA is used to reduce the dimension of the descriptors. These low

dimension descriptors are clustered into K clusters using k-means. The center of each cluster

represents a codeword in a codebook of size K. All the motion descriptors are quantized using

the nearest codeword. The histogram of the quantized descriptors in a given video represents

a Bag of Visual Words (BoVW) descriptor. SVM classifier is trained on the BoVW descriptor

from all of the training videos.

In the experiments on the KTH dataset, we do 5 fold cross-validations. In each valida-

tion, we train on videos from 10 actors and test on the remaining 15 actors. Table 3.1 shows

the performance of all the video representations in the BoVW framework. It can be observed

that the proposed Particle Flow Field performed the best and 3D-Gradients followed behind.

26

Table 3.1: 5 fold cross-validation on KTH dataset using different low-level video representa-

tions

10 Training Videos Bag of Video Words Framework (Dollar detector)

Codebook Size 200 500 1000 2000 5000

Gradient (Gx, Gy, Gt) (3D-Gradients) 84.39% 86.62% 88.30% 88.74% 89.35%

Gradient (Gx, Gy) (2D-Gradients) 86.40% 86.85% 88.13% 88.24% 88.96%

Optical Flow 84.90% 88.69% 87.40% 88.02% 88.69%

Particle Flow Field (HOPE) 86.78% 89.79% 88.96% 91.30% 91.15%

Table 3.2: The performance on KTH by different bag of visual words approaches.

Method Acc(%) Method Acc (%)

Particle Flow Field 93.0 Neibles, et al. [44] 81.5

Liu, et al. [38] 91.3 Dollar, et al. [13] 80.6

Wong, et al. [69] 83.9 Schuldt, et al. [50] 71.7

Leave-one-actor-out cross-validation in the BoVW framework using the Dollar detector

is performed to compare with the state-of-the-art results. Particle Flow Field performed 93.00%

compared to 91.30% using 3D-Gradients. Table 3.2 compares the performance of the proposed

approach with other state-of-the-art approaches.

3.4 Summary

In this chapter, we proposed a new low-level video representation “Particle Flow Field”,

which is based on optical flow and particle advection. We showed that particle flow field

27

performs better than other video representations, such as 2D-Gradients, 3D-Gradients, and

Optical Flow. The only drawback of using particle flow fields is that, it has to be computed over

optical flow by performing particle advection, which makes it slower than just using optical

flow as low-level video representation.

28

CHAPTER 4: 3D - SPATIO TEMPORAL VOLUMES

4.1 Introduction

Research in human action recognition continues to progress across a wide gamut of

actions ranging from simple actions like walking, running and jumping to more complex ones

such as interacting in a meeting room, loading a car, etc. [16], [46]. The latter are complex

in that they may be characterized as a sequence of simpler actions, and that they may involve

interactions with other objects. Early datasets like KTH and Weizmann have promoted signifi-

cant algorithmic advancement [57], [47] and may be deemed ’solved’ because most techniques

report near-perfect results. But the advancement is rarely reflected in performance over newer

datasets like the VIRAT dataset [46] that are challenging, and need approaches that are robust

and generalize well. The assumption of richness of data, near-perfect preprocessing in track-

ing and action localization does not necessarily hold over large, real-world datasets. Some

approaches are not affected by these problems, e.g., when registration and object tracking is

not be used, when the data is of high-resolution and without camera motion [30], and so on. In

surveillance however, these problems are inherent.

In this chapter, we analyze the state of the art in action recognition using histogram of

3D spatio temporal gradients (3D-STHOG)1. We choose the following six datasets for exper-

1We use ’3D-STHOG’ instead of 3DHOG to note that gradients are computed in a spatiotemporal volume,
and not in 3D spatial coordinates.

29

iments: UT-Tower, VIRAT ground and aerial, IXMAS, KTH and Weizmann datasets. Exper-

imental analysis discussed in section 4.4 confirms certain commonly-held notions and shows

some surprising results:

• Recognition in UT-tower dataset seems to be robust to a limited range of scale variations

(∼15%), or reduction in frame rate (to about ∼6 fps).

• It is best to use similar preprocessing during training and testing, i.e., it does not help to

train on pristine annotations and test with noisy tracker results.

• A small shift in bounding boxes can severely affect recognition – a 10% (2 px in UT

tower data) shift can produce a 20% reduction in average recognition rate.

• A moderate misalignment (bounding box shift of 4 pixels) can affect discriminability

drastically.

Thus we attempt to provide an analysis of data and popular algorithms which may

benefit future research in action recognition. We do not propose a novel technique in this work,

and use an existing, state-of-the-art technique with some slight modifications. Incidentally, the

factors mentioned here and their related aspects which limit generalizability have received an

enormous amount of attention in the object recognition community in recent years [56]. It

is perhaps premature to enter into a similar level of scrutiny in action recognition given that

the sub-field is relatively less mature. Nevertheless, we believe that such an analysis would

be beneficial at a time when more and more papers are addressing datasets beyond the simple

ones.

30

We also analyze the performance of histogram of oriented particle flow field (3D-

STHOPFF) in section 4.3 and compared the results to the state of the art 3D-STHOG on three

datasets: KTH, Weizmann and IXMAS datasets in section 4.5 and show that:

• 3D-STHOPFF outperforms 3D-STHOG is all the three datasets.

• 3D-STHOPFF does not need figure centric bounding boxes.

4.2 Histogram of Oriented 3D Spatiotemporal Gradients (3D-STHOG)

There are three main stages involved in computing the probability of actions given a

video. They are: detection and tracking, feature extraction, and classification. This stage

outputs a sequence of bounding boxes containing moving objects of interest which is input to

the feature computation stage before classifying using trained SVMs. We focus on 3D-STHOG

for analysis, and present comparative results with HOG and HOF in a bag of words framework.

Klaser et al. introduced a HOG descriptor based on 3D spatiotemporal gradients as a

generalization of HOG [10]. We follow the same procedure as described in [27] with a few

minor differences as described next (Figure 4.1).

Preprocessing: The sequence of bounding boxes computed by the tracker need not be

of constant size. To simplify gradient computation, we fix the spatial size of spatiotemporal

volume to be the size of the bounding box in the first frame of the volume. Thus several

spatiotemporal volumes are extracted for every track with a fixed overlap in time and space.

Gradients along x,y,t: For each spatiotemporal volume, gradients are computed along

x, y, t directions.We do not use multiple scales [27], instead use a fixed number of cells for

31

Figure 4.1: Computing the 3D-STHOG

the spatiotemporal volumes. Section 4.4.1.1 demonstrates the sensitivity of feature to scale

changes.

Gradient quantization and weighting: Gradient orientations are then quantized by

projecting the 3D vector on to a regular polyhedron. Empirically, we found that icosahedron

(20-sided) performed well. We have fixed this choice throughout the chapter. The projected

gradients are then weighted by the gradient magnitude at that pixel.

Histogram: The spatiotemporal volume is divided into a fixed number of cells, with

overlap along x, y, t axes. Results with various choices of number of cells are shown in sec-

tion 4.4. Within each cell (size M ×N × T), a Gaussian filter is used to smooth the weighted

gradients. Their histogram is then computed using a fixed number of bins. The histograms of

32

Figure 4.2: Computing 3D-STHOPFF descriptor. Grid of particle are initiated at frame n and

red pathlines are obtained using forward optical flow and blue pathlines using backward optical

flow

all the cells in the spatiotemporal volume are concatenated and normalized using the L2 norm

to obtain the 3D-STHOG signature of the tracked object.

Classification using SVM: The histogram features are used to train an SVM classifier

with histogram intersection kernel. Experimentally, histogram intersection kernel performed

better than RBF kernel (95.37% vs. 90.74% in UT-Tower dataset). Leave-one-out procedure

was used.

33

4.3 Histogram of Oriented Particle Flow Fields (3D-STHOPFF)

The steps involved in 3D-STHOFF are explained as follows (Figure 4.2):

Preprocessing: In a given video, human detection on one frame is needed. 3D-

STHOFF does not need the bounding box to be tracked.

Particle Flow Fields: Grid of particles are placed in the detected human bounding box.

Forward and backward optical flow for the video are computed and used for particle advection.

The particles initiated at frame n are moved in forward direction till frame m using forward

optical flow computed between frame n and m. Similarly, the particles initiated at frame n are

moved in backward direction till the first frame using backward optical flow computed between

first frame and frame n. Since particle advection over large number of frames tends not to be

accurate, we do particle advection in forward shown in red in Figure 4.2 and backward direction

shown in blue in Figure 4.2 to get better particle flow fields. The velocities with which the grid

of particles move in both direction are captured in the particle flow field.

Quantization and weighting: Particle Flow Field has two components, horizontal and

vertical components. The orientation of the particle flow field is quantized into 20 bins and

weighted with their magnitude. 20 bins are selected to be consistent with 3D-STHOG for

comparison.

Histogram: The particle flow field volume is divided into overlapping cells similar

to 3D-STHOG. Gaussian filter is used to smooth the weighted gradients and the computed

histogram from all cells are concatenated and normalized using L2 norm.

34

Classification using SVM: Similar to 3D-STHOG, SVM classifier with histogram in-

tersection kernel is used.

4.4 Experiments using 3D-STHOG

We use six datasets for experiments as described below. KTH and Weizmann datasets

were chosen for historical reasons. IXMAS dataset is used to test sensitivity to viewing direc-

tion, in a controlled setting. Before applying the algorithms on the large-scale VIRAT ground

and aerial datasets, we conducted a series of experiments using UT-tower dataset to better un-

derstand the features. The viewing angle in this dataset is somewhat similar to those in aerial

video datasets, and it is less noisy.

4.4.1 UT-Tower Dataset

The UT-Tower dataset consists of nine human actions: pointing, standing, digging,

walking, carrying, running, waving (two types) and jumping performed by twelve actors.

Videos are captured by a stationary camera with 306 × 240 resolution and 10 fps. All the

videos belong to one of the above action classes. The average height of people is about 20

pixels. Spatiotemporal volumes are computed as described in sec. 4.2. Every volume is then

divided into M ×N × T cells, 3D-STHOG is computed and used to train SVMs.

Leave-one-out procedure is used for consistency with [9]. The best performance of

95.37% accuracy in recognition was obtained using 3× 3× 2 cells (Figure 4.3). Here gradient

projections were (a)smoothed within a cell, (b) weighted by their magnitude and (c) normal-

ized using L2−norm. In comparison, [9] obtained 100% recognition by pre-processing the data

35

Figure 4.3: UT-Tower dataset: Recognition rate. (a) Gradient directions within a cell are

smoothed using a Gaussian filter, (b) No smoothing with filter, (c) Projected gradients are

weighted by gradient magnitude, (d) No weighting, (e) Histogram is normalized using L1-norm

and, (f) using L2-norm.

– using shadow removal technique to detect shadow pixels and fill in the shadow pixels with

background. Then, tightly-centered bounding boxes were computed which improved recogni-

tion in their experiments. In our case the bounding boxes are comparable to the output of a

typical detection and tracking system. Figure 4.4(a) shows the performance when M,N are

varied with T = 2 and no overlap in x, y or t directions.

4.4.1.1 Sensitivity to Scale

Figure 4.4(b) shows the change in performance for various cases:

Case 1: Training and testing data is of the same resolution: The recognition rate is

more than 90% as long as the boxes are at least as big 0.60 times the original size (blue curve

36

Figure 4.4: UT-Tower dataset: (a) Average recognition rate for different number of cells in the

x and y directions (M,N). Length of cells along the temporal axis is fixed, T = 2, and no

overlap is used. (b) Effect of frame rate on recognition rate.

in fig.Figure 4.4(b)). When the size of the boxes are less than 0.60 times the original bounding

box size, people are typically less than 12 pixels tall.

Case 2: Training data is 0.75 times of the original resolution, testing data resolution

is varied from 1 to 0.50 times the original resolution. In this case, the 90+% recognition rate

is maintained as long as the testing data size is at least ∼0.7 times the original resolution. (red

curve in fig.Figure 4.4(b)).

