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ABSTRACT

In this dissertation, we address the problem of discovery and representation of group activity

of humans and objects in a variety of scenarios, commonly encountered in vision applications.

The overarching goal is to devise a discriminative representation of human motion in social set-

tings, that captures a wide variety of human activities observable in video sequences. Such motion

emerges from the collective behavior of individuals and their interactions and is a significant source

of information typically employed for applications such as event detection, behavior recognition,

and activity recognition. We present new representations of human group motion for static cam-

eras, and propose algorithms for their application to variety of problems.

We first propose a novel method to model and learn the scene activity of a crowd using Social

Force Model for the first time in the computer vision community. We present a method to densely

estimate the interaction forces between people in a crowd, observed by a static camera. The pat-

terns of activities of the objects in the scene are modeled in the form of volumes of interaction

forces. Latent Dirichlet Allocation (LDA) is used to learn the model of the normal activities over

extended periods of time. Randomly selected spatio-temporal volumes of interaction forces are

used to learn the model of normal behavior of the scene. The model encodes the latent topics of

social interaction forces in the scene for normal behaviors. We classify a short video sequence of

n frames as normal or abnormal by using the learnt model. Once a sequence of frames is classified
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as an abnormal, the regions of anomalies in the abnormal frames are localized using the magnitude

of interaction forces.

The representation and estimation framework proposed above, however, has a few limitations.

This algorithm proposes to use a global estimation of the interaction forces within the crowd. It,

therefore, is incapable of identifying different groups of objects based on motion or behavior in

the scene. In addition, the algorithm proposes a model to learn the normal behavior and detects

the abnormality by merely discovering a change in behaviors. However, the learned model is not

capturing the dynamics of different behaviors.

To overcome these limitations, we then propose a method based on the Lagrangian framework

for fluid dynamics, by introducing a streakline representation of flow. Streaklines are traced in a

fluid flow by injecting color material, such as smoke or dye, which is transported with the flow

and used for visualization. In the context of computer vision, streaklines may be used in a similar

way to transport information about a scene, and they are obtained by repeatedly initializing a fixed

grid of particles at each frame, then moving both current and past particles using optical flow.

Streaklines are the locus of points that connect particles which originated from the same initial

position.

This approach is advantageous over the previous representations in two aspects: first, its rich

representation captures the dynamics of the crowd and changes in space and time in the scene

where the optical flow representation is not enough, and second, this model is capable of discov-

ering groups of similar behavior within a crowd scene by performing motion segmentation. We

propose a method to distinguish different group behaviors such as divergent/convergent motion
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and lanes using this framework. Finally, we introduce flow potentials as a discriminative feature to

recognize crowd behaviors in a scene. Results of extensive experiments are presented for multiple

real life crowd sequences involving pedestrian and vehicular traffic.

The proposed method exploits optical flow as the low level feature and performs integration

and clustering to obtain coherent group motion patterns. However, we observe that in crowd video

sequences, as well as a variety of other vision applications, the co-occurrence and inter-relation

of motion patterns are the main characteristics of group behaviors. In other words, the group

behavior of objects is a mixture of individual actions or behaviors in specific geometrical layout

and temporal order.

We, therefore, propose a new representation for group behaviors of humans using the inter-

relation of motion patterns in a scene. The representation is based on bag of visual phrases of

spatio-temporal visual words. We present a method to match the high-order spatial layout of visual

words that preserve the geometry of the visual words under similarity transformations. To perform

the experiments we collected a dataset of group choreography performances from the YouTube

website. The dataset currently contains four categories of group dances.
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CHAPTER 1: INTRODUCTION

Visual perception of objects, activities, and events are among the marvelous capabilities of the

human mind that are developed early childhood. The human vision system is capable of perform-

ing computationally complicated tasks such as detecting or counting similar objects in a scene, in

spite of occlusion and clutter, seemingly effortlessly. Research scientists in the computer vision

community have been developing mathematical tools to detect objects, recognize objects and ac-

tions, and discover behaviors and events in visual scenes comparable to human capabilities. In all

these efforts, the understanding of human activities is of a special interest for both application and

research purposes. It paves the way for understanding the development of human visual cognition

and interaction skills. In addition, the scientific know-how is useful in a variety of applications

such as surveillance and human-computer interaction.

Human activities are commonly social, and people perform actions in groups. In large groups

of people, a crowd, activities are affiliated with complexities, such as emergent behaviors or self-

organizing, which emerge from human interactions. These complexities per se make the visual

understanding of crowd scene a challenging problem. According to our experience and observa-

tions, in crowded scenes, even humans would face considerable challenges in performing simple

visual recognition task ssuch as counting or tracking objects. In part, this is because any increase

in the number of objects in a scene raises the number of cases for visual inspection and recogni-
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tion. More people in a scene would, furthermore, amplify the likelihood of occlusion and add to

the clutter. This hinders the parallel perception and integration pathways in the human brain from

exhibiting the pop-up effect to pinpoint the desired object [70]. Because of the challenges in visual

recognition of crowded scenes, the traditional pipeline of object detection, tracking, and behavior

analysis in computer vision research would fail poorly. Despite all of advances in computer vision

research, human activity recognition and behavior analysis in crowds have, therefore, remained as

open problems due to the inherent complexity and vast diversity found in crowded scenes.

Crowd behavior analysis in computer vision research delivers new application domains, such

as automatic detection of riots or chaotic acts in crowds, localization of the abnormal regions in

scenes for high resolution analysis, group behavior recognition, and performance evaluation. This

thesis develops algorithms and representations that provide an effective understanding of human

activities in crowds by studying human interactions and group behaviors.

1.1 Overview and Motivation

Large political rallies, ceremonies, and rituals which involve large groups of people pose signifi-

cant challenges for officials in terms of security, monitoring, and organization. First and foremost,

in large gatherings the security of the event is of the highest importance. In dense crowds, any ab-

normal behavior or incident would lead to a cascade of undesirable events because of the synergic

effect of human interactions [22]. Moreover, the larger the scale of the crowd becomes, the harder

the visual surveillance is for the human eye. Therefore, authorities advocate the use of automatic
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tools to analyze crowd behavior and to assist the detection and localization of abnormal events

within crowds.

In particular, certain behaviors in a crowd such as sudden convergence and divergence of the

crowd flow are vitally important for forensic purposes and for the prevention of hazardous acci-

dents in real time. For example, the annual Muslim Hajj in Mecca, Saudi Arabia, which is attended

by millions of pilgrims, has increasingly suffered from stampedes, even as authorities have con-

structed new walkways and instituted other traffic controls to prevent them. Similar incidents have

reported in India during Hindu religious holidays [31]. Moreover, stampedes may happen in social

and political gatherings in case of crowd panic. For example, on 4th of March 2010, crowd panic

emerged after hearing someone yelling the word ”bomb” and it created a stampede which ended

up in injuring several people [1].

To improve the coordination of the crowds and to facilitate the flow of the people in public

spaces, the transportation researchers are increasingly interested in ameliorating urban designs to

adapt them to public needs and habits. For instance, by monitoring the behavior of the vehicular

traffic in a highway and detecting the location of dense lanes and bottlenecks authorities efficiently

manage the highway redesigns. Since most of the urban spaces are monitored by a network of

cameras, computer vision algorithms can deliver invaluable support towards enhancing city design.

Another driving force in pursuing visual understanding of crowd behaviors is the limited num-

ber of automatic methods to recognize the collective behavior of people and their group interac-

tions. In other words, the main body of work in surveillance and human action recognition focuses

on individuals or small numbers of people. However, these methods are neither capable of nor
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designed for understanding and analysis of group behaviors such as panic, aggressive locomotion,

lane formation, or group strategies in sports such as football or basketball. Not surprisingly, the

vast majority of the literature has ignored the coordination of human actions and the emergent be-

haviors from these actions mainly because of the complexity of the action recognition for a single

individual. Very limited research efforts have been made on understanding the coordinated human

actions in groups which itself can create a new area of research in human computer interaction.

For instance, an automatic system to recognize and evaluate group performances or group sports

would help instructors and learners in improving the group executions tremendously. Moreover,

such a method can be integrated with playing consoles such as XBox, which is already equipped

with an effective vision system, to access a large number of consumers.