Case 3: Training data is of the original resolution, testing data resolution is varied

from 1 to 0.50 times the original resolution. This has worse performance than the previous

cases with 90+% recognition rate maintained as long as the testing data resolution is at least

∼0.82 times the original resolution (green curve in fig.Figure 4.4(b)).

Case 4: Training data is 0.5 times the original resolution, testing data resolution varies.

This does not perform well (purple curve in fig.Figure 4.4(b)).

37

Figure 4.5: UT-Tower dataset: Recognition rate vs. frame rate.

Thus 3D-STHOG is robust to variations in scale to about 15%, i.e., when training and

testing data resolutions are within 15% of each other, recognition is good.

4.4.1.2 Sensitivity to Frame Rate

Figure 4.5 shows the change in recognition rate with frame rate. The frame rate is

varied from 1 fps to 10 fps (original frame rate) by simply dropping frames in between. The

average performance (red dashed curve) generally improves with increase in frame rate except

for a dip in performance for 6 fps. The dip was caused in excessive confusion between the two

types of waving.

4.4.1.3 Sensitivity to Translation (Misalignment)

In this set of experiments (results in Figure 4.6), the bounding boxes were translated

(in x and/or y) directions to test the sensitivity of the features to noisy detection and tracking.

Surprisingly, even a shift of ±2 pixels can cause a reduction in recognition rate from ∼95%

38

Figure 4.6: UT-Tower dataset: Recognition rate as a function of±m pixel shift,m = 0, . . . , 10.

The solid lines show the rates when the bounding boxes (for both training and testing data) were

padded on all sides before shifting. Dotted lines show the rates when only the testing data was

padded, and not the training bounding boxes.

to ∼75%. To put this shift magnitude in context, recall that people are typically 20 pixels

tall in this dataset. So ±10% translation of the bounding boxes can cause a 20% reduction in

performance. We found that increasing the size of bounding boxes in all directions by a few

pixels can mitigate the drop in performance to a certain extent. Further, it is better to train

with noisy data instead of pristine data. If the training data is relatively noise-free, but the

testing data is corrupted by noise (i.e., above-mentioned translation of bounding boxes), then

the performance can be ∼10% poorer than when both training and testing data have similar

noise characteristics.

We conducted a simple experiment to find out the effect of bounding box translation

on discriminability of actions. Using carrying and walking left-to-right (L-R) in the image

39

Figure 4.7: UT-Tower dataset: Translating bounding boxes for a carrying (left-to-right) action

by more than 5 pixels means loss of discriminability.

as an example, we consider two other actions - carrying right-to-left (R-L) and pointing. We

shift the bounding boxes for these actions and compare the distance between their 3D-STHOG

signatures using histogram intersection. As long as the shift is less than 4 pixels (20% of 20

pixel tall person), the three samples are discriminable. Beyond this number, shifted version of

carrying L-R is about the same distance from its unshifted version as pointing or carrying R-L

so that the actions become indistinguishable.

4.4.2 VIRAT Ground Video Dataset

The VIRAT video dataset consists of ∼25 hours of video collected in eleven scenes,

∼7 hours of which are being released in batches. In this work, we used 2.75 hours for training

and remaining for testing from six scenes (3 for training, 3 unseen scenes for testing). The

dataset consists of 23 actions which includes single person actions and those involving interac-

tions with vehicles and facilities. We focus on six human-vehicle interaction actions - opening

the trunk, closing the trunk, loading a vehicle, unloading a vehicle, getting into and out of a

40

Figure 4.8: Sample images from the VIRAT ground video dataset. Different instances of

exiting vehicle.

vehicle.Two types of ground truth annotations are provided: event-level bounding boxes and

object-level bounding boxes. Event-level boxes include the spatiotemporal context around the

object of interest. For example, an event-level box for loading includes both the person load-

ing the vehicle and a large part of the vehicle, its object-level box only contains the person.

We have used both these types of boxes in experiments. Table 4.1 summarizes the number of

instances of actions in the two cases.

There are two main challenges in this dataset: the videos come from different scenes

which creates significant variability in viewing direction, style of actions and other conditions.

In these actions involving interactions with vehicles, people often tend to be occluded severely.

Consequently motion detection and tracking fails. For example, Figure 4.8 shows a cropped

region of three instances of exiting vehicle.

With Context (Annotated Event Bounding Boxes): First we conduct a series of ac-

tion recognition experiments using the annotated bounding boxes provided with the dataset.

Each spatiotemporal volume is classified into one of seven classes (six action classes and one

unknown class that includes background). Multiclass SVM was trained using the histogram

intersection kernel. The number of training and testing samples are specified in Table 4.1. The

41

Table 4.1: VIRAT Ground Video Dataset: Number of event-level annotated bounding boxes

and object-level boxes for training and testing. The numbers in parentheses are the number of

3D spatiotemporal volumes extracted.

Action # Train # Test # Train #Test

event event objects objects

Load 11 (35) 50 (187) 3 (28) 28 (95)

Unload 15 (53) 59 (279) 11 (54) 51 (236)

Open trunk 18 (48) 47 (123) 12 (38) 27 (73)

Close trunk 19 (41) 46 (104) 11 (31) 35 (74)

Get in veh. 61 (374) 115 (847) 35 (228) 69 (489)

Get out of veh. 63 (445) 92 (475) 40 (330) 40 (205)

Unknown 2 (24) 0 (0) 2 (46) 0 (0)

dataset is clearly unbalanced in that some classes have more than 60 samples, whereas others

have 10-15 samples. Our experiments show that balancing the training set, i.e., ensuring the

same number of training samples across most of the action classes, improves performance in

general. The results are summarized in Figure 4.9.

No Context (Annotated Object Bounding Boxes): A similar set of experiments was

then conducted with spatiotemporal volumes created by tracks that were computed using the

object-level bounding boxes. The results are summarized in Figure 4.9. Context seems to help

as the performance with event-level bounding boxes is better than that of object-level boxes.

Secondly, loading performed much worse in the experiment with computed bounding boxes,

whereas unloading did not show a similar degradation. Given that very few loading instances

42

Figure 4.9: VIRAT Ground Video dataset: Comparing recognition rate between annotated

bounding boxes and computed ones, and with and without balanced samples during SVM

training.

were detected after the tracking stage, it is difficult to ascertain reasons for low performance at

the action recognition stage.

Comparison with Interest-point Based Methods: Harris3D detector [29] is used to

detect Harris corner points to extract spatiotemporal interest points (STIP). HOG and HOF de-

scriptors [30] are then computed to characterize the 3D spatiotemporal video patch extracted at

each interest points. The 3D video patch is divided into 3× 3× 2 cells and 4-bin histogram of

gradient orientations (HOG) and 5-bin histogram of optical flow (HOF) are computed in each

cell and the normalized histograms of HOG (72 dimensions) and HOF (90 dimensions) are

concatenated. Then, the features are encoded in a Bag of Words framework. Codebooks of dif-

ferent sizes are generated using the HOG/HOF extracted from training videos. A histogram of

codewords is generated as a final descriptor over 2 seconds of video (bounding box sequences).

SVM with histogram intersection kernel is used for training a classifier. The performance us-

43

Figure 4.10: Sample images from VIRAT Aerial Video Dataset

ing Codebook size 200, 500, 1000 and 2000 are 36.4%, 35.1%, 39.9% and 38.5% respectively,

compared to 44.7% using 3D-STHOG. In this experiments we used a subset of four actions:

opening trunk, closing trunk, getting into and getting out of vehicle. We did not use loading

and unloading in this experiment because of limited examples.

4.4.3 VIRAT Aerial Video Dataset

This challenging dataset (Figure 4.10) consists of aerial videos captured at a resolution

of 640 × 480 at 30 fps in six modalities - three fields of view (FOV) in visible spectrum (EO)

and IR spectrum. The three FOVs are designated M (lowest resolution), N and UN (highest

resolution). In the experiments here, we primarily focus on the EO spectrum in N-FOV because

that is most relevant for the actions of interest.

3D-STHOG is computed on 2 second intervals of bounding boxes with 3× 3× 1 cells.

For training 36 videos each of approximately 5 minutes taken on same day are used. SVM

classifier is trained using histogram intersection kernel. The learned classifier is tested on a

total of 21 videos (each 5 min) collected on two different days. To obtain labels on computed

44

Table 4.2: VIRAT Aerial Video dataset: Confusion matrix in recognizing stationary and mov-

ing actions.

Stationary actions Moving actions

Dig Gesture Carry Run

Dig 88.41 11.59 Carry 88.25 11.75

Gesture 46.82 53.18 Run 94.44 5.56

tracks for training and evaluation, the computed tracks are intersected with manually annotated

tracks that was provided with the dataset. A quality factor based on the extent of spatial and

temporal overlap between annotations and computed tracks was used to discard noisy tracks.

However, this procedure is not perfect, and may label false alarm tracks with an action label.

In experiments with human actions, we were able to obtain the following number of

3D-STHOG samples for various actions after intersecting computed tracks with annotations:

standing (1042), running (48), digging (398), gesturing (209), carrying/walking (58). The

labels assigned for standing however, were very noisy, and excluded. Digging and gesturing

typically do not involve global motion of the actor, unlike carrying and running. Thus can

be separated into classes - stationary and moving actions - based on the speed of the detected

track. In other words, there is little reason to train an SVM classifier based on 3D-STHOG to

distinguish between running and digging. Table 4.2 summarizes the recognition results in the

two confusion matrices.

45

4.4.4 IXMAS Dataset

IXMAS is a multi-view action recognition dataset which has 11 actions, performed by

12 different actors thrice in front of five different cameras. In this experiment we considered

9 actions, all the actors and four views. The top view was excluded. Bounding boxes on the

person are extracted using the silhouettes provides in the dataset. The 9 actions considered are

single instance actions. We consider all the frames scaled by half, with the obtained bounding

boxes to compute a 3D-STHOG descriptor at 3× 3× 2 grid size. We performed the following

three sets of experiments: (i) training and testing with all four views [73.1%], (ii) training and

testing with the same camera. This gives four sets of recognition rates, one per camera [71.3%,

57.7%, 40.4%, 44.8%], and (iii) training with three views, and testing with the fourth unseen

view [61.1%, 62.2%, 50.3%, 46.3%]. Training with three cameras gave robust recognition from

the fourth view. A similar robustness has been reported using local features as well [48].

4.4.5 KTH and Weizmann Datasets

KTH and Weizmann datasets are both very well-known in the community. We include

results for comparison. We do not include a more detailed set of results and analysis to avoid

repetition of the lessons learned from experiments with UT Tower dataset (sec. 4.4.1). The

average recognition rates using 3D-STHOG on KTH and Weizmann datasets were 86.60%

and 90.32% respectively. These numbers are consistent with the average accuracy of interest

point-based HOG3D of 85-90% reported in [60].

46

Table 4.3: Performance comparison between 3D-STHOG and 3D-STHOPFF in KTH, Weiz-

mann and IXMAS datasets

3D-STHOPFF (Particle Flow Field) 3D-STHOG (3D-Gradients)

KTH (6 actions) 91.94% 86.60%

Weizmann (10 actions) 91.98% 90.32%

IXMAS (9 actions) 74.32% 73.10%

4.5 Experiments using 3D-STHOPFF

Same parameters and experimental setup from 3D-STHOG experiments are used in

these experiments. Table 4.3 shows the performance of 3D-STHOPFF compared to 3D-STHOG.

The proposed 3D-STHOPFF consistently performs better in all the three datasets: KTH, Weiz-

mann and IXMAS datasets.

Weizmann and IXMAS datasets have static background and it is easy to get accurate

bounding boxes which leads to really good figure centric bounding boxes. Due to the availabil-

ity of accurate figure centric bounding boxes their is ∼ 1− 2% performance difference, which

is not significant.