1.2 Contributions

In this thesis, we present three major contributions. First, We have introduced social force model

to the computer vision community as a method to understand the interaction and dynamics of

groups of people in a crowd environment. Second, we have presented a novel understanding of

motion flow in crowded scenes by introducing the streakline representation, a concept from Fluid

Mechanics, to computer vision applications. The new representation not only enables us to model

changes in the dynamics of the flow in the crowd but it can benefit other applications in computer

vision which use optical flow. We illustrate the ability of streaklines in flow segmentation and

behavior recognition. Moreover, we acquire knowledge from Fluid Mechanics by investigating

another representations of the flow, potential fields. We show that flow potentials are useful in
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understanding the underlying behavior of the crowd and to locate convergent and divergent regions

and lanes. Finally, we propose an algorithm to model the geometrical relationships of spatio-

temporal features in videos of groups of people to recognize complex behaviors that are composed

of several coordinated motions.

In the following, we introduce our contributions in abnormal event detection, flow representa-

tion, and group behavior recognition in detail.

1.2.1 Abnormal behavior detection using Social Force Model

The first algorithm we develop in this thesis introduces a novel method to model and learn the

scene activity of a crowd. We observe that the behavior of the people in a scene is composed

of personal intentions, group coherency, interactions, scene limitations, and environmental con-

ditions. We present an algorithm to detect abnormal behaviors within a crowd by modeling the

interactions in a scene over a temporal window. The main hypothesis is that the optical flow in

crowd scene is the product of the underlying dynamics of the crowd, and by observation of optical

flow we are able to estimate the characteristics of the crowd dynamics such as the interaction force

between individuals. Therefore, with the aid of a crowd dynamic model borrowed from human

transportation research, we quantitatively measure the interactions between members of the crowd

from the optical flow observations.

The core concept of this algorithm is Social Force Model which models the behavior of an

individual person inside a crowded environment and is presented in a famous article by Helbing

[22]. Here we present this model, for the first time to the computer vision community, to perform
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crowd behavior recognition and event detection. In the most general form, Social Force Model

models the dynamics of the pedestrian which has been influenced by her/his personal desire and

goal, group constraints, and the environment or the scene limitations and obstacles. To avoid the

typical problems of visual understanding of crowd scenes such as occlusion and clutter, our method

does not rely on tracking individuals or segmenting the scene. Instead, we propose a method to

densely estimate the interaction forces between individuals in a crowd, observed by a static camera

using dense optical flow and particle advection in a Lagrangian framework. We propose a method

to employ this model for understanding the behavior of a crowd in a holistic fashion.

To model the normal behavior of pedestrians in a scene, we observe the estimated interaction

force over a window of time. The primary conjecture of this approach is that within a crowd

with normal behavior, the interaction forces between individuals follow a certain patterns that

are distinct from unusual or abnormal behaviors. In this algorithm, the pattern of activities of

the people in the scene is modeled in the form of spatio-temporal volumes of interaction forces.

We use Latent Dirichlet Allocation (LDA) to learn the model of the normal activities in a static

camera over an extended period of time. By entering the set of interaction forces of normal video

clips to LDA, it discovers the latent topics of social interaction forces in the scene for normal

behaviors using a generative statistical model. The interaction forces are randomly selected as

spatio-temporal volumes of data. In order to detect an abnormal behavior in the scene, we use a

short sequence of n frames and estimate the interaction forces, and then we check the likelihood of

normal behavior in the sequence using the learned model. If a sequence is classified as abnormal,
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the regions of anomalies in the abnormal frames are localized using the magnitude of interaction

forces.

1.2.2 Crowd flow segmentation and behavior recognition

The estimation of interaction forces within members of a crowd in the holistic framework, how-

ever, has certain limitations. The proposed algorithm uses a global estimation of the interaction

forces within the crowd and disregards any explicit definition of groups in the crowd motion. It

therefore, does not distinguish different groups of objects based on motion or behavior. For exam-

ple, the method can estimate the interaction force between two groups of people that are walking

against each other but it does not provide any information about the groups themselves and does

not identify the behavior of people within the group. In addition, the algorithm proposes a model

to learn the normal behavior and detects the abnormality by merely discovering a change in behav-

iors. However, the learned model is not capable of capturing the changes in the modes of behavior

in dynamic scenes such as traffic lights with vehicular and pedestrian motion. Hence, in the second

section of this thesis, we propose a method to overcome these limitations by performing flow seg-

mentation to partition a crowd flow into groups of coherent behaviors and modeling the behaviors

within each group. We introduce two new concepts from Fluid Dynamics to perform this task.

First, we introduce a streakline representation of flow based on dense optical flow and we com-

pare it against dense optical flow (i.e, streamlines), and dense particle trajectories (i.e, pathlines).

Streaklines are traced in a fluid flow by injecting color material, such as smoke or dye, which is

transported with the flow and used for visualization. In the context of computer vision, streak-
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lines may be used in a similar way to transport information about a scene. Streaklines are the

locus of points that connect particles which originated from the same initial position. We show

that streaklines are useful in modeling the changes in the behavior of a crowd by capturing the

spatio-temporal changes in pathlines. We use streaklines to perform flow segmentation in dynamic

scenes where the motion of the crowd switches between different modes of consistent and coherent

motions such as scenes of traffic light in big cities.

Second, we introduce flow potentials as a tool for modeling crowd behaviors. In simplified

mathematical models of fluids, it is often assumed that the fluid is either incompressible, and

irrotational. These assumptions imply several conservation properties of the fluid, but most im-

portantly, they lead to potential functions, which are scalar functions that characterize the flow in

a unique way. For this discourse, potential functions enable accurate classification of behaviors

in a scene, which is not possible with streak flow alone. In this representation, the crowd flow

is decomposed into to separate scalar potential fields: stream function (incompressible ), velocity

potential (irrotational). In a broad view, the stream function provides the information regarding

the steady and non-divergent part of the flow, whereas the velocity potential contains information

regarding the local changes in the non-curling motions. Moreover, to have a complete picture of

the flow we need information from both potential functions. With this perspective, we illustrate

the strength of potentials in discriminating lanes and divergent/convergent regions within a crowd.

Finally, we use flow potentials as a discriminative feature to recognize crowd behaviors in escape

panic scenarios.
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1.2.3 Discovery of Patterns in Group Behaviors

The proposed methods exploit optical flow as the low level feature and performs integration and

clustering to obtain coherent group motion patterns and create a model of the behaviors in a bag of

words framework regardless of the spatial layout of the features. We observe that in crowd video

sequences, as well as, a variety of other vision applications such as part based action recognition,

event detection, and activity recognition, the co-occurrence and inter-relation of motion patterns

constitute the group behaviors. A prudent examination of the group behaviors reveals that every

behavior or activity is a mixture of individual actions or behaviors in certain geometrical layout

and temporal order. In order to harness the complexity of the inter-related behaviors in crowded

scenes, we propose a behavior recognition algorithm that is. To achieve the goals, we propose a

novel algorithm based on the bag of visual phrases of spatio-temporal visual words. The proposed

method benefits from high-order spatial matching of visual words that preserve the geometry of

their layout under similarity transformations. In other words, the proposed representation of behav-

iors is a bag of phrases which are invariant under arbitrary similarity transforms. In addition, we

collected a new dataset which focuses on group behaviors specifically and we are sharing it with

the research community. To perform the experiments we collected a dataset of group choreography

performances from YouTube website. The dataset contains eight categories of group dances.
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1.3 Organization of the Thesis

The thesis is structured as follows: Chapter 2 reviews existing literature, and focuses on crowd

behavior models in the computer vision literature as well as transportation research. The previ-

ous works on the representation of motion in crowd scenes and group behavior recognition are

briefly reviewed. Chapter 3 presents a framework to perform event detection in crowded scenes

based on Social Force Model. Chapter 4 proposes two new representations of flow based on

Lagrangian framework to model behaviors in dynamic crowded scenes, and reports results of ap-

plying these representations. Chapter 5 then presents a novel representation of group behaviors

based on geometrical relationships of spatio-temporal features, and presents the first dataset of

group choreography.
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CHAPTER 2: LITERATURE REVIEW

Crowd modeling and group behavior of large numbers of people and vehicles has been the subject

of research studies for decades. However, the visual understanding and analysis of crowds has

remained a daunting task mainly because of the complexity and diversity of the group behaviors.