KTH dataset has moving camera and the background is not static, which makes it dif-

ficult to get accurate figure centric bounding boxes. Since 3D-STHOPFF does not need figure

centric bounding boxes, its performance is ∼ 5% better than 3D-STHOG which relies on ac-

curate bounding boxes.

47

4.6 Summary

We have presented a detailed set of experiments to analyze the challenges and capabil-

ities of state of the art in action recognition. The following observations may be made:

Techniques that have very good recognition performance on standard action recogni-

tion datasets may not show similar performance on large-scale datasets. This is true even if

detection and tracking is perfect on the larger dataset, i.e., when manual annotations are used.

The performance on KTH, Weizmann and UT-tower datasets was as high as 90− 95% or more

under several conditions. But the performance on VIRAT ground data was much worse even

when annotated bounding boxes were used. Often, there are simple, yet effective, steps that

can be taken to improve the performance on large datasets e.g., a first-cut classification of

stationary vs. moving actions.

On a relatively simple dataset like the UT-Tower dataset, minor perturbations to the

data (±2 pixel shift) can produce large reduction in recognition rate (∼20%). Padding the

bounding boxes to include a few more contextual pixels mitigates the drop in performance to

some extent. If the data is sufficiently rich in the sense that the training data has several views,

then the resulting features and classifiers can generalize to previously unseen views.

Particle flow field is a better choice compared to 3D-Gradients as accurate tracking to

get good figure centric bounding boxes in a challenge.

In the next chapter, we use a popular action recognition framework “Bag of Visual

Words” which does not necessarily need human detection, tracking and figure centric bounding

boxes.

48

CHAPTER 5: SCENE CONTEXT FOR WEB VIDEOS

5.1 Introduction

Action recognition has been a widely researched topic in computer vision for over a

couple of decades. Its applications in real-time surveillance and security make it more chal-

lenging and interesting. Various approaches have been taken to solve the problem of action

recognition [64], however the majority of the current approaches fail to address the issue of a

large number of action categories and highly unconstrained videos taken from web. Most state-

of-the-art methods developed for action recognition are tested on datasets like KTH, IXMAS,

and Hollywood (HOHA), which are largely limited to a few action categories and typically

taken in constrained settings. The KTH and IXMAS datasets are unrealistic; they are staged,

have minor camera motion, and are limited to less than 13 actions which are very distinct.

The Hollywood dataset [32], which is taken from movies, addresses the issue of unconstrained

videos to some extent, but involves actors, contains some camera motion and clutter, and is

shot by a professional camera crew under good lighting conditions. The UCF YouTube Ac-

tion (UCF11) dataset [36] consists of unconstrained videos taken from the web and is a very

challenging dataset, but it has only 11 action categories, all of which are very distinct actions

with very little confusion. The UCF50 dataset, which is an extension of the UCF11 dataset,

also contains videos downloaded from YouTube and has 50 action categories. The recently

49

Table 5.1: Action Datasets

Datasets Number Camera Background

of Actions motion

KTH 6 slight motion static

Weizmann 10 not present static

IXMAS 14 not present static

UCF Sports 9 present dynamic

HOHA 12 present dynamic

UCF11 11 present dynamic

UCF50 50 present dynamic

HMDB51 51(47) present dynamic

released HMDB51 dataset [28] has 51 action categories, but after excluding facial actions like

smile, laugh, chew, and talk, which are not articulated actions, it has 47 categories compared

to 50 categories in UCF50. Most of the current methods would fail to detect an action/activity

in datasets like UCF50 and HMDB51 where the videos are taken from web. These videos

contain random camera motion, poor lighting conditions, huge clutter, as well as changes in

scale, appearance, and view points, and occasionally no focus on the action of interest. Table

5.1 shows the list of action datasets.

The rest of the chapter is organized as follows. Section 5.2 gives an insight into working

with huge datasets. In section 5.3 and section 5.4, we introduce our proposed scene context

descriptor and the fusion approach. In section 5.5, we present the proposed approach, followed

by the experiments and results with discussions in section 5.6. Finally, we conclude our work

in section 5.7.

50

5.2 Analysis on large scale dataset

UCF50 is the largest action recognition dataset publicly available, after excluding the

non articulated actions from HMDB51 dataset. UCF50 has 50 action categories with a total of

6676 videos, with a minimum of 100 videos for each action class. Samples of video screenshots

from UCF50 are shown in Figure 2.3. This dataset is an extension of UCF11. In this section

we do a base line experiment on UCF50 by extracting the motion descriptor, and using bag of

video words approach. We use two classification approaches:

1. BoVW-SVM: support vector machines to do classification.

2. BoVW-NN: nearest neighbor approach using SR-Tree to do classification.

Which motion descriptor to use?

Due to the large scale of the dataset, we prefer a motion descriptor which is faster to

compute and reasonably accurate. In order to decide on the motion descriptor, we performed

experiments on a smaller dataset KTH with different motion descriptors, which were extracted

from the interest points detected using Dollar’s detector [12]. At every interest point location

(x, y, t) , we extract the following motion descriptors:

Gradient: At any given interest point location in a video (x, y, t), a 3D cuboid is

extracted. The brightness gradient is computed in this 3D cuboid, which gives rise to 3 channels

(Gx, Gy, Gt) which are flattened into a vector, and later PCA is applied to reduce the dimension.

Optical Flow: Similarly, Lucas-Kanade optical flow [40] is computed between con-

secutive frames in the 3D cuboid at (x, y, t) location to obtain 2 channels (Vx, Vy). The two

channels are flattened and PCA is utilized to reduce the dimension.

51

Table 5.2: Performance of different motion descriptors on the KTH Dataset

Method Codebook Codebook Codebook

100 200 500

Gradient 83.78 % 87.62 % 90.13 %

Optical Flow 85.64 % 87.12 % 90.15 %

3D-SIFT 85.11 % 88.65 % 91.13 %

3D-SIFT: 3-Dimensional SIFT proposed by Scovanner et al. [51], is an extension of

SIFT descriptor to spatio-temporal data. We extract 3D-SIFT around the spatio-temporal re-

gion of a given interest point (x, y, t).

All of the above descriptors are extracted from the same location of the video and the

experimental setup is identical. We use BOF paradigm and SVM to evaluate the performance

of each descriptor. From Table 5.2, one can notice that 3D-SIFT outperforms the other two

descriptors for codebook of size 500, whereas gradient and optical flow descriptors perform the

same. Computationally, gradient descriptor is the fastest and 3D-SIFT is the slowest. Due to the

time factor, we will use gradient descriptor as our motion descriptor for all further experiments.

We also tested our framework on the recently proposed motion descriptor MBH by Wang et

al. [61]. MBH descriptor encodes the motion boundaries along the trajectories obtained by

tracking densely sampled points using optical flow fields. Using the code provided by the

authors [61], MBH descriptors are extracted for UCF11 and UCF50 datasets and used in place

of above mentioned motion descriptor for comparison of results with [61].

52

5.2.1 Effect of increasing the action classes

In this experiment, we show that increasing the number of action classes affects the

recognition accuracy of a particular action class. Since the UCF11 dataset is a subset of UCF50,

we first start with the 11 actions from the UCF11 dataset and randomly add new actions from

the remaining 39 different actions from the UCF50 dataset. Each time a new action is added,

a complete leave-one-out cross validation is performed using bag of video words approach on

motion descriptor and SVM for classification on the incremented dataset using a 500 dimension

codebook. Performance using BoVW-SVM on the initial 11 actions is 55.46% and BoVW-NN

is 37.09%. Even with the increase in the number of actions in the dataset, SVM performs

significantly better than nearest neighbor approach.

Figure 5.1 shows the change in performance by using BoVW-SVM on the initial 11

actions as we add the 39 new actions, one at a time. Increasing the number of actions in the

dataset has affected some actions more than others. Actions like “soccer juggling” and “tram-

poline jumping” were most affected; they have a standard deviation of ∼7.08% and ∼5.84%,

respectively. Some actions like “golf swing” and “basketball” were least affected with a very

small standard deviation of ∼1.35% and ∼2.03%, respectively. Overall the performance on 11

actions from UCF11 dropped by ∼13.18%, i.e., from 55.45% to 42.27%, by adding 39 new

actions from UCF50. From Figure 5.1, one can also notice that 8 of 11 actions have standard

deviation of more than ∼4.10%. Analysis of the confusion table shows a huge confusion of

these initial 11 actions with newly added actions. This shows that the motion feature alone is

not discriminative enough to handle more action categories.

To address the above concerns, we propose a new scene context descriptor which is more dis-

53

Pe
rfo

rm
an

ce
 (%

)

50

60

70

80 Basketball (mean:45.05%, SD: 2.03)
Biking (mean:31.18%, SD: 4.41)
Diving (mean:68.40%, SD: 2.30)
GolfSwing (mean:72.75%, SD: 1.34)
HorseRiding (mean:38.95%, SD: 1.34)
SoccerJuggling (mean:34.15%, SD: 7.09)

Number of actions added

Pe
rfo

rm
an

ce
 (%

)

20

30

40

1 5 9 13 17 21 25 29 33 37

Swing (mean:50.20%, SD: 4.50)
TennisSwing (mean:46.00%, SD: 4.88)
TrampolineJumping (mean:49.53%, SD: 5.84)
VolleyballSpiking (mean:59.88%, SD: 4.88)
WalkingWithDog (mean:28.03%, SD: 4.10)

Figure 5.1: The effect of increasing the number of actions on the UCF YouTube Action

dataset’s 11 actions by adding new actions from UCF50 using only the motion descriptor.

Standard Deviation (SD) and Mean are also shown next to the action name.

criminative and performs well in huge action datasets with a high number of action categories.

From the experiments on UCF50, we show that the confusion between actions is drastically re-

duced and the performance of the individual categories increased by fusing the proposed scene

context descriptor.

5.3 Scene Context descriptor

In order to overcome the challenges of unconstrained web videos, and handle a large

dataset with lots of confusing actions, we propose using the scene context information in which

the action is happening. For example, skiing and skate boarding, horse riding and biking, and

54

Pla
yin

g P
ian

o
Jum

p R
op

e
Frame ‘n’ Frame ‘n+1’

Moving and
Stationary Pixels
using Optical Flow

Moving Pixels
Stationary Pixels

CSIFT on
Moving Pixel

Jum
p R

op
e

Sk
i je

t

CSIFT on
Stationary Pixel

Figure 5.2: Moving and stationary pixels obtained using optical flow.

indoor rock climbing and rope climbing have similar motion patterns with high confusion, but

these actions take place in different scenes and contexts. Skiing happens on snow, which is very

different from where skate boarding is done. Similarly, horse riding and biking happen in very

different locations. Furthermore, scene context also plays an important role in increasing the

performance on individual actions. Actions are generally associated with places, e.g., diving

and breast stroke occur in water, and golf and javelin throw are outdoor sports. In order to

increase the classification rate of a single action, or to reduce the confusion between similar

actions, the scene information is crucial, along with the motion information. We refer to these

places or locations as scene context in our work.

As the number of categories increases, the scene context becomes important, as it helps

reduce the confusion with other actions having similar kinds of motion. In our work, we define

55

scene context as the place where a particular motion is happening (stationary pixels), and also

include the object that is creating this motion (moving pixels).

It has been shown that humans tend to focus on objects that are salient; This unique

capability helps improve object detection, tracking, and recognition. In general, humans tend

to focus on the things that are moving in their field of view. We try to mimic this by coming up

with groups of moving pixels which can be roughly assumed as salient regions and groups of

stationary pixels as an approximation of non-salient regions in a given video.

Moving and Stationary Pixels: Optical flow gives a rough estimate of velocity at each

pixel given two consecutive frames. We use optical flow (u, v) at each pixel obtained using

Lucas-Kanade method [40] and apply a threshold on the magnitude of the optical flow, to

decide if the pixel is moving or stationary. Figure 5.2 shows the moving and stationary pixels

in several sample key frames. We extract dense CSIFT [58] at pixels from both groups, and

use BOF paradigm to get a histogram descriptor for both groups separately. We performed

experiments using CSIFT descriptor, extracted on a dense sampling of moving pixels MPv

and stationary pixels SPv. For a 200 dimension codebook, the moving pixels CSIFT histogram

alone resulted in a 56.63% performance, while the stationary pixels CSIFT histogram achieved

56.47% performance on the UCF11. If we ignore the moving and stationary pixels and consider

the whole image as one, we obtain a performance of 55.06%. Our experiments show that

concatenation of histogram descriptors of moving and stationary pixels using CSIFT gives the

best performance of 60.06%. From our results, we conclude that concatenation of MPv and

SPv into one descriptor SCv is a very unique way to encode the scene context information.

For example, in a diving video, the moving pixels are mostly from the person diving, and the

56

stationary pixels are mostly from the water (pool), which implies that diving will occur only in

water and that this unique scene context will help detect the action diving.

Why CSIFT? : In [36], Liu et al. shows that using SIFT on the UCF11 dataset gave

them 58.1% performance. Our experiments on the same dataset using GIST gave us a very

low performance of 43.89%. Our approach of scene context descriptor using CSIFT gave us a

performance of 63.75%, ∼2.5% better than motion feature and ∼5.6% better than SIFT. It is

evident that color information is very important for capturing the scene context information.

Key frames: Instead of computing the moving and stationary pixels and their corre-

sponding descriptor on all the frames in the video, we perform a uniform sampling of k frames

from a given video, as shown in Figure 5.3. This reduces the time taken to compute the de-

scriptors, as the majority of the frames in the video are redundant. We did not implement any

kind of key frame detection, which can be done by computing the color histogram of frames

in the video and considering a certain level of change in color histogram as a key frame. We

tested on the UCF11 dataset by taking different numbers of key frames sampled evenly along

the video. Figure 5.4 shows that the performance on the dataset is almost stable after 3 key

frames. In our final experiments on the datasets, we consider 3 key frames equally sampled

along the video, to speed up the experiments. In this experiment, a codebook of dimension 500

is used.

5.3.1 How discriminative is the scene context descriptor?

In this experiment the proposed scene context descriptors are extracted, and a bag of

video word paradigm followed by SVM classification, is employed to study the proposed de-

57

Key Frames

Figure 5.3: Key frame selection from a given video.

54
56
58
60
62
64

Performance(%)

48
50
52
54

1 3 5Number of Key Frames
Figure 5.4: Performance of scene context descriptor on different number of key frames.

58

30

40

50

60

70

80

90

100 Basketball (mean:45.0%, SD: 1.08)
Biking (mean:59.08%, SD: 1.19)
Diving (mean:91.13%, SD:2.50)
GolfSwing (mean:62.78%, SD: 1.56)
HorseRiding (mean:60.20%, SD: 2.73)
SoccerJuggling (mean:8.13%, SD: 0.34)
Swing (mean:46.05%, SD: 3.22)

Pe
rfo

rm
an

ce
 (%

)

0

10

20

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Swing (mean:46.05%, SD: 3.22)
TennisSwing (mean:44.9%, SD: 3.02)
TrampolineJumping (mean:67.78%, SD: 2.70)
VolleyballSpiking (mean:78.93%, SD: 2.36)
WalkingWithDog (mean:44.60%, SD: 4.10)

Number of actions added

Pe
rfo

rm
an

ce
 (%

)

Figure 5.5: Effect of increasing the number of actions on the UCF YouTube Action dataset’s 11

actions by adding new actions from UCF50, using only the scene context descriptor. Standard

Deviation (SD) and Mean are shown next to the action name.

scriptor. Similar to the experiment in section 5.2.1, one new action is added to UCF11 in-

crementally from UCF50, at each increment leave-one-out cross-validation is performed. The

average performance on the initial 11 actions of UCF11, is 60.09%, after adding 39 new ac-

tions from UCF50 the performance on the 11 actions dropped to 52.36%. That is a ∼7.72%

decrease in performance, compared to ∼13.18% decrease for motion descriptor. The average

standard deviation of the performance of the initial 11 actions over the entire experimental

setup is ∼2.25% compared to ∼4.18% for motion descriptor. Figure 5.5 clearly shows that the

scene context descriptor is more stable and discriminative than the motion descriptor with the

increase in the number of action categories.

59

5.4 Fusion of descriptors

A wide variety of visual features can be extracted from a single video, such as motion

features (e.g., 3DSIFT, spatio-temporal features), scene features (e.g., GIST), or color features

(e.g., color histogram). In order to do the classification using all these different features, the

information has to be fused eventually. According to Snoek et al., [54] fusion schemes can be

classified into early fusion and late fusion based on when the information is combined.

Early Fusion: In this scheme, the information is combined before training a classi-

fier. This can be done by concatenating the different types of descriptors and then training a

classifier.

Late Fusion: In this scheme, classifiers are trained for each type of descriptor, then

the classification results are fused. Classifiers, such as support vector machines (SVM), can

provide a probability estimate for all the classes rather than a hard classification decision. The

concept of fusing this probability estimate is called Probabilistic Fusion [74]. For probabilis-

tic fusion, the different descriptors are considered to be conditionally independent. This is a

fair assumption for the visual features that we use in this work, i.e., motion descriptor using

gradients and Color SIFT. In probabilistic fusion the individual probabilities are multiplied and

normalized. For d sets of descriptors {Xj}d1 extracted from a video, the probability of the video

being classified as action a, i.e., p
(
a |{Xj}d1

)
, using probabilistic fusion is:

p
(
a |{Xj}d1

)
=

1

N

d∏
j=1

p (a |Xj) , (5.1)

where N is a normalizing factor which we consider to be 1. In late fusion, the individual

strengths of the descriptors are retained.

60

30

40

50

60

70

80

Code Book 200

Code Book 500

Pe
rfo

rm
an

ce
 (%

)

0

10

20

30
Code Book 1000

Code Book 1500

Pe
rfo

rm
an

ce
 (%

)

Figure 5.6: Performance of different methods to fuse scene context and motion descriptors on

UCF50 dataset.

5.4.1 Probabilistic Fusion of Motion and Scene Context descriptor

Probabilistic Fusion: Late fusion using probabilistic fusion requires combining the

probability estimates of both the descriptors from their separately trained SVM’s, i.e.,

max (PSC(i) PM(i)) , where i = 1 to a,

where a is the number of actions to classify, and PSC(i) and PM(i) are the probability es-

timates of action i, using SVMs trained on scene context descriptors and motion descrip-

tors separately. We also tested early fusion of both motion and scene context features, i.e.,

[Mv SCv], and then trained an SVM, which gave ∼5% performance better than individual de-

scriptors on UCF50, which was expected. But, doing a early fusion after normalization, i.e.,

61

[Mv/max (Mv) , SCv/max (SCv)], gave a huge increase in the performance, about ∼14%. It

is evident from Figure 5.6, that on average across all the codebooks, late fusion (probabilistic

fusion) is the best. Therefore, in all of our experiments on the KTH, HMDB51, UCF YouTube

(UCF11), and UCF50 datasets, we do probabilistic fusion of both scene context and motion

descriptors.

5.5 System Overview

To perform action recognition, we extract the following information from the video: 1)

Scene context information in key frames and 2) motion features in the entire video, as shown

in Figure 5.7. The individual SVMs probability estimates are fused to get the final classifica-

tion. In the training phase we extract spatio-temporal features {m1,m2, ..,mx}, from x interest

points detected using the interest point detector proposed by Dollar et al. [12], from each of

the training videos. We also extract CSIFT features on moving pixels {mp1,mp2, ..,mpy} and

stationary pixels {sp1, sp2, .., spz} from k key frames in the video, where y and z are the num-

ber of CSIFT features extracted from moving and stationary regions, respectively. A codebook

of size p is generated of the spatio-temporal features from all the training videos. Similarly,

a codebook of size q is generated of CSIFT features from moving pixels and stationary pixels

combined. For a given video v, we compute the histogram descriptors Mv, MPv, and SPv

using their respective codebooks for the x spatio-temporal features from the entire video, y

CSIFT features from the moving pixels, and z CSIFT features from the stationary pixels from

key frames. We do an early fusion of MPv and SPv before training a classifier using support

vector machine (SVM), i.e., SCv = [MPv SPv], which we call the scene context descriptor.

62

Training Videos

Interest point

detector in the

entire video

Scene Context Descriptor

Selection of Key

frames (typically 3)

Optical Flow (u,v) on

Key frames

tvu ³+
2 22

if

Moving Pixel Stationary Pixel

yes no

Extract CSIFT

descriptors on

Moving Pixels

Extract CSIFT

descriptors on

Stationary Pixels

Vocabulary learning

Histogram based

representation of

CSIFT descriptors

v
MP

Histogram based

representation of

CSIFT descriptors

v
SP

Concatenation of descriptors

from moving and stationary pixels
][
vv

SPMP

Motion Descriptor

Motion Feature

Extraction

Vocabulary

Learning

Histogram based

representation of

Motion features

v
M

Train SVM Classifier (histogram

intersection kernel)

Train SVM

Classifier

(histogram

intersection

kernel)

Figure 5.7: Proposed approach.

63

We train SVM classifier SVMM for all the motion descriptors Mv, and separate SVM clas-

sifier SVMC for all scene context descriptors SCv, where v = [1, 2, , tr]; tr is the number

of training videos. Given a query video q, we extract the motion descriptor Mq and the scene

context descriptor SCq, as described in the training phase. We perform a probabilistic fusion of

the probability estimates of the motion descriptor [PM(1), PM(2), ., PM(a)], and scene context

descriptor [PSC(1), PSC(2), ., PSC(a)] obtained from SVMM and SVMC trained on motion

and scene context descriptors, respectively, for a action classes, i.e.,

[P (1), P (2), ., P (a)] =

[PM(1)PC(1), PM(2)PC(2), ., PC(a)PM(a)]

We use the fused probabilities as confidence to do the action classification.

5.6 Experiments and Results

Experiments have been performed on the following datasets: KTH, HMDB51, UCF11,

and UCF50. The KTH dataset consists of 6 actions performed by 25 actors in a constrained

environment, with a total of 598 videos. The HMDB51 dataset has 51 action categories, with a

total of 6849 clips. This dataset is further grouped into five types. In this dataset, general facial

action type is not considered as articulated motion, which leaves the dataset with 47 action

categories. UCF11 dataset includes 1100 videos and has 11 actions collected from YouTube

with challenging conditions, such as low quality, poor illumination conditions, camera motions,

etc. The UCF50 dataset has 50 actions with a minimum of 100 videos for each category,

also collected from YouTube. This dataset has a wide variety of actions taken from different

contexts and includes the same challenges as the UCF YouTube Action dataset.

64

In all of our experiments we used 3 key frames from a single video to extract scene

context features as explained before; however, we use all the frames in the video to get motion

features without any pruning. We don’t consider the audio, text, etc. contained in the video file

to compute any of our features. Our method uses only the visual features. All the experiments

have been performed under leave-one-out cross-validation unless specified.

5.6.1 UCF11 Dataset

This is a very challenging dataset. We extract 400 cuboids of size 11x11x17 for the

motion descriptor and a scene context descriptor from 3 key frames. We evaluate using leave-

one-out cross validation. Our approach gives a performance of 73.20%, with a codebook of size

1000. Motion descriptor alone gives a performance of 59.89%, and the scene context descriptor

alone gives a performance of 60.06%. The idea of scene context plays a very important role

in the performance of our approach. For example, the performance of motion descriptor for

biking action is 49%, and it has 21% confusion with horse riding. After fusion with scene

context descriptor, which has 12% confusion with horse riding, the performance increased to

67% and the confusion with horse riding reduced to 10%. The confusion decreased by 11%

and the performance increased by 18%. This happens due to the complementary nature of

probabilistic fusion where the individual strengths of the descriptors is preserved. This is also

observed in “basketball” and “tennis swing” as shown in Figure 5.8.