In this chapter we provide the context of this research by covering the most relevant research

literature. We present the prominent works in crowd behavior modeling in transportation research

and the application of these models in behavior recognition and pedestrian and vehicle tracking.

In addition, we present some of the works in motion representation related to crowd scenes and

their applications. Finally, we target the literature on group behavior recognition and activity

recognition, and advances in bag of visual word representation to capture geometrical relationships

of interacting motions.

2.1 Models of Crowds

2.1.1 Crowd Models in Transportation

Crowd behavior analysis is thoroughly studied in the field of transportation and public safety where

some well-established models have been developed for describing the individual and group behav-

iors in crowded scenes [36][40]. At the high level, there are three main approaches in modeling

the crowds in this community. (1) Microscopic approach, which defines pedestrians’ motivation
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in movement and treats crowd behaviors as a result of a self-organization process. Social Force

Model by Helbing et al. in [36] is the best known example of this approach. (2) Macroscopic

approach, which focuses mainly on goal-oriented crowds. In this approach, a set of group-habits is

determined based on the goals and destinations of the scene. Pedestrians are then partitioned into

different groups to follow the predetermined habits. Therefore, instead of determining the motion

of individuals the group behaviors are modeled [40][25]. (3) Hybrid methods, which inherit from

macroscopic models as well as microscopic ones [75].

Based on socio-psychological studies, Helbing et al. in [36] originally introduced Social Force

model to investigate the pedestrian movement dynamics. The social force captures the effect of the

neighboring pedestrians and the environment on the movement of individuals in the crowd. Later,

Helbing published his popular [22] work in combining the collective model of social panic with

social force model to create a generalized model. In this model, both psychological and physical

effects are considered in formulating the behavior of the crowd.

2.1.2 Crowd Models in Computer Vision

Recently, the computer vision community has focused on crowd behavior analysis. In [10] a re-

view of the latest research trends and approaches from different research communities is provided.

There are two main approaches in solving the problem of understanding crowd behaviors. In the

conventional approach, which we refer as the “object-based” methods, a crowd is considered as

a collection of individuals [59][46]. Therefore, to understand the crowd behavior it is necessary

to perform segmentation or detect objects to analyze group behaviors [11]. This approach faces

12



considerable complexity in detection of objects, tracking trajectories, and recognizing activities in

dense crowds where the whole process is affected by occlusions. On the other hand, “holistic”

approaches [28][4] consider the crowd as a global entity in analysis of medium to high density

scenes. In related works by Avidan et al. in [63] and Chan and Vasconcelos in [16], instead of

tracking individual objects, scene modeling techniques are used to capture features for the crowd

behavior and car traffic respectively. These are top-down approaches which directly tackle the

problem of dense occluded crowds in contrast to the object-based methods. In addition, there are

some works that mix the bottom-up view of object-based methods with top-down methods such as

Ali and Shah’s [5] for tracking humans in very dense crowds.

2.1.3 Crowd Behaviors and Computer Graphics

Meanwhile, crowd behavior analysis has been an active research topic in simulation and graphic

fields where the main goal is to create realistic crowd motions. The real crowd motion exhibits

complex behaviors like line forming [40], laminar and turbulent flow [26][77], arching and clog-

ging at exits, jams around obstacles [36], and panic [22]. Exact simulation of a crowd using

behavior modeling leads to design of proper public environments that minimize the possibil-

ity of the hazardous events. Furthermore, in the graphics community, accurate modeling of the

crowd movements is used to create realistic special effects of crowds without the need for human

actors[68][20][51][72].
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2.2 Motion Representation for Crowds

Several methods based on optical flow have been presented in recent years to handle these hur-

dles. In computer vision, optical flow is widely used to compute pixel wise instantaneous motion

between consecutive frames, and numerous methods are reported to efficiently compute accurate

optical flow. However, optical flow does not capture long-range temporal dependencies, since it is

based on just two frames, and by itself does not represent spatial and temporal features of a flow

that are useful for general applications.

2.2.1 Lagrangian Approach

Recently, based on the Lagrangian framework of fluid dynamics, a notion of particle flow was in-

troduced in computer vision. Particle flow is computed by moving a grid of particles with the opti-

cal flow through numerical integration, providing trajectories that relate a particle’s initial position

to its position at a later time. Impressive results employing particle flow have been demonstrated

on crowd segmentation [2]. However, in particle flow the spatial changes may be ignored, and it

has significant time delays.

Streaklines are well known in flow visualization [74, 37] and fluid mechanics [49] as a tool for

measurement and analysis of the flow. With regard to flow visualization, streaklines are defined as

the traces of a colored material in the flow. To understand streaklines, consider a fluid flow with an

ink dye injected at a particular point. If the ink is continuously injected, then a line will be traced
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out by the ink in the direction of the flow; this is a streakline. If the direction of flow changes, then

the streaklines change accordingly.

Streaklines are new to computer vision research. In this context, streaklines may be obtained

by repeatedly initializing a grid of particles and moving all particles according to the optical flow,

in the spirit of a Lagrangian fluid flow. In other words, place a particle at point p, and move the

particle one time step with the flow. In the next time step, the point p is initialized with a new

particle, then both particles are moved with the flow. Repeating this process on some time interval

T produces particle positions from which we obtain streaklines.

2.2.2 Motion in Medium to High Density Crowds

In video scene analysis, which is the scope of this thesis, some approaches consider the entire

scene as a collection of objects, and methods for scene understanding often involve object trajec-

tory clustering and human action recognition. Examples include the tracking methods of [45] for

individuals and [53] for groups of pedestrians, and the more recent work of Pellegrini et al. [61]

in tracking based on social force model. Yet, the domain of application for these methods is limited

to low density scenes with medium to high pixel resolutions on objects. Our work is concerned

with high density scenes and low object resolution.

In other approaches, motion and tracking are represented by a set of modalities such as salient

feature points [12, 13], and spatio-temporal volumes [47]. This promotes occlusion handling while

preserving local accuracy. In the related approaches, it is common to represent both crowds and

individuals as a set of regions, group of feature points, or sparse flows. In [12], Brostow and
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Cipolla use low level feature tracking to detect individuals in a dense crowd. Seemann et al. [67]

presented a generative model to detect pedestrians as a combination of occupancy distributions.

Other methods of scene understanding involve particle tracking, motion pattern recognition,

and segmentation based on dense optical flow [3, 41]. These methods are popular due to the

intrinsic ability of global approaches to handle occlusion. The framework provides insight to

social/group behavior of humans in crowds, but individual tracking or action recognition is only

possible through a top-down framework. Recent works of Ali and Shah [2] on crowd analysis,

and [48, 7] on abnormal behavior detection fall into this category. In addition, the particle video

method [65] of Sand and Teller has a potential application in crowded scenes as it was originally

introduced to handle occlusions while providing dense motion information.

2.3 Group Behavior Recognition

Another important application in the field of computer vision, that essentially relies on modeling

motion, is the representation, recognition, and classification of human actions and activities. Group

behavior recognition is studied under the umbrella of activity recognition which is a broad and

active area of research, and comprehensive reviews of the available methods can be found in [17,

38]. In this section, we restrict the discussion of group behavior methods to methods which use

bag of visual word paradigm for activity recognition as it is the most relevant part of the literature

to this thesis.
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2.3.1 Bag of Visual Words

Computer vision research in activity and action recognition have been inspired by the bag of words

(BoW) representation from text categorization research. The adapted idea is commonly referred to

as bag of visual words (BoVW) model for visual recognition. The process has two major stages:

(1) vocabulary construction, and (2) category model learning. A vocabulary is constructed usually

with k-means algorithm [27, 14, 64], and the category model learning is performed by a classifier

such as SVM.

2.3.2 Advantages of the Bag of Words Paradigm

On major benefit of the bag of visual words representation is that does not require a background

subtraction or object tracking as its building blocks [23, 60]. The empowering characteristic stems

from the nature of local feature detectors such as 3D Harris corners [50] or Gabor filters [27].

In addition, the popular descriptors for interest points are usually scale, rotation, and translation

invariant. Because of these endowments, the visual words method is receiving increasing attention

in action and activity recognition [50, 27, 52, 33, 64, 43, 44].