The performance reported by Liu et al [37] using hybrid features obtained by pruning

the motion and static features is 71.2%. We perform ∼2% better than Liu et al [37]. Recently,

Ikizler-Cinbis et al. [21] showed that their approach has 75.21% performance, which is∼2.1%

65

55 5 1 1 6 3 1 11 14 2

67 10 1 4 1 1 1 16

1 98 1 1

1 89 1 6 3 1

1 7 1 83 2 1 1 6

12 6 6 6 49 3 1 1 3 12

11 1 1 2 3 67 9 1 4

16 1 3 1 1 1 68 2 7

4 2 8 76 6 5

2 3 1 2 92 1

3 20 2 10 2 1 1 2 59

Basketball

Biking

Diving

GolfSwing

HorseRiding

SoccerJuggling

Swing

TennisSwing

TrampolineJumping

VolleyballSpiking

Walking
B

as

B
ik

D
iv

G
ol

H
or

Soc

Sw
i

T
en

T
ra

V
ol

W
al

Figure 5.8: Confusion table for UCF11 dataset using our approach.

better than our approach. However, they perform computationally intense steps like video

stabilization, person detector, and tracking, which are not done in our approach. By replacing

the motion feature with MBH [61] and following the exact same experimental setup [61],

the motion(MBH) and scene context descriptors gave us 83.13% and 46.57%, respectively.

The proposed probabilistic fusion gives 87.19%, which is ∼2.99% better than the best known

results on UCF11 as reported by Wang et al. [61].

66

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 0

10

20

30

40

50

60

70

80

90

Figure 5.9: Confusion table for UCF50 using our approach.

5.6.2 UCF50 Dataset

This is a huge and challenging dataset with 50 action categories. In this experiment,

1000 dimension codebooks are used for both the motion and scene context descriptor. The

individual performance of motion descriptor is 53.06%; using our new scene context descriptor

the performance is 47.56%. After the fusion of both the descriptors we have a performance of

68.20%, which is a ∼15% increase.

67

The performance on rock climbing indoor using motion descriptors is 28%, 11% of the

time it gets confused with rope climbing, and 10% of the time rope climbing gets confused

with rock climbing indoor. This is understandable because of the similar motion pattern in

these actions. The performance of scene context descriptor for indoor rock climbing is 71%

with a confusion of 1% with rope climbing, and the performance of rope climbing is 10% with

a confusion of 4% with indoor rock climbing. Low confusion occured because both the actions

happened in two very different locations. Using our approach we get 80% performance on

indoor rock climbing and 42% performance on rope climbing. The complete confusion table

is shown in Figure 5.9. In some cases, the scene context descriptor performs badly compared

to motion descriptor; for example, in bench press the performance using scene context is 54%

with 15% confusion with pizza tossing. The reason for this is that both the actions are per-

formed indoor in most cases. However, they have no confusion in motion descriptor. This

increases the final performance of bench press to 71%.

Figure 5.10 shows the performance by incrementally adding one action at a time from

UCF50 to UCF11. The overall performance for the initial 11 actions using our approach is

70.56%, and on all the 50 actions it is 66.74%, a drop of 3.8% in the overall performance in

spite of adding 39 new actions. The fusion of both the descriptors consistently added 15.5% to

the motion descriptor with a variance of 1%, and 17.3% to the scene context descriptor with a

variance of 9.3%.

It is interesting to note that substituting MBH as the motion descriptor in the above

experimental setup gave us the best performance of 76.90%, where MBH and scene context

descriptors gave 71.86% and 47.28%, respectively.

68

5.6.3 HMDB51 Dataset

The proposed approach has been tested on all the 51 categories in HMDB51 dataset on

original videos, and the experimental setup was kept similar to [28] for comparison. We used

the HOG/HOF features provided by the authors [28], which gave us 19.96% for a codebook

of size 2000. The scene context descriptor is computed by extracting dense CSIFT on 3 key

frames and quantizing using a codebook of size 2000, which gave us 17.91%. The proposed

fusion has 27.02%, which is∼3.84% higher than the best results reported by Kuehne et al. [28].

5.6.4 KTH Dataset

We applied our proposed method on the KTH dataset. Although the idea of scene

context is not useful in this dataset, experiments have been conducted simply to compare the

performance of our method with other state-of-the-art results on the KTH dataset. The experi-

mental setup is leave-one-out cross validation and a 1000 dimension codebook is used. We got

a performance of 89.79% using our approach, whereas scene context feature alone performed

64.20% and motion feature alone performed 91.30%. We had a 1.51% drop in the performance

due to the scene context features, in spite of the 25.95% difference between scene context and

motion features. This shows the robustness in doing the probabilistic fusion of both scene

context and motion descriptors.

69

Table 5.3: Performance comparison on KTH dataset

Method Acc(%) Method Acc(%)

Our method 89.79 % Liu, et al. [37] 91.3 %

Dollar, et al. [12] 80.6 % Wong, et al. [68] 83.9 %

5.7 Summary

In this chapter we proposed an approach to do action recognition in huge datasets like

UCF50 and HMDB51. The proposed approach has the best performance on datasets like

UCF11 (87.19%), UCF50 (76.90%) and HMDB51 (27.02%). We showed that, as the num-

ber of categories increase, the motion descriptors become less discriminative. We also showed

that the proposed scene context descriptor is more discriminative, and when properly fused

with motion descriptors gives∼15% and∼4% improvement on UCF50. Our approach doesn’t

require pruning of motion or static features, stabilization of videos, or detection and tracking of

persons. The proposed method has the ability to do action recognition on highly unconstrained

videos and also on large datasets.

Particle Flow Field is slow and has not been tested here due to the large volume of the

datasets. But when tested on the smaller dataset UCF11 it gives ∼ 2% better performance

compared to using 3D-Gradients to generate motion descriptor with a codebook of size 1000.

Bag of Video Words framework has some inherent disadvantages and are addressed in

the next chapter.

70

01020304050607080 Performance (%) 0

Sc
en

e C
on

tex
t F

ea
tu

re
M

ot
ion

 Fe
atu

re
Pr

op
os

ed
M

eth
od

Ne
w

ac
tio

ns
 ra

nd
om

ly
ad

de
d t

o U
CF

 Yo
uT

ub
e D

ata
se

t

Figure 5.10: Performance as new actions are added to UCF YouTube (UCF11) Dataset from

the UCF50 dataset.

71

CHAPTER 6: INCREMENTAL ACTION RECOGNITION

6.1 Introduction

In the field of computer vision, bag of features (BOF) is receiving increasing attention

due to its simplicity and surprisingly good performance on object, scene and action recognition

problems [13] [15] [38] [30] [69] [53]. Inspired by the success of the bag of words approach

in text categorization [4] [19], computer vision researchers have widely and successfully ap-

plied the bag of visual words model beyond BOF for visual recognition. It is generally a

two-stage procedure, consisting of vocabulary construction and category model learning (e.g.

with SVM). Since visual words are not intrinsic entities, it suffers from effective vocabulary

construction problems. Different vocabulary construction methods may lead to very different

performance. In general, there are two types of visual vocabularies. The most common one is

the flat vocabulary, which is normally created by applying k-means on the subsamples of the

training data [13] [30] [69] [15]. Although approaches employing such vocabularies have, in

general, obtained good performance, this method for generating vocabularies is computation-

ally expensive, mainly due to the cost of clustering of training visual features and assigning

the visual descriptors to visual words (especially for generating very large vocabularies). Hi-

erarchical vocabularies constructed using hierarchical clustering techniques [45] [42] or an

72

ensemble of randomized trees [43] [71] have been explored recently, and have been proven to

be very efficient and effective in visual recognition.

However, we argue that most current bag of visual words approaches may not be very

useful for solving realistic problems in practice. One problem is that these approaches are not

easily scalable. This is due to the fact that most current visual vocabularies are constructed

using a predefined training dataset, which is static in nature. However, this may not be the case

in most real world problems, since the datasets are dynamically changing. For instance, if we

want to extend the bag of visual words method which obtains good results on KTH dataset [29]

to solve a bit more difficult problem, we have to face two cases: one is that we want to add

more training examples of the “waving” action into the dataset since we have to slightly change

the definition of “waving” so that the system can recognize more types of “waving”; another

case is that we need to train the system to recognize a new action category. For both cases,

the existing vocabulary is not suitable for handling the new situation. Hence, both the visual

vocabulary and computed histograms (bag of visual words) have to be updated.

Besides, as we know, given a patch from an image, we can sometimes correctly guess

the content of the image. Yet bag of visual words approaches are not able to predict given

only a few features. Therefore, these approaches are not robust to large occlusion. For action

recognition, they do not have the capability to perform recognition on a frame by frame basis.

Furthermore, bag of visual words methods cannot deal with videos containing multiple actions

happening simultaneously. they can only classify videos with a single action.

In this chapter, we propose an indexing based approach “Feature-Tree”. We first use

SR-tree (Sphere/ Rectangle) [24] to generate our feature-tree using the features of the labeled

73

training examples. SR-tree is a variant of R-tree [18], which has been accepted as a standard

by the industry. Instead of splitting the high-dimensional feature space by hyper-plane as in

earlier tree techniques, the feature points are organized into regions in the feature space, which

are specified by the intersection of a bounding sphere and bounding rectangle. Hence, SR-tree

can maintain smaller region volume to provide disjoint regions and larger diameter to support

fast range and NN search in high-dimensional space. During the recognition phase, we extract

features from an unknown action video and classify each feature into an action category using

SR-tree. To recognize the action, we adopt a simple voting method by counting the labels of

the features.

The rest of the chapter is organized as follows. Section 6.2 presents our proposed

method. The experiments are discussed in section 6.3. Finally, we conclude this chapter in

section 6.4.

6.2 Proposed method

In this section, we describe our proposed method in detail. Figure 6.1 shows the pro-

cedure of action recognition using our feature-tree. There are two phases: Figure 6.1 top row

depicts the procedure of growing the feature-tree and Figure 6.1 bottom row describes the

recognition steps. In the feature-tree growing stage, local spatiotemporal features are detected

and extracted from each labeled video, and then each feature is represented by a pair [d, l]

where d is the feature descriptor and l is the class label of the feature. Finally, we index all

the labeled features using SR-tree. In the recognition stage, given an unknown action video,

we first detect and extract local spatiotemporal features, and then for each feature we launch

74

a query into the feature-tree. A set of nearest neighbor features is returned. An action is rec-

ognized by simple weighted voting from all the neighbor features. The entire procedure does

not require intensive training. Therefore, we can easily apply incremental action recognition

with the feature-tree. Besides, we also can easily localize the actions in the video, and detect

multiple actions occurring simultaneously in the same video.

6.2.1 Feature Extraction

In order to detect the action in a given video, we use the spatiotemporal interest point

detector proposed by Dollar et al. [13]. Compared to the 3D Harris-Corner detector [29], it

produces dense features that can significantly improve the recognition performance in most

cases. It utilizes 2-D Gaussian filter and 1-D Gabor filters separately in spatial and temporal

directions respectively. A response value is given by the following function at every position

(x, y, t):

R = {I ∗ gσ(x, y) ∗ hev(t)}2 + {I ∗ gσ(x, y) ∗ hod(t)}2, (6.1)

where gσ(x, y) is the spatial Gaussian filter, hev and hod are a quadrature pair of the 1-D Gabor

filter in time. It produces high responses to the temporal intensity change points. The interest

points N are selected at the locations of local maximal responses, and 3D cuboids are extracted

around them. For simplicity, we use the flat gradient vectors di ∈ RN to describe the cuboids

with PCA being utilized to reduce the descriptor dimension, so a video is represented by a set

of cuboids D = {di}.

75

Figure 6.1: The framework of action recognition using feature-tree.

76

Figure 6.2: Tree structure defined by the intersection of bounding spheres and bounding rect-

angles.

6.2.2 Feature-tree Growing

Given a set of action videos V = {v1, v2, . . . , vM} and its corresponding class label

li ∈ {1, 2, . . . , C}, we extracted n spatiotemporal features dji (1 ≤ j ≤ n) from video vi. We

associated each feature with its class label and get a two-elements feature tuple xji = [dji lc].

Then we obtained a collection of labeled features T = {xji} to construct our feature-tree.

SR-tree is chosen to index the labeled feature collection T . It is a disk-based data struc-

ture having successfully integrated the advantages of the R-tree and SS-tree data structures, so

it is fast for large scale datasets which cannot be fit into the main memory. We briefly review

77

its data structure as follows. Figure 6.2 shows the nested hierarchy structure with a root node,

nodes, and leaves. Instead of splitting the feature space by a hyper plane, SR-tree organizes

the data by hierarchical regions. The region is defined by the intersection of a bounding sphere

(the smallest sphere covering a set of points) and a bounding rectangle. This design creates a

balance between having larger region diameter and smaller region volume to improve the per-

formance of nearest neighbors search. Each leaf of an SR-tree has a minimum and maximum

limit on the number of entries it can take. Entries in the leaf store the points with their labels.

A leaf is split and converted into a node if it reaches the maximum number of allowed entries.

Nodes do have a limit on the number of children they can hold. Each entry in a node has

four components: bounding sphere, bounding rectangle, number of points in the sub-tree, and

pointers to all its children. We can consider the regions in our feature-tree as a cluster of feature

points which are spatially close to each other. We can imagine the same type of actions share

lots of feature patterns, so each leaf node might have dominated class labels. The feature-tree

can grow in three steps:

1. Inserting a new feature point into the tree.

2. Splitting a leaf when it is overcrowded.

3. Reinserting the feature points from the step 2.

Insertion: A centroid-based algorithm is applied in the insertion algorithm due to its

effectiveness for nearest neighbor queries. The insertion algorithm is supposed to find the best

sub-tree that can accommodate the new spatiotemporal feature point xji from T . The sub-tree,

whose centroid (i.e. the center of the feature points covered by it) is nearest to xji , is selected.

78

After insertion, the regions (the bounding sphere and the bounding rectangle of the parents) are

updated. In fact, it propagates the region updates upwards till it reaches the root. The bounding

rectangle is updated the same way as it is done in R-tree. The bounding sphere, however, is

updated using both the bounding sphere and bounding rectangle of its children. Using both

the bounding sphere and bounding rectangle of the children helps the radius of the parent’s

bounding sphere to be smaller compared to the SS-tree, which in turn reduces the overlap of

the bounding spheres.

Splitting: If a leaf is overcrowded, a portion of its entries are reinserted. If the reinser-

tion fails, it is split and converted into a node and the entries are reinserted.

Deletion: An entry is simply removed if the deletion of the entry causes no under-

utilization of any leaf or node. If the deletion does cause under-utilization of a leaf or node, the

leaf or node is removed from the tree and the orphaned entries are reinserted into the tree.

6.2.3 Action Recognition

Given the feature-tree, the action recognition starts by extracting spatiotemporal fea-

tures from an unknown action video. Suppose the query action video is represented by a bag

of spatiotemporal features, say Q = {dq}(1 ≤ q ≤ M), our recognition task is to find its

class label. Instead of using complicated training or inference method, we adopt simple voting

schema.

For each query feature dq, we retrieve the K nearest neighbors from the feature-tree,

and we assign a class label to it based on the label voting of the K returned features. Then,

the label of Q is decided by the final voting of the class labels of the query features in Q. As

79

we know, generally the query features of Q may contain good and bad features (good feature

meaning discriminative features). In order to distinguish the voting from them, we can assign

a class label to Q using the following equation:

Ĉ = arg maxC

M∑
q=1

K∑
r=1

τ ∗ Irq
‖dq − dqr‖+ε

(6.2)

where dqr ∈ NN(dq), Irq is a indicator which is equal to 1 if the label of dr is C, is otherwise

zero, and ε, τ are constant number (NN - Nearest Neighbor). Therefore, the contribution

of each feature also depends on how well it matches the query feature. Noisy features (bad

features) usually do not have good matches.

The nearest neighbor search algorithm implements an ordered depth first traversal.

First, it collects the candidate set, and secondly it revises the candidate set by visiting each

leaf having its region intersected with the candidate set. The search is terminated if there are

no more leaves to visit and the final candidate set is the search result. The search is performed

by computing the distance of the search point xji to the region of the child and visiting the child

which is closer. Since the region for an SR-tree is the intersection of a bounding sphere and

a bounding rectangle, the minimum distance from a search point to a region is defined as the

maximum between the minimum distance to the bounding sphere and the minimum distance to

the bounding rectangle. We summarize the nearest search procedure and the action recognition

steps in Table 6.1 and Table 6.2.

6.3 Experiments and results

We tested our approach on two publicly available dataset: the KTH dataset [69] and

the IXMAS multi-view dataset [63]. The default experiment settings are as follows, unless

80

Table 6.1: Nearest Neighbor Search.

Objective: Given a query point, find the nearest neighbors

1. Start with the candidate set nearest to the query point dq.

2. Search each leaf having its region intersecting the candidate set.

3. Start with the leaf closest to the query point dq.

4. If K nearest neighbors dr are found terminate.

5. If not, go to the next closest leaf having its region intersecting

the candidate set and do this till all the K nearest

neighbors are found.

Table 6.2: Main steps of Action recognition using feature-tree.

Objective: Given a query video Q, assign a class label to it.

Feature Extraction:

1. For a given video Q, detect the spatiotemporal interest points using

the Dollar detector and extract the cuboids around them.

2. Compute gradient for each cuboid q, and use PCA to reduce the dimension,

then it is represent by a descriptor dq.

3. Representing Q as a bag of features {dq}

Action Recognition:

Given the query features of Q : {dq}

1. For each query feature dq in Q retrieve the nearest neighbor dqr

2. The class label of Q is decided by equation 6.2:

Ĉ = arg maxC
∑M

q=1

∑K
r=1

τ∗Irq
‖dq−dqr‖+ε

81

Figure 6.3: Some examples of KTH dataset actions.

and until otherwise specified. For each video we extract 200 cuboids. Gradient based feature

descriptor is used in all the experiments.

6.3.1 Experiments on the KTH Dataset

We applied our approach to the KTH dataset, which contains six actions: boxing, clap-

ping, waving, jogging, walking, and running. They are performed by 25 actors under four

different scenarios of illumination, appearance, and scale changes. In total it contains 598

video sequences. Figure 6.3 shows some examples from the dataset.

In our experiment we constructed the feature-tree using 5 persons and using the remain-

ing 20 persons for testing. This procedure was repeated five times by switching the persons

for feature-tree growing and experimental testing. The average accuracy was 87.8%. Instead

of using SR-tree data structure to grow our feature-tree as we describe in section 6.2, we use

Random Forest [7] to create the feature-trees using 5 persons, and test it on the rest 20 per-

sons. As before, we repeated five times. Each time, there are 50 random feature-trees, and the

final classification was made by voting from all the feature-trees. The average accuracy was

72.9%. As we know, Random Forest uses binary trees which separate the feature space by a

82

77.5 6.3 16.3 0.0 0.0 0.0

35.4 50.6 13.9 0.0 0.0 0.0

6.3 1.3 92.5 0.0 0.0 0.0

0.0 0.0 1.3 15.0 70.0 13.8

0.0 0.0 1.3 5.0 93.8 0.0

0.0 0.0 5.0 5.0 8.8 81.3

Boxing

Clapping

Waving

Jogging

Running

Walking

Boxing Clapping Waving Jogging Running Walking

Figure 6.4: Confusion table on KTH data set for 5 persons used in Random Forest.

plane when splitting the space at each node to construct the feature-trees. It might be weaker

than our proposed feature-tree constructor which separates the feature space by regions. We

also did similar experiments using vocabulary-based approach which use k-means to gener-

ate the flat vocabulary, and use SVM to train the category model. The average accuracy was

about 84.4%. We also observed that the increase in training examples had little effect on the

performance. When we increase the training set to 10 persons the performance using SR-tree

structure increases to 90.3%.

83

91.3 6.3 1.3 0.0 0.0 1.3

8.9 84.8 6.3 0.0 0.0 0.0

7.5 0.0 92.5 0.0 0.0 0.0

0.0 0.0 0.0 83.8 6.3 10.0

0.0 0.0 0.0 13.8 85.0 1.3

0.0 0.0 0.0 1.3 0.0 98.8

Boxing

Clapping

Waving

Jogging

Running

Walking

WalkingRunningJoggingWavingClappingBoxing

Figure 6.5: Confusion table on KTH data set for 5 persons used to grow feature-tree.

Figure 6.4 and Figure 6.5 show the confusion table on KTH dataset using our feature-

tree and Random Forest. From the confusion tables provided in Figure 6.5, one can observe

that the actions clapping and waving are confused with boxing, and there is a lot of confusion

between jogging and running. It’s observed that the hand movement actions get confused

between one another. This is also the case with leg movement actions; this is due to the

similarity between the actions. This has also been observed in approaches like bag of video

84

Table 6.3: The performance of the different bag of visual words approaches.

Method Acc(%) Method Acc (%)

Our method 90.3 Neibles, et al. [44] 81.5

Liu, et al. [38] 91.3 Dollar, et al. [13] 80.6

Wong, et al. [69] 83.9 Schuldt, et al. [50] 71.7

words. The Random Forest approach has a high rate of confusion with actions like jogging

with running.

We list the state-of-the-art results on the KTH dataset using bag of visual words related

approaches in Table 6.3. We cannot directly compare them due to different experiment settings.

For example, [38] and [63] used 24 persons for training. We do not list some results which are

reported by using spatiotemporal information.

Particle Flow Field: Using particle flow field (PFF) instead of 3D-Gradients inside the

extracted 3D-Cuboids as mentioned in section 6.2.1, the performance on KTH dataset increases

by ∼ 4%, ie., 93.98% compared to 90.3% using 3D-Gradients.

6.3.2 Effect of number of Features, feature dimensions and Nearest Neighbors

Without exception, in all our experiments, we extracted 200 spatiotemporal features

from each video, and used 1 nearest neighbor for voting in the feature query phase. In these

experiments, we tried to verify how the performance is affected by the number of extracted

features and the K value in K nearest neighbors. Figure 6.6 shows the results of using different

number of features and different K value. It is very impressive that using 10 features we can

85

75

80

85

90

95

10 Features

20 Features

50 Features

A
cc

u
ra

cy
 (

%
)

55

60

65

70

1 NN 10 NN 20 NN 30 NN 40 NN 50 NN

50 Features

100 Features

200 Features

A
cc

u
ra

cy
 (

%
)

Number of nearest neighbors (NN)

Figure 6.6: Performance comparison of using feature-tree on spatiotemporal features. The

number of features is increased from 10 to 200 and the nearest neighbor search is increased

from 1 to 50.

still get about 75% average accuracy. It does not make too much difference when the number

of extracted feature is larger than 100.

It implies that feature-tree performs well even if only very few features points are avail-

able from each video. As the number of feature point’s increase to 200, the performance

increases to about 89%.

Effect of feature dimension: For feature dimension of 100 we have a performance

of 87.8% and we achieve almost the same with dimension of 50 i.e., 87.7%. Reduction in

dimension of the feature vector has very less impact on the performance, which can be helpful

to decrease the computations needed.

86

6.3.3 Incremental action recognition

In the real world we need systems which can adapt to or learn from the dynamic envi-

ronment. Most vocabulary-based bag of feature methods cannot cope with this situation, since

they normally need intensive training for vocabulary model or category model. However, our

feature-tree method can make it. In our approach the feature-tree can be update with new train-

ing examples or new categories without reconstructing the entire tree. In this experiment we

again use the KTH data set to show the advantages of having an incremental feature-tree. We

train our tree with the first 5 people on 4 actions (boxing, clapping, waving, walking). We add

one person at a time from action 5 to the feature-tree, and check the effect of incrementing.