2.3.3 Geometrical Relationships of Features

However, the representation discards any geometrical relationships of local features and ignores

the shape, and the spatial structure. This limits the discriminative power of the method as many

motion patterns are defined by their shape or the spatial layout. Many works [15, 58, 9, 56] have
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been done to model the spatial information by the locations of the local features or parts with

respect to the activity or the object center. These works usually require a search for the object

or activity center, which requires a prior knowledge and a separate level of learning. Methods

like Constellation model [62] create a global spatial representation through a probabilistic mode

of mutual relationship of the parts, and therefore can be applied directly without the need for prior

knowledge. However, these methods suffer from high computation costs.

In order to over come these limitations, researchers have investigated the relationships of col-

locations of visual words or so called visual phrases. The common practice in computation visual

phrases (groups of visual words) is to focus on co-occurrences of the words in entire frame or in

a local neighborhood [42, 78, 69]. Co-occurrences in the entire images fail to encode the spa-

tial information between. On the other hand, considering only the local neighborhoods falls short

of considering long range relationships . In [76, 79], the authors introduce an effective method

based on Generalized Hough Transform to overcome the limitations in the bag of words such that

it considers the spatial layouts of the words in both local and global formations. Their method

models the bag of phrases such that it is invariant to translation and scale, and only partially to

rotation. The method can identify a set of visual words in a certain geometrical layout even if they

have gone through arbitrary translation or scale. The authors in [76, 80, 79] suggested but not did

implemented the possible extension of their method to add complete rotation and scale invariance

properly. We will discuss the details of these shortcomings in Chapter 5.
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CHAPTER 3: SOCIAL FORCE MODEL FOR ANOMALY DETECTION

In this chapter we introduce a novel method to detect and localize abnormal behaviors in crowd

videos using Social Force model. For this purpose, a grid of particles is placed over the image

and it is advected with the space-time average of optical flow. By treating the moving particles as

individuals, their interaction forces are estimated using social force model. The interaction force is

then mapped into the image plane to obtain Force Flow for every pixel in every frame. Randomly

selected spatio-temporal volumes of Force Flow are used to model the normal behavior of the

crowd. We classify frames as normal and abnormal by using a bag of words approach. The regions

of anomalies in the abnormal frames are localized using interaction forces. The experiments are

conducted on a publicly available dataset from University of Minnesota for escape panic scenarios

and a challenging dataset of crowd videos taken from the web. The experiments show that the

proposed method captures the dynamics of the crowd behavior successfully. In addition, we have

shown that the social force approach outperforms similar approaches based on pure optical flow.

3.0.4 Overview of the Method

In this chapter, we introduce a computer vision method to detect and localize abnormal crowd

behavior using the Social Force model [36]. Social force model describes the behavior of the crowd

as the result of interaction of individuals. Therefore, the abnormal crowd behavior is essentially

19



(a)

(b)

Normal Abormal

Figure 3.1: (a) The Optical flow (yellow) and the computed interaction force (red) vectors of two

sampled frames. Note that the interaction force is computed accordingly for pedestrians who are

approaching each other (red box). (b) An example of detection of escape panic using the proposed

approach. Green denotes the normal and red denotes the abnormal frame.
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Figure 3.2: The summary of the proposed approach for abnormal behavior detection in the crowd

videos.

an eccentric state of the crowd interactions. Since social force model in [36] emulates the crowd

dynamics with a high degree of accuracy, we conclude that abnormal social forces in the crowd

portray abnormal behaviors. We estimate the social force parameters to create a model of likely

behaviors in the crowd.

Figure 3.2 summarizes the main steps of the algorithm. In our method, we avoid tracking of

objects to avert typical problems in tracking of high density crowds such as extensive clutter and

dynamic occlusions. Instead, we incorporate a holistic approach to analyze videos of crowds using

the particle advection method similar to [4]. In this approach, we place a grid of particles over

the image and move them with the underlying flow field. We compute the social force between

moving particles to extract interaction forces. In a crowd scene, the change of interaction forces in

time determines the on going behavior of the crowd. We capture this by mapping the interaction

forces to image frames. The resulting vector field is denoted as force flow, which is used to model

the normal behaviors in a bag of words approach [24].
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Andrade et al. [28] proposed a method for event detection in the crowd scene using HMM.

However, the principal contribution of our work is to capture dynamics of the interaction forces

in the crowd in addition to optical flow. Antonini et al. [32] reported a model for describing

pedestrian behaviors to enhance tracking and detection. On the contrary, our primary goal is to

introduce a holistic method independent of object tracking to detect abnormal crowd behaviors.

Ali and Shah in [4] proposed a method for segmentation of high density crowds by introducing a

method based on Coherent Structures from fluid dynamics and particle advection. Their method

is capable of detecting instabilities in the crowd by identifying changes in the segmentation. Even

though our work uses the same framework for particle advection, we use a completely different

course by estimating the interaction forces of people in the crowd and detect anomalies directly

without segmentation.

The organization of this chapter is as follows. In the next section we introduce Social Force

model for modeling the crowd movement. In Section 3.2 we introduce our method to estimate the

social forces in the crowd. Section 3.3 describes the proposed method to detect abnormal behaviors

in the crowd. Finally, in Section 3.4 we demonstrate abilities of the approach to detect and localize

abnormal behaviors on a publicly available dataset.

3.1 Social Force Model

In the following, we describe social force model for pedestrian motion dynamics by considering

personal motivations and environmental constraints. In this model, each of N pedestrians i with
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mass of mi changes his/her velocity vi as

mi
dvi
dt

= Fa = Fp + Fint, (3.1)

as a result of actual force Fa, and due to individualistic goals or environmental constraints. This

force consists of two main parts: (1) personal desire force Fp, and (2) interaction force Fint.

People in crowds generally seek certain goals and destinations in the environment. Thus, it is

reasonable to consider each pedestrian to have a desired direction and velocity vpi . However, the

crowd limits individual movement and the actual motion of pedestrian vi would differ from the

desired velocity. Furthermore, individuals tend to approach their desired velocity vpi based on the

personal desire force

Fp =
1

τ
(vpi − vi), (3.2)

where τ is the relaxation parameter.

The interaction force Fint consists of the repulsive and attraction force Fped based on psycho-

logical tendency to keep a social distance between pedestrians and an environment force Fw to

avoid hitting walls, buildings, and other obstacles. Therefore, the interaction force is defined as

Fint = Fped + Fw. (3.3)

It is logical to model pedestrians such that they keep small distances with people they are

related or attracted to and keep far distances from discomforting individuals or environments. In

social force model, these forces are defined based on potential fields functions. Further elaboration

of this issue is not in the interest of this thesis and readers are referred to [36] and [22] for detailed
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discussion of these functions. In this chapter, we focus our attention to estimate the interaction

force Fint between pedestrians as a single quantity.

Generalized social force model considers the effect of panic where herding behaviors appear

in events like escaping from a hazardous incident. In this model, personal desire velocity vpi is

replaced with

vqi = (1− pi)v
p
i + pi〈v

c
i 〉, (3.4)

where pi is the panic weight parameter and 〈vci 〉 is the average velocity of the neighboring pedestri-

ans. The pedestrian i exhibits individualistic behaviors as pi → 0 and herding behaviors as pi → 1.

Overall, generalized social force model can be summarized as

mi
dvi
dt

= Fa =
1

τ
(vqi − vi) + Fint. (3.5)

Generalized social force model is the cornerstone for many studies in simulation of crowd

behavior [26] [77][71] in addition to the studies in computer graphics [55][8][68] for creating

realistic animations of the crowd. Furthermore, estimation of parameters of the model provides

valuable information about the governing dynamics of the crowd [6].

3.2 Estimation of Interaction Forces in Crowds

In this section, we describe the process of estimation of interaction forces Fint from a video of

a crowd using social force model. The ideal case for computing the social force is to track all

objects in the crowd and estimate the parameters as in [6]. However, tracking of individuals in

a high density crowd is still a challenging problem in computer vision [5]. In a nutshell, low
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resolution images of the objects in the dense crowd, dynamic and static occlusions, and similarity

of the objects have made the tracking of individuals in the crowd a daunting task. Therefore, in the

crowded scenes, object-based methods fall short in accurate estimation of social force parameters.