The test data set in this experiment is from 5 actions and the remaining 20 people not included

in the training set. The results are shown in Figure 6.7. Incrementing tree is done by inserting

the new feature points into the fully grown tree. We increment the tree with features from 5

more persons for action 5 (Jogging), which is previously not included in the training set. From

our experiment we observe that the performance increases as the tree is incremented with new

training data.

6.3.4 Recognizing multiple actions in a video

As the aforementioned, the basic bag of visual words approaches are unable to detect

and localize the actions when multiple instances happen in the same video. However, our

feature-tree can be used to easily handle this case. Given a video with multiple actions, we ex-

tracted m spatiotemporal features from it. We conducted feature queries and assigned a class

label to each of them. We ranked then by the class frequency fc. If fc > Ω (a predefined thresh-

87

84

86

88

90

Performance (%)

78

80

82

1st Person 2nd Person 3rd Person 4th Person 5th Person

Performance (%)

Figure 6.7: Plot shows the effect on recognition performance with incremental examples from

the new category added into the feature-tree.

old) then we can recognize the action and localize it by the locations of the voting features. To

simulate this scenario and demonstrate this straightforward method, we created a video with

two instances: boxing and walking from the KTH dataset by simply concatenate them by the

height edge. Figure 6.8 shows the localization and recognition. All red features are assigned

with boxing, while the blue ones are running. We extract the feature points from each video

and merge then in to a single query file. We query the tree constructed using 5 persons and

6 actions training dataset. The above two videos for query are not in the training. Figure 6.8

shows the results.

6.3.5 Action Recognition in frame by frame mode

In this experiment, we proved that action recognition can be done in a frame-by-frame

mode. It means for an online system, the recognition does not need to wait for the last minutes

88

Side View Front View

Boxing

Walking

Misclassification

Boxing

Walking

Misclassification

ClassificationGround Truth
ClassificationGround Truth

Figure 6.8: Classification and localization of two actions happen in the same video. The red

features are classified into boxing, and blue is walking.

of the video. We can make the decision and update it with more frames coming. Obviously,

vocabulary-based approaches cannot be conducted in a frame-by-frame mode, since the his-

togram will be meaningful when enough observations have been made on a number of frames.

In order to verify this function, we created a feature-tree with five persons. And then we test

on the rest of videos in frame-by-frame mode. Figure 6.9 shows the results for all the actions.

It clearly shows the system can achieve good performance with very few frames like 3 frames.

The recognition performance will be stable after frame 11. After this, more coming frames

cannot help improve the performance. The recognition is even faster than real-time. In our

system, each feature query takes about 0.02s and each frame has about at most 10 features, and

totally less than 0.2s/frame.

89

A
cc

u
ra

cy

Number of Frames

A
cc

u
ra

cy

Figure 6.9: Performance by increasing the number of frames considered in voting.

6.3.6 Experiments on IXMAS Multi-view dataset

We also applied our method on the IXMAS multi-view dataset. The dataset contains

13 daily life actions, performed three times by 12 actors under four different views. In total

it contains 1848 video sequences. This data is challenging due to the variations in the camera

view, and it also has very similar actions like checking watch, scratching head, and pointing.

Here we conduct two different sets of experiments:

Learning from four views: In the first experiment, learning is done from four views.

We take the videos from 5 actors to construct the feature-tree and the rest 7 actors for testing.

The experiments were repeated four times with videos from different actors to grow the feature-

tree. First, we recognized the action using single view, and average accuracies for each camera

1-4 are 69.6%, 69.2%, 62.0%, 65.1%. This is a little better than that in paper [63], but it is

worse than results reported in [38]. However, both of them using videos from ten actors for

90

training, but we only used 5 actors. Besides, both of them need intensive training process.

Next, we tried to recognize actions using simple voting on four views, and we can improve the

total average accuracy to about 72.6%. Figure 6.10 shows the confusion table for it. Actions

like sit-down, get up, turn around, kicking and pickup has an average performance of 89%, but

the performance is bad on the other actions.

Learning from three views: In the second experiment, we consider to use videos from

three camera views to construct the feature-tree, and the fourth camera view to test the system.

This is repeated four times by changing the camera-views in the training and testing set. In

this experiment with a camera view missing, we achieved an accuracy of 81.0% 70.9% 79.2%

64.9% for camera 1 2 3 4 respectively. The performance is better than that results reported

in [63] and [38].

6.4 Summary

In this chapter, we proposed a framework for incremental action recognition using

feature-tree. Our system does not require detection and tracking of humans and does not need

intensive training (vocabulary training and category model training), but we still can get com-

petitive performance and fast recognition. The system is very practical since we can handle

incremental action recognition and index the feature-tree with disk-based SR-tree data struc-

ture. Our system has very good scalability. Most importantly, our system can recognize mul-

tiple actions happening in a video simultaneously. Using particle flow fields gives the best

performance on KTH dataset.

91

85.7 0.0 0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 9.5 0.0 0.0

47.6 42.9 0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 4.8 0.0 0.0

14.3 9.5 66.7 0.0 0.0 4.8 0.0 0.0 0.0 0.0 4.8 0.0 0.0

0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 95.2 4.8 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0

14.3 19.0 4.8 0.0 0.0 9.5 4.8 33.3 0.0 0.0 9.5 0.0 4.8

9.5 0.0 0.0 0.0 0.0 9.5 23.8 0.0 38.1 4.8 14.3 0.0 0.0

0.0 0.0 0.0 0.0 0.0 4.8 4.8 0.0 0.0 90.5 0.0 0.0 0.0

14.3 4.8 4.8 4.8 4.8 33.3 0.0 0.0 0.0 0.0 33.3 0.0 0.0

0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 27.3 9.1 54.5

cw ca sh sd gu ta wa hw pu ki po pu th

get up

sit down

scratch head

cross arms

check watch

trun around

walk

hand wave

punch

kick

pick up

throw (head)

point

Figure 6.10: Performance by increasing the number of frames considered in voting.

92

CHAPTER 7: CONCLUSION AND FUTURE WORK

The main theme of this dissertation has been low-level video representation that is

robust and can perform reasonably well in different action recognition scenarios. The scenarios

that typically arise in action recognition datasets are: 1) Scenario where the human detection

and tracking can be performed on the given video, 2) Scenario where the human can be detected

but is difficult to track, 3) Videos where foreground and background separation is easier than

detecting and tracking objects of interest and 4) Finally, videos where any pre-processing is

challenging.

We propose a new low-level video representation “Particle Flow Field” obtained using

optical flow and particle advection. In order to handle different action recognition scenarios:

first, we propose 3D-spatio temporal volumes where the object of interest can be detected and

tracked, second, a scene context descriptor is introduced where the foreground and background

can be separated, and finally, a feature-tree is proposed to do real-time incremental action

recognition where none of the pre-processing is done.

7.1 Summary of Contributions

The primary contributions of this thesis are outlined below:

1. Low-level video representation

93

(a) Introduction of “Particle Flow Field” as a robust low-level video representation.

(b) Representation of video in terms of particle flow fields.

(c) Application of particle flow field for action recognition in a bag of video words

framework.

(d) Best performance using particle flow field compared to 2D-Gradients, 3D-Gradients,

and Optical Flow.

2. Action recognition using 3D-spatio temporal volumes

(a) Introduction of the histogram of oriented 3D-Gradients (3D-STHOG) for action

recognition in 3D-spatio temporal volumes.

(b) Investigation of the sensitivity of 3D-STHOG to change in scale, frame rate, and

translation.

(c) The proposed 3D-STHOG has been tested on videos taken from aerial, rooftop, and

ground cameras.

(d) Introduction of the histogram of oriented particle flow (3D-STHOPFF) fields for

action recognition in 3D-spatio temporal volumes.

(e) The proposed 3D-STHOPFF is suitable for human action recognition without track-

ing humans.

(f) Demonstrated best performance using 3D-STHOPFF.

3. Action recognition using scene context in web videos

(a) Provided insight into the challenges of large scale action recognition datasets.

94

(b) Proposed the use of moving and stationary pixel information to obtain a scene con-

text descriptor.

(c) Introduced a scene context descriptor that helps improve performance in large scale

datasets.

(d) Proposed the idea of early fusion schema for descriptors obtained from moving and

stationary pixels to understand the scene context, and finally perform a probabilistic

fusion of the scene context descriptor and motion descriptor.

4. Incremental action recognition using feature-tree

(a) Introduced a framework that does not require re-training with the addition of new

action categories or videos.

(b) Proposed the use of the SR-Tree in action recognition frame work to perform in-

cremental action recognition.

(c) Feature-tree framework has the ability to perform multiple action recognition, frame-

by-frame action recognition, and can localize actions.

(d) Algorithm to perform real-time action recognition using feature-tree.

7.2 Future Directions

In this section, we present some possibilities for future directions to further the research

carried out in this dissertation.

In chapter 3, particle flow field was proposed, which is computationally expensive com-

pared to other video representations. Instead of interpolating the optical flow, median filter can

95

be used to improve the accuracy and speed. Significant camera motion can hurt the perfor-

mance of particle flow field. In videos with significant camera motion, the motion of the

particle will have the camera motion embedded in it, which is irrelevant for action recognition.

Low rank optimization can be used to remove the camera motion from the particle motion.

The same approach can be used to accurately separate moving and stationary pixels, in order

to generate scene context descriptors proposed in chapter 5.

Future efforts can focus on human detection and detecting human body parts in a video

using particle flow fields. The use of particle flow fields in crowd behavior analysis can also be

explored.

96

LIST OF REFERENCES

[1] S. Ali and M. Shah. A lagrangian particle dynamics approach for crowd flow segmen-
tation and stability analysis. In Computer Vision and Pattern Recognition, 2007. CVPR
’07. IEEE Conference on, pages 1 –6, june 2007.

[2] J.S. Beis and D.G. Lowe. Indexing without invariants in 3d object recognition. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 21(10):1000 –1015, oct 1999.

[3] J.L. Bentley. Multidimensional binary search trees in database applications. Software
Engineering, IEEE Transactions on, SE-5(4):333 – 340, july 1979.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993–1022, March 2003.

[5] Aaron F. Bobick and James W. Davis. The recognition of human movement using tem-
poral templates. IEEE Trans. Pattern Anal. Mach. Intell., 23:257–267, March 2001.

[6] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image
classification. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1 –8, june 2008.

[7] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
10.1023/A:1018054314350.

[8] Claudette Cedras and Mubarak Shah. Motion-based recognition: A survey. Image and
Vision Computing, 13:129–155, 1995.

[9] C.C. Chen and J.K. Aggarwal. Recognizing human action from a far field of view. In
IEEE Workshop on Motion and Video Computing, 2009.

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR,
2005.

[11] Jia Deng, Alexander C. Berg, Kai Li, and Li Fei-Fei. What does classifying more than
10,000 image categories tell us? In Proceedings of the 11th European conference on
Computer vision: Part V, ECCV’10, pages 71–84, 2010.

[12] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-
temporal features. In Visual Surveillance and Performance Evaluation of Tracking and
Surveillance, 2005. 2nd Joint IEEE International Workshop on, pages 65 – 72, oct. 2005.

[13] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-
temporal features. In IEEE PETS, 2005.

97

[14] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene cate-
gories. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 2, pages 524 – 531 vol. 2, june 2005.

[15] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene cate-
gories. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 2, pages 524 – 531 vol. 2, june 2005.

[16] Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen Basri. Actions as
space-time shapes. IEEE Trans. PAMI, 2007.

[17] A. Gupta, A. Kembhavi, and L.S. Davis. Observing human-object interactions: Using
spatial and functional compatibility for recognition. IEEE Trans. PAMI, 2009.

[18] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. SIGMOD
Rec., 14(2):47–57, June 1984.

[19] Thomas Hofmann. Unsupervised learning by probabilistic latent semantic analysis. In
Machine Learning, page 2001, 2001.

[20] Pengyu Hong, Thomas S. Huang, and Matthew Turk. Gesture modeling and recognition
using finite state machines. In Proceedings of the Fourth IEEE International Conference
on Automatic Face and Gesture Recognition 2000, FG ’00, pages 410–, 2000.