It has been observed that when people are densely packed, individual movement is restricted

and members of the crowd can be considered granular particles [5]. Thus, in the process of esti-

mating the interaction forces, we treat the crowd as a collection of interacting particles. Similar to

[4], we put a grid of particles over the image frame and move them with the flow field computed

from the optical flow. To analyze the scene, we treat moving particles as the main cue instead of

tracking individual objects. As the outcome, the proposed method does not depend on tracking of

objects; therefore, it is effective for the high density crowd scenes as well as low density scenes.

Furthermore, the particle advection captures the continuity of the crowd flow which neither optical

flow nor any instantaneous measure could capture [66] [4].

In the next section we describe a modification of social force model to operate on moving

particles instead of pedestrians and we discuss the advection of particles using the optical flow.

In Section 3.2.2, we introduce the modification of the generalized social force model for particle

advection.

3.2.1 Particle Advection

To advect particles, we compute the average optical flow field Oave, which is the average of the

optical flow over a fixed window of time and as well as space. The spatial average is done by a

weighted average using a gaussian kernel. To start the particle advection process, we put a grid of
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Figure 3.3: An example of particle advection using the average optical flow field and the cor-

responding interaction forces. (Left) The trajectories of a small set of particles are depicted for

demonstration. (Right) The set of computed interaction forces of particles.

N particles over the image and move the particles with the corresponding flow field they overlay.

The effective velocity of particles is computed using a bilinear interpolation of the neighboring

flow field vectors.

Using the described particle advection process, particles move with the average velocity of their

neighborhood. This resembles the collective velocity of a group of people in the crowd. Figure 3.3

illustrates a example of particle advection.

3.2.2 Computing the Social Force

As a tangible analogy, the particles moving by optical flow resemble the motion of the leaves over

a flow of water. This notion helps in understanding the modification of social force model for the

particle grid. In the case of leaves, wherever there is an obstacle, joining, or branching of the fluid,
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the leaves have different velocities than the average flow. By analogy, we conclude that particles

are also capable of revealing divergent flows in the regions that their desired movement is different

from the average flow.

We modify Equation 3.5 for particle advection by defining the actual velocity of the particle vi

as

vi = Oave(xi, yi), (3.6)

where Oave(xi, yi) is the effective spatio-temporal average of optical flow for the particle i and in

the coordinate (xi, yi). We write the desired velocity of the particle vqi as

vqi = (1− pi)O(xi, yi) + piOave(xi, yi), (3.7)

where O(xi, yi) is the optical flow of particle i in the coordinate (xi, yi). The effective average

flow field and effective optical flow of particles are computed using linear interpolation.

Using the above modification, particles move with the collective velocity of the flow of the

crowd. Furthermore, each particle has a desired velocity which depends on the current optical

flow. Hence, any difference between the desired velocity of the particle and its actual velocity

relates to interaction of the particle with the neighboring particles or the environment. Figure 3.3

demonstrates an example of the computed interaction force for a sub-sample set of particles.

Without loss of generality, for a given scene or certain type of crowd with consistently similar

sizes of objects, we assume that mi = 1. Hence, we can simply estimate interaction force, Fint,

from equation 3.5 for every particle as

Fint =
1

τ
(vqi − vi)−

dvi
dt
. (3.8)
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Particle AdvectionVideo Force Flow

Clip (T Frames)

  Visual

  Word

n x n x T

Figure 3.4: The overall demonstration of the algorithm. Using the average optical flow field, a grid

of particles is updated and the interaction forces between particles are computed. The forces are

mapped back to the image space to construct the force flow. Visual words are randomly picked as

3D volumes of features from the force flow to use in LDA model.

3.3 Event Detection

The computed interaction forces determine the synergy between advecting particles. However,

discrete value of forces is not a clear evidence of abnormal behaviors. For instance, in a normal

scene of a stock market, the interaction force of stock brokers would be quite higher than the

interaction forces of walking pedestrians in a street scene. In other words, the instantaneous forces

in a scene do not discriminate the abnormalities but the pattern of forces over a period of time does.

In the following, we propose a method to model the normal patterns of forces over time.

In this method, we map the magnitude of the interaction force vectors to the image plane such

that for every pixel in the frame there is a corresponding force vector. As a result, for a stream

of image frames I(t) of m pixels, we construct a feature matrix of force flow Sf(t) of the same

resolution. Figure 3.5 illustrates force flow for a sample of frames of a video stream.
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Figure 3.5: Examples of the computed force field for one example video sequence. The image on

the top left is the first frame, and the rest are sample frames of the sequence with alpha channel

of forces overlayed. The color map Jet is used so red values represent higher forces where as blue

values represent low force flow.

The process of identifying the likely patterns in the Sf (t) is a special case of scene modeling

which is considerably studied in computer vision. The bag of words [24] method is one of the

typical candidates for such an analysis. In this chapter, we consider using bag of words method to

estimate the likelihood force flow Sf(t) and we use only normal videos for training LDA.
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To use LDA, we partition the force flow into blocks of T frames which we refer as Clips.

Next, from each clip Dj , K visual words Zj are extracted. We randomly pick visual words of size

n×n×T from locations in force flow where corresponding optical flow is not zero. Finally, a code

book of size C is formed using K-means clustering. Figure 3.4 illustrates the process of computing

force flow and the extraction of visual words.

Therefore, for a set of normal force flows of a given scene or a group of similar scenes, we

construct the corpus D = {D1, D2, D3, ..., DM} and we use Latent Dirichlet Allocation (LDA)

[24] to discover the distribution of L topics for the normal crowd behavior. Using the modified

Expectation Maximization (EM) algorithm in [24], we approximate the bag of words model to

maximize the likelihood of corpus as

ℓ(α, β) =
M
∑

j=1

log p(Dj|α, β), (3.9)

where α and β are the learned model parameters. By using the model, we estimate the likelihood

log p(Dj|α, β) for every clip from the video sequence. Based on a fixed threshold on the estimated

likelihood, we label frames as normal or as abnormal.

3.3.1 Localization of Abnormalities

Using LDA model with force flows, we distinguish abnormal frames from the normal frames.

Although it is really helpful to localize regions in the frame that correspond to the abnormalities,

the bag of words method does not implicitly provide a method to localize the unlikely visual

words. As we discussed earlier, the force flow reveals the interaction forces in the scene, which
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correspond to the activities in the scene. In an abnormal scene, we expect the anomalies to occur in

active regions or the regions with higher social interactions. Therefore, we localize abnormalities

in the abnormal frame by locating the regions of high force flow.

3.4 Experiments and Discussion

3.4.1 The UMN Dataset

The approach is tested on the publicly available dataset of normal and abnormal crowd videos

from University of Minnesota [73]. The dataset comprises the videos of 11 different scenarios of

an escape event in 3 different indoor and outdoor scenes. Figure 3.6 shows sample frames of these

scenes. Each video consists of an initial part of normal behavior and ends with sequences of the

abnormal behavior.

In the particle advection phase, the resolution of the particle grid is kept at 25% of the number of

pixels in the flow field for computational simplicity. For computation of the interaction forces, the

panic parameter is kept fixed as pi = 0. Therefore, the interaction forces are computed by assuming

that the crowd is not in panic in normal motion. As a result, any high magnitude interaction

force relates to activities different from the collective movement of the crowd. The force flow is

computed by linear mapping of the force field into an image of the same resolution as the video

frame. For construction of visual words, we used 3D volumes of 5 × 5 × 10. K = 30 visual

words are extracted from blocks of T = 10 frames of force flow with one frame overlap. The final

codebook contains C = 10 clips. The LDA is used to learn L = 30 latent topics.
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Scene 1

Scene 2

Scene 3

Figure 3.6: Sample frames in three different scenes of the UMN dataset: Normal (left) and abnor-

mal (right).

To evaluate the approach, 5 different video sequences of the first scene are selected and LDA

model is created for visual words from the frames with normal behavior. The trained model is used

to estimate the likelihood of being normal for blocks of T frames. Therefore, the method chops

any input video into clips of T frames and labels all frames in each clip as normal or abnormal.
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Figure 3.7 shows some of the qualitative results for detection of abnormal scenes. In each row,

the figure depicts the first frame of the sequence on the left and a detected abnormal frame on the

right. The black triangles on the horizontal bars identify the timing of the shown abnormal frames.

The false positive detections in Figure 3.7 are the result of incorrect estimation of social forces.

Overall, these results show that estimated social force model is capable of detecting the governing

dynamics of the abnormal behavior, even in the scenes for which it is not trained. All videos in

the dataset exhibit behavior of escape panic and the proposed approach successfully models the

dynamics of the abnormal behavior regardless of the scene characteristics.

In addition, we demonstrate the power of the proposed social force model in capturing the

abnormal behaviors in contrast to use of optical flow. In this experiment, instead of force flow,

we use spatio-temporal patches of optical flow as visual words. Thus, we create a codebook from

optical flow information to learn an LDA model. We use the same parameters for LDA training

in the experiment with optical flow. Therefore, the blocks of 10 frames of the magnitude of the

optical flow are used as clips to learn the distribution of latent topics and to compute the likeli-

hood of frames. We use the same dataset for this experiment with the same set of parameters for

learning LDA model. The ROC curves in Figure 3.9 illustrate that the proposed method outper-

forms the method based on pure optical flow in detecting abnormalities, and Table 3.1 provides the

quantitative results of the comparison.

In Figure 3.8, we demonstrate the qualitative results of localization of abnormal behaviors in

the crowd, where the escaping individuals are highlighted as abnormal areas of frames. The results

show that the interaction forces are capable of locating the abnormalities in the regions that are
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Ground Truth

Detection Result

Ground Truth

Detection Result

Ground Truth

Detection Result

Ground Truth

Detection Result

Frame # 186

Frame # 216

Frame # 473

216Frame # 

Figure 3.7: The qualitative results of the abnormal behavior detection for four sample videos of

UMN dataset. Each row represents the results for a video in the dataset. The ground truth bar

and the detection bar represent the labels of each frame for that video. Green color represents the

normal frames and red corresponds to abnormal frames. The left column shows the first frame of

the video and the right column is the first frame of the detected abnormal block (black triangles).
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Method Area under ROC

Social Force 0.96

Pure Optical Flow 0.84

Table 3.1: The comparison of the use of the proposed social force method and pure optical flow

for detection of the abnormal behaviors in the UMN dataset.

occupied by the crowd. As the figure shows, the proposed method provides regions of abnormality

and does not label individuals.

3.4.2 The Web Dataset

To evaluate our method in practical applications, we conduct an experiment on a challenging set of

videos which has been collected from the sites like Getty Images and ThoughtEquity.com which

contain documentary and high quality videos of crowds in different urban scenes. The dataset

comprises 12 sequences of normal crowd scenes such as pedestrian walking, marathon running,

and 8 scenes of escape panics, protesters clashing, and crowd fighting as abnormal scenes. All the

frames are resized to the fixed width of 480 pixels. Figure 3.10 shows sample frames of the normal

and abnormal sequences.

In this experiment, the resolution of the particle grid is kept at 10% of the number of original

pixels. For construction of visual words, we extracted K = 30 similar 5 × 5 × 10 volumes from

a block of T = 10 frames of force flow. The codebook for this experiment contains C = 30 clips

and the LDA is used to learn L = 50 latent topics. To learn the LDA model, we used the normal
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Figure 3.8: The localization of the abnormal behaviors in the frames using the interaction force.

Original frames (left), Localized abnormal behaviors (right). Red pixels correspond to the highly

probable abnormal regions.

sequences in a 2-fold fashion. We randomly excluded 2 sequences from the normal set and trained

on the rest. In the testing phase we added the excluded sequences to the test set. We did this

experiment 10 times and constructed the ROC by averaging the results of these experiments.
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Figure 3.9: The ROCs for detection of abnormal frames in the UMN dataset. Proposed method

(Red) outperforms use of pure optical flow (Blue).

The ROC in Figure 3.11 demonstrates that the proposed method outperforms optical flow

method to distinguish abnormal sequences.

3.5 Conclusion

Using social force model, we introduce a method to detect abnormal behaviors in crowd scenes.

We address the ability of the method to capture the dynamic of crowd behavior based on the inter-

action forces of individuals without the need to track objects individually or perform segmentation.

The results of our method, indicates that the method is effective in detection and localization of

abnormal behaviors in the crowd.
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Figure 3.10: Sample frames of 6 sequences of our web dataset. (Left Column) Normal samples.

(Right column) Abnormal samples.
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Figure 3.11: The ROCs of abnormal behavior detection in the web dataset.
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CHAPTER 4: STREAKLINES REPRESENTATION OF FLOW

Based on the Lagrangian framework for fluid dynamics, a streakline representation of flow is pre-

sented to solve computer vision problems involving crowd and traffic flow. Streaklines are traced

in a fluid flow by injecting color material, such as smoke or dye, which is transported with the

flow and used for visualization. In the context of computer vision, streaklines may be used in a

similar way to transport information about a scene, and they are obtained by repeatedly initializing

a fixed grid of particles at each frame, then moving both current and past particles using optical

flow. Streaklines are the locus of points that connect particles which originated from the same

initial position. In this chapter, a streakline technique is developed to compute several important

aspects of a scene, such as flow and potential functions using the Helmholtz decomposition theo-

rem. This leads to a representation of the flow that more accurately recognizes spatial and temporal

changes in the scene, compared with other commonly used flow representations. Applications of

the technique to segmentation and behavior analysis provide comparison to previously employed

techniques, showing that the streakline method outperforms the state-of-the-art in segmentation,

and opening a new domain of application for crowd analysis based on potentials.
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4.1 Introduction

Behavior analysis in crowded scenes remains an open problem in computer vision due to the in-

herent complexity and vast diversity found in such scenes. One hurdle, that must be overcome,

is finding good ways to identify flow patterns without tracking individual objects, which is both

impractical and unnecessary in the context of dense crowds. Another hurdle is finding good ways

to understand changes in behavior when the scene context and crowd dynamics can vary over such

a wide range.

In this chapter, we maintain three major contributions. First, we assert a streakline framework

as a new tool for analysis of crowd videos. We demonstrate streaklines can be more informa-

tive than commonly used flow representations, known as optical flow and particle flow. Second,

we present an innovative algorithm to compute a fluid-like flow of crowds to perform behavior

analysis. Third, we present potential functions as valuable tools for behavior analysis and comple-

menting the streakline framework.

The capabilities of the streakline framework are tested in two applications: crowd segmentation

and abnormal behavior detection. The segmentation results demonstrate an improvement for un-

steady flows in comparison to state of the art. The behavior detection results show an improvement

over base-line optical flow.
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Table 4.1: Advantages of Streaklines over Streamlines and Pathlines

Streamlines Pathlines Streaklines

Spatial gaps in flow. Ignores spatial

changes.

Fills gaps.

Rough transitions in

time.

Time delays. Captures instant

changes.

4.2 Streaklines vs. Pathlines and Streamlines

In fluid mechanics there are different vector field representations of the flow [49]:

Streamlines are tangent to the velocity vectors at every point in the flow. These correspond to

optical flow, and a visual example is given in Figure 4.1(a).

Pathlines are trajectories that individual particles in a fluid flow will follow. These directly corre-

spond to integration of optical flow in time and are illustrated by a set of curves with the spectrum

of colors from Blue to Orange in Figure 4.1(b). Particle flow is the set of pathlines which are

computed from time averaged optical flow [2].

Streaklines represent the locations of all particles at a given time that passed through a particular

point. Figure 4.1(c) shows streaklines as red curves next to pathlines.

For flows that are steady and unchanging, these three representations are the same, but for flows

that are unsteady, so that directions of flow can change with time, they are different. Since we are

using a Lagrangian model for fluid flow to exploit the dynamics in crowd videos, where frequent

changes in the flow are expected, it is important to know which vector field representation is most

appropriate for the given problem. In this work, we provide a juxtaposition of streaklines with
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Table 4.2: A table of values for x-coordinate particle positions, which are computed from the

optical flow. Columns correspond to pathlines and rows correspond to streaklines.

L p(0 , T ) L p(1 , T ) L p(2 , T ) · · · L p( t, T ) · · · L p(T, T )

S p(0 , 0) x
p
0
(0)
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p
0
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p
1
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p
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1
(T ) x

p
2
(T ) · · · x

p
t (T ) · · · x

p
T (T )

streamlines and pathlines, which correspond to commonly used methods [7, 21] based on optical

flow and particle flow, respectively. Our theory and results show that streamlines leave spatial gaps

in the flow, as well as choppy transitions between frames. This is because it is produced from

instantaneous velocity vectors. Hence, this approach does not produce fluid-like flow for crowd

videos [39]. Pathlines overcome this problem by filling the spatial gaps, but do not allow for detec-

tion of local spatial changes, and in addition create an artificial time lag. Our streakline approach

provides solutions to each of these problems, and Table 4.1 gives an overview of the advantages.

To explain how streaklines are computed, let (xpi (t), y
p
i (t)) be a particle position at time t,

initialized at point p and frame i for i, t = 0, 1, 2, . . . , T . Repeated initialization at p implies

(xpi (i), y
p
i (i)) = (xp0(0), y

p
0(0)). Particle advection is achieved by

xpi (t + 1) = xpi (t) + u(xpi (t), y
p
i (t), t)

ypi (t + 1) = ypi (t) + v(xpi (t), y
p
i (t), t) ,

(4.1)

where u and v represent the velocity field obtained from optical flow. This yields a family of

curves, all starting at point p and tracing the path of the flow from that point in frame i. Naturally,
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Figure 4.1: An illustration of pathlines and streaklines generated using a locally uniform flow field

which changes over time. (Labels on points and curves directly correspond to Table 4.2.) (a) The

changes in the flow vectors over time period t = 0 to t = 18. (b) The pathlines are illustrated as

a spectrum of lines. Blue corresponds to the initiating frame of t = 0 and orange corresponds to

initiating frame of t = 18. The red line illustrates the streakline at frame t = 18. (c) Streaklines

at different frames as red curves to illustrate the evolution of the streaklines through time. The

streakline at time t = 18 is illustrated along with the initiating motion vector as explained by (4.2).

for steady flow all these curves lie along the same path, but for unsteady flows the curves vary in

direction and shape, characteristic of pedestrian flow.

Particle advection for all i, t = 0, 1, 2, . . . , T using (4.1), yields a table of values for xpi (t)

(shown in Table 4.2) and similarly for ypi (t). The columns of the table show the pathlines Lp(t, T ),

which are the particle trajectories from time t to T . The rows provide the streaklines Sp(0, t),

connecting all particles from t frames that originated at point p. Corresponding to this table, Figure

4.1 illustrates the set of streaklines and pathlines for an example unsteady flow at time t = T . At

the start of observation, particles are initiated at every time instant at point p. The spectrum of
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lines from blue to orange represents the pathlines of particles which have been initiated at time

t = 0. The solid red color lines depict streaklines. Since the flow is not steady, the streaklines and

pathlines are different.

The unsteady flow at a point can be represented by either a set of pathlines or a streakline. How-

ever, the streakline provides a speed and memory gain, as a streakline with L particles corresponds

to L pathlines with L × (L − 1)/2 particles. There are other interesting, less obvious, properties

that streaklines inherit from fluid mechanics. First, in unsteady flows, extra long streaklines may

exhibit shapes inconsistent with the actual flow, meaning they can not be allowed to get too long

[34]. Second, as invented for visualization purposes, streaklines in fluids transport a color material

along the flow, meaning they propagate changes in the flow along their path. Similarly, our setup

allows streaklines to propagate velocities, given by the instantaneous optical flow Ω = (u, v)T at

the time of initialization, along the flow like a material. To this end, we define an extended particle

i as a set of position and initial velocity

Pi = {xi(t), yi(t), ui, vi}, (4.2)

where ui = u(xpi (i), y
p
i (i), i), and vi = v(xpi (i), y

p
i (i), i). In the whole scene, we consider only

streaklines comprising extended particles. Figure 4.2 depicts streaklines for an example sequence.
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Figure 4.2: An illustration of streaklines for a video sequence.

4.3 Computations with Streaklines

Streaklines provide a means to recognize spatial and temporal changes in the flow, that neither

streamlines nor pathlines could provide directly. This point is made here using streak flow and

potential functions. In essence, streak flow is obtained by time integration of the velocity field,

while potential functions are obtained from spatial integration, and each provides useful informa-

tion concerning the dynamics in the scene.

45



4.3.1 Streak Flow

Research in social behavior of pedestrians in crowds reveals that people tend to follow a pathway

trailing pedestrians who have similar paths as a group [35]. As a pedestrian passes a point, there

is a social expectation that any other pedestrian behind him/her would follow a similar path. Con-

sidering this social behavior, the actual, but invisible, flow of pedestrians has no gaps between

individuals who are walking similarly. Hence, for crowd motion, gaps in the optical flow should

be filled along trajectories with similar motion vectors prior to analysis.

In order to achieve an accurate representation of flow from crowd motion, we use the streak-

lines to compute a new motion field which we refer to as streak flow, denoted Ωs = (us, vs)
T . To

compute streak flow, we compute the streaklines by temporally integrating optical flow, as illus-

trated in Table 4.2, and forming the particles as in Equation (4.2). We describe the computation of

us; computation of vs is similar. Given data in the vector

U = [ui], where ui ∈ Pi, ∀i, p, we compute the streak flow in the x direction at each pixel.

Based on equations (4.1), particle positions have sub-pixel accuracy. We compute a triangula-

tion of pixels, which implies that each particle Pi has three neighboring pixels (nearest neighbors).

At the sub-pixel level, it is reasonable to consider ui to be the linear interpolation of the three

neighboring pixels. Hence, we define

ui = a1us(k1) + a2us(k2) + a3us(k3) , (4.3)

where kj is the index of a neighboring pixel, and aj is the known basis function of the triangulation

of the domain for the j-th neighboring pixel. Using a triangular interpolation formula, each us(ki)
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is computed based on the relative positions of the three pixels and the particle. Using (4.3) for all

the data points in U , we form a linear system of equations

Aus = U , (4.4)

where ai are entries of the matrix A, and us is the least square solution of (4.4). 1

Streak flows encapsulate motion information of the flow for a period of time. This resembles

the notion of particle flow (equivalent to average optical flow) where advection of a grid of particles

over a window of time provides information for segmenting the crowd motion. We argue that

streak flows exhibit changes in the flow faster than particle flow, and therefore, they capture crowd

motions better in a dynamically changing flow. This can be observed in Figure 4.3, illustrating

sample frames from a video of a traffic intersection, which includes motions from both pedestrians

and vehicles. The flow in the scene is unsteady and the different motion patterns appear in the

video as the traffic lights change. The figure compares the streak flow to the particle flow and the

optical flow in capturing temporal and local changes. For temporal changes the flow is compared at

two different times: (1) At the start of the top-down flow of traffic (1st row), and (2) at the ending

stage of the up-down traffic flow (2nd row).

Temporal changes: The first row of Figure 4.3 shows a frame from the sequence a few sec-

onds after the change of a traffic light, so vehicles and pedestrians are now moving in a different

direction, from top to bottom. By comparing the area to notice inside the red circle, it is evident

that the streak flow is able to capture this change after only a couple of frames, but the particle flow

1 www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit
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Figure 4.3: The comparison of optical flow, particle flow and streak flow for Boston sequence

(color coded). The red circle indicates the area to notice.

lags in shaping to the new flow, and the optical flow shows choppy flow segments that are difficult

to use for further analysis.

Local changes: Both streak flow and particle flow have the ability to fill in the gaps of the

non-dense traffic flow. In second row of Figure 4.3, the optical flow shows the motion of a car

making a left turn. The particle flow is unable to capture this change, and the region on the bus

and car both show inconsistency compared to instantaneous flow. The figure shows that the streak

flow was more accurate in exhibiting immediate flow changes over the car as well as the bus.

4.3.2 Potential Functions

Building on the fluid dynamics approach to crowd motion, we employ another concept from flu-

ids providing a different point of view. In simplified mathematical models of fluids, it is often

assumed that the fluid is incompressible, and irrotational. These assumptions imply several con-
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servation properties of the fluid, but most importantly, they lead to potential functions, which are

scalar functions that characterize the flow in a unique way. For this discourse, potential functions

enable accurate classification of behaviors in a scene, which is not possible with streak flow alone.

Application of potential functions to abnormal behavior detection is presented in Sections 4.4 and

4.5.

Since the optical flow Ω = (u, v)T denotes a planar vector field, the Helmholtz decomposition

theorem states that Ω = Ωc + Ωr, where Ωc and Ωr respectively denote the incompressible and

irrotational parts of the vector field. To clarify, an incompressible vector field is divergence free

∇ · Ω = 0, and an irrotational vector field is curl free ∇ × Ω = 0. Thus, there are functions ψ

and φ, known respectively as the stream function and the velocity potential, satisfying Ω⊥
c = ∇ψ

and Ωr = ∇φ (see, for example [49]). Following [19], we use Fourier transforms to decompose

incompressible and irrotational parts of the vector field and estimate the potential functions using

φ(x, y) = φ0 +
1

2

∫ x

0

(ur(s, y) + ur(s, 0))ds+
1

2

∫ y

0

(vr(x, s) + vr(0, s)) ds , (4.5)

ψ(x, y) = ψ0 +
1

2

∫ y

0

(uc(x, s) + uc(0, s))ds−
1

2

∫ x

0

(vc(s, y) + vc(s, 0)) ds . (4.6)

Potential functions are computed in Corpetti et al. [19] and used in a meteorological application

to track weather patterns in satellite images. In order to compute valid potential fields, one needs

a dense motion field. In that particular application the motion fields are as dense as possible, but

in crowd videos the degree of motion density can vary by large amounts. In addition, a potential

function computed directly from optical flow is noisy with many valleys and peaks, which quickly
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Figure 4.4: An illustration of discrimination power of potentials for six manually labelled behav-

iors. The first two columns, escape panic from UMN Dataset [73], column 3 shows circulating

motion of cars in a lane, and columns 4 to 6 show traffic forming lanes from NGSIM dataset.

Potentials are scaled to maximum value and plotted using jet colormap. (1st row) The lanes are

overlaid with the frame for the steady motions. (2nd row) divergent regions (red circles) and con-

vergent regions (green circle). (3rd row) Streamlines, which are contours of stream function.

disappear and reappear. Streak flows enable us to compute reliable potential functions for crowd

flow, incorporating local and temporal changes. In other words, we incorporate streaklines to

compute smoothly evolving potential functions, which better reveal the dynamics of the crowd.

In a broad view, the stream function ψ provides the information regarding the steady and non-

divergent part of the flow, whereas the velocity potential φ contains information regarding the

local changes in the non-curling motions. Moreover, to have a complete picture of the flow we

need information from both potential functions. With this perspective, we illustrate the strength

of potentials in discriminating lanes and divergent/convergent regions in five different scenes in

Figure 4.4. In this figure, the velocity potential is accountable for capturing unsteady changes in
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the flow. For instance, escape to the sides of the scene corresponds to a valley in the center of φ and

formation of surrounding peaks on the sides. Furthermore, the stream function ψ is incorporated

to detect lanes in the steady motion of vehicles. The area between contours of ψ (i.e, streamlines)

show the regions of steady and non-divergent motion such as lanes. The algorithm for detection of

lane and divergent/convergent regions is explained in Section 4.4.

4.4 Applications of Streaklines

Using streak flow and potential functions, we demonstrate the strength of our approach for crowd

segmentation and abnormal behavior detection in unsteady flows. In the end, we find that our

method performs better than other methods for solving these problems.

4.4.1 Crowd Segmentation

In this algorithm, we segment every frame of the video into regions of different motions based on

the similarity of the neighboring streaklines. Similar streaklines correspond to similar trajectories

of particles passing from neighboring pixels over a period of time. Hence, it captures the affinity

of current and previous motions at these pixels. Figure 4.5 presents the block diagram of the

segmentation algorithm. First, frame by frame optical flow of the video is computed. Using the

optical flow, a set of particles are then moved over the frame to construct the streaklines and the

streak flow. These quantities are used to compute similarity in a 8-connectivity neighborhood. For

every pair of pixels i and j, the similarity is computed in terms of streaklines and streak flow.
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Figure 4.5: The crowd segmentation algorithm.

Each pixel is associated with a streakline of length l. The streakline similarity is computed

using the sum of the normalized projections of internal vectors as Rs(i, j) =
∑l−1

m=0 prj(X
i
m, X

j
m),

whereX i
m and prj(·, ·) are defined in Figure 4.6.a. Streak flow similarity is computed asRΩ(i, j) =

| cos(∠Ωi
s) − cos(∠Ωj

s)|, where ∠Ωi
s is the angle of the streak flow vector at pixel i. In order to

define boundaries of the regions, we compute the similarity map at every pixel using

H(i) =
∑

j∈N(i)

αRs(i, j) + βRΩ(i, j) , (4.7)

where α and β are weights regulating the share of streakline and streak flow similarities in the

final segmentation. We use α = 0.8 and β = 0.2 in the experiments. Since similar motions over

time build similar streaklines and streak flows, boundaries of different motions form valleys in the

similarity map. Using the negative of the similarity map, we segment the crowd into regions of

similar motion with watershed segmentation. Results are presented in Section 4.5.1.

Lane detection: In addition to segmenting a frame into regions of consistent motion, we com-

bine information from potentials to detect lanes in each segment. As stated in section 4.3.2, the

area between contours of ψ corresponds to the steady flow, and the rate of the incompressible flow

between a pair of contours is equal to the difference between the values of ψ on those contours.
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Figure 4.6: (a) Streaklines Si and Sj are sets of vectors X i
1..L and Xj

1..L. The originating point

of streaklines (rectangle), the particles (circles), and the normalized projections of the vectors are

used for computing the similarity of streaklines. (b) The computation of divergence factor, Vi, for

a region of interest.

Considering this, we detect lanes as parts of a segmented region that fall between two contours of

the stream function by a simple intersection operation (see Figure 4.4).
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Figure 4.7: The abnormal behavior detection algorithm.

4.4.2 Abnormal Behavior Detection

To detect abnormal behavior of crowds, it is necessary to have a global picture of the behavior in a

scene, for which we use potential fields. The surfaces φ and ψ characterize particle positions and

velocities in a global sense, and abnormal behaviors are simply detected as large deviations from

the expected. Here, we present an algorithm to detect abnormal behavior in crowds using potential

functions for the flow.

Figure 4.7 shows the block diagram for the algorithm. For every frame in a video sequence,

the Streak flow Ωs = (us, vs)
T is computed, and the potential functions of the frame {φ, ψ} are

computed using equations (4.5) and (4.6). The peaks and valleys of the potential surface convey

information regarding the global behavior of the flow (Figure 4.4). Thus, potentials provide new

features to distinguish global behaviors in the crowd in compact form. For every frame, a feature

vector V is formed by concatenating the values of φ and ψ of that frame. Using feature vector V ,

we recognize behaviors in each frame by training a support vector machine (SVM) classifier. In

Section 4.5, we provide comparative results of abnormal behavior detection using potentials.
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In addition to detecting abnormal behaviors, we incorporate streaklines and the velocity poten-

tial φ to provide a description of the anomaly based on divergent/convergent regions. The extrema

on velocity potentials correspond to divergent or convergent regions. To robustly detect these re-

gions, we find the major local extrema of φ, and then compute the average divergence factor,

V̄ = 1
n

∑

i Vi, where Vi is defined in Figure 4.6.b, and n is the number of pixels in the radius r of

the extremum point. Simple thresholding of this factor distinguish divergent/convergent regions as

Region Type =



















Divergent, if V̄ > T

Convergent, if V̄ < T

. (4.8)

In the experiments, r is set fixed empirically for each scene and T = 0. As it is illustrated in Figure

4.4 the escape panic scene involves the divergent region in the center and convergent regions on the

sides to which the crowd is running. Similarly, a sudden change in the direction of turning vehicles

or the entry/exit points form divergent/convergent regions. The circular regions in the second row

are the actual output of our algorithm. Obviously, there are some mistakes (20%). For example, in

circling traffic, column 3, the region on the right is detected incorrectly.

4.5 Experimental Results

We present results of algorithms outlined in Section 4.4, using experiments on two datasets. A

stock footage dataset from the web [54] is used for streakline analysis, and a dataset from the

University of Minnesota [73], which contains 11 videos of crowd escape panic, is used to evaluate

the effectiveness of potentials for abnormal behavior detection.
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4.5.1 