[21] Nazli Ikizler-Cinbis and Stan Sclaroff. Object, scene and actions: combining multiple
features for human action recognition. In Proceedings of the 11th European conference
on Computer vision: Part I, ECCV’10, 2010.

[22] G Johansson. Visual perception of biological motion and a model for its analysis. Atten-
tion Perception Psychophysics, 14(2):201–211, 1973.

[23] Imran N. Junejo, Emilie Dexter, Ivan Laptev, and Patrick Pérez. Cross-view action recog-
nition from temporal self-similarities. In ECCV, ECCV ’08, Berlin, Heidelberg, 2008.
Springer-Verlag.

[24] Norio Katayama and Shin’ichi Satoh. The sr-tree: an index structure for high-
dimensional nearest neighbor queries. In Proceedings of the 1997 ACM SIGMOD inter-
national conference on Management of data, SIGMOD ’97, pages 369–380, New York,
NY, USA, 1997. ACM.

[25] Norio Katayama and Shin’ichi Satoh. Experimental Evaluation of Disk-Based Data
Structures for Nearest Neighbor Searching. In Data Structures, Near Neighbor Searches,
and Methodology: Fifth and Sixth DIMACS Implementation Challenges, volume 59 of
AMS DIMACS Series, pages 87–104. AMS, 2002.

[26] Yan Ke, R. Sukthankar, and M. Hebert. Spatiotemporal shape and flow correlation for
action recognition. In CVPR, 2007.

98

[27] Alexander Klser, Marcin Marszalek, and Cordelia Schmid. A spatio-temporal descriptor
based on 3d-gradients. In BMVC, 2008.

[28] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video database
for human motion recognition. In Proceedings of the International Conference on Com-
puter Vision (ICCV), 2011.

[29] I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, 2003.

[30] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions
from movies. In CVPR, 2008.

[31] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions
from movies. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1 –8, june 2008.

[32] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions
from movies. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1 –8, june 2008.

[33] Ivan Laptev. On space-time interest points. Int. J. Comput. Vision, 64(2-3):107–123,
September 2005.

[34] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 2, pages 775 – 781 vol. 2, june 2005.

[35] Ce Liu, W.T. Freeman, E.H. Adelson, and Y. Weiss. Human-assisted motion annotation.
In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1 –8, june 2008.

[36] Jingen Liu, Jiebo Luo, and M. Shah. Recognizing realistic actions from videos ”in the
wild”. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 1996 –2003, june 2009.

[37] Jingen Liu and Mubarak Shah. Learning human actions via information maximization.
In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1 –8, june 2008.

[38] Jingen Liu and Mubarak Shah. Learning human actions via information maximization.
In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1 –8, june 2008.

[39] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision, 60(2):91–110, November 2004.

[40] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th international joint conference on
Artificial intelligence - Volume 2, pages 674–679, 1981.

99

[41] Ramin Mehran, Brian E. Moore, and Mubarak Shah. A streakline representation of flow
in crowded scenes. In European Conference on Computer Vision(ECCV), 2010.

[42] K. Mikolajczyk and H. Uemura. Action recognition with motion-appearance vocabulary
forest. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1 –8, june 2008.

[43] F. Moosmann, Bill Triggs, and Frederic Jurie. Fast Discriminative Visual Codebooks
using Randomized Clustering Forests. In J. Platt B. Schölkopf and T. Hoffman, edi-
tors, Advances in Neural Information Processing Systems 19, pages 985–992, Vancouver,
Canada, 2007. MIT Press.

[44] J.C. Niebles and Li Fei-Fei. A hierarchical model of shape and appearance for human
action classification. In Computer Vision and Pattern Recognition, 2007. CVPR ’07.
IEEE Conference on, pages 1 –8, june 2007.

[45] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2,
pages 2161 – 2168, 2006.

[46] S. Oh and et al. A large-scale benchmark dataset for event recognition in surveillance
video. In CVPR, 2011.

[47] R. Poppe. A survey on vision-based human action recognition. Image and Vision Com-
puting, 2010.

[48] K.K. Reddy, J. Liu, and M. Shah. Incremental action recognition using feature-tree. In
ICCV, 2009.

[49] M.D. Rodriguez, J. Ahmed, and M. Shah. Action mach a spatio-temporal maximum
average correlation height filter for action recognition. In CVPR, 2008.

[50] Christian Schldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: A local
svm approach. In In Proc. ICPR, pages 32–36, 2004.

[51] Paul Scovanner, Saad Ali, and Mubarak Shah. A 3-dimensional sift descriptor and its
application to action recognition. In Proceedings of the 15th international conference on
Multimedia, MULTIMEDIA ’07, pages 357–360, 2007.

[52] Paul Scovanner, Saad Ali, and Mubarak Shah. A 3-dimensional sift descriptor and its
application to action recognition. In Multimedia, MULTIMEDIA ’07, 2007.

[53] J. Sivic, B.C. Russell, A.A. Efros, A. Zisserman, and W.T. Freeman. Discovering ob-
jects and their location in images. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 1, pages 370 – 377 Vol. 1, oct. 2005.

[54] Cees G. M. Snoek, Marcel Worring, and Arnold W. M. Smeulders. Early versus late
fusion in semantic video analysis. In Proceedings of the 13th annual ACM international
conference on Multimedia, MULTIMEDIA ’05, pages 399–402, 2005.

100

[55] Yang Song, Ming Zhao, J. Yagnik, and Xiaoyun Wu. Taxonomic classification for web-
based videos. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 871 –878, june 2010.

[56] A. Torralba and A. Efros. Unbiased look at dataset bias. In CVPR, 2011.

[57] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea. Machine recognition of
human activities: A survey. IEEE Trans. Circuits and Systems for Video, 2008.

[58] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek. Evaluating color descriptors for
object and scene recognition. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 32(9):1582 –1596, sept. 2010.

[59] Ashok Veeraraghavan, Amit K. Roy-Chowdhury, and Rama Chellappa. Matching shape
sequences in video with applications in human movement analysis. IEEE Trans. Pattern
Anal. Mach. Intell., 27(12):1896–1909, December 2005.

[60] H. Wang, M.M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local spatio-
temporal features for action recognition. In BMVC, 2009.

[61] Heng Wang., Alexander Klaser., and Cheng-Lin Liu. Action recognition by dense trajec-
tories. In Computer Vision and Pattern Recognition, 2011. CVPR 2011. IEEE Conference
on, 2011.

[62] Zheshen Wang, Ming Zhao, Yang Song, S. Kumar, and Baoxin Li. Youtubecat: Learning
to categorize wild web videos. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 879 –886, june 2010.

[63] D. Weinland, E. Boyer, and R. Ronfard. Action recognition from arbitrary views using 3d
exemplars. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pages 1 –7, oct. 2007.

[64] Daniel Weinland, Remi Ronfard, and Edmond Boyer. A survey of vision-based methods
for action representation, segmentation and recognition. Comput. Vis. Image Underst.,
115:224–241, February 2011.

[65] G. Willems, T. Tuytelaars, and L. Van Gool. An efficient dense and scale-invariant spatio-
temporal interest point detector. In ECCV, Berlin, Heidelberg, 2008. Springer-Verlag.

[66] A.D. Wilson and A.F. Bobick. Parametric hidden markov models for gesture recognition.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(9):884 –900, sep
1999.

[67] J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual
dictionary. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference
on, volume 2, pages 1800 –1807 Vol. 2, oct. 2005.

101

[68] Shu-Fai Wong, Tae-Kyun Kim, and R. Cipolla. Learning motion categories using both
semantic and structural information. In Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, pages 1 –6, june 2007.

[69] Shu-Fai Wong, Tae-Kyun Kim, and R. Cipolla. Learning motion categories using both
semantic and structural information. In Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, pages 1 –6, june 2007.

[70] Shandong Wu, Omar Oreifej, and Mubarak Shah. Action recognition in videos ac-
quired by a moving camera using motion decomposition of lagrangian particle trajec-
tories. Computer Vision, IEEE International Conference on, 0:1419–1426, 2011.

[71] T. Yeh, J. Lee, and T. Darrell. Adaptive vocabulary forests for dynamic indexing and
category learning. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Con-
ference on, pages 1 –8, oct. 2007.

[72] Alper Yilmaz and Mubarak Shah. Actions sketch: A novel action representation. Com-
puter Vision and Pattern Recognition, IEEE Computer Society Conference on, 1:984–989,
2005.

[73] Alper Yilmaz and Mubarak Shah. A differential geometric approach to representing the
human actions. Comput. Vis. Image Underst., 2008.

[74] Yan-Tao Zheng, Shi-Yong Neo, Tat-Seng Chua, and Qi Tian. Probabilistic optimized
ranking for multimedia semantic concept detection via rvm. In Proceedings of the 2008
international conference on Content-based image and video retrieval, CIVR ’08, pages
161–168, 2008.

102

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Overview and Motivation
	1.2 Contributions
	1.2.1 Particle Flow Fields to represent videos
	1.2.2 3D - Spatio Temporal Volumes
	1.2.3 Scene context in web videos
	1.2.4 Incremental Action Recognition Using Feature-Trees
	1.2.5 Challenging Datasets

	1.3 Organization of the Thesis

	CHAPTER 2: LITERATURE REVIEW
	2.1 Low-Level Representation of Video
	2.2 Action Recognition in Large Realistic Datasets
	2.3 Action Recognition using Tree Data Structures

	CHAPTER 3: PARTICLE FLOW FIELD
	3.1 Introduction
	3.2 Low-Level Video Representation
	3.2.1 Normalized Pixel Values
	3.2.2 Gradients
	3.2.3 Optical Flow
	3.2.4 Particle Flow (Particle Velocity)

	3.3 Experiments
	3.4 Summary

	CHAPTER 4: 3D - SPATIO TEMPORAL VOLUMES
	4.1 Introduction
	4.2 Histogram of Oriented 3D Spatiotemporal Gradients (3D-STHOG)
	4.3 Histogram of Oriented Particle Flow Fields (3D-STHOPFF)
	4.4 Experiments using 3D-STHOG
	4.4.1 UT-Tower Dataset
	4.4.1.1 Sensitivity to Scale
	4.4.1.2 Sensitivity to Frame Rate
	4.4.1.3 Sensitivity to Translation (Misalignment)

	4.4.2 VIRAT Ground Video Dataset
	4.4.3 VIRAT Aerial Video Dataset
	4.4.4 IXMAS Dataset
	4.4.5 KTH and Weizmann Datasets

	4.5 Experiments using 3D-STHOPFF
	4.6 Summary

	CHAPTER 5: SCENE CONTEXT FOR WEB VIDEOS
	5.1 Introduction
	5.2 Analysis on large scale dataset
	5.2.1 Effect of increasing the action classes

	5.3 Scene Context descriptor
	5.3.1 How discriminative is the scene context descriptor?

	5.4 Fusion of descriptors
	5.4.1 Probabilistic Fusion of Motion and Scene Context descriptor

	5.5 System Overview
	5.6 Experiments and Results
	5.6.1 UCF11 Dataset
	5.6.2 UCF50 Dataset
	5.6.3 HMDB51 Dataset
	5.6.4 KTH Dataset

	5.7 Summary

	CHAPTER 6: INCREMENTAL ACTION RECOGNITION
	6.1 Introduction
	6.2 Proposed method
	6.2.1 Feature Extraction
	6.2.2 Feature-tree Growing
	6.2.3 Action Recognition

	6.3 Experiments and results
	6.3.1 Experiments on the KTH Dataset
	6.3.2 Effect of number of Features, feature dimensions and Nearest Neighbors
	6.3.3 Incremental action recognition
	6.3.4 Recognizing multiple actions in a video
	6.3.5 Action Recognition in frame by frame mode
	6.3.6 Experiments on IXMAS Multi-view dataset

	6.4 Summary

	CHAPTER 7: CONCLUSION AND FUTURE WORK
	7.1 Summary of Contributions
	7.2 Future Directions

	LIST OF REFERENCES

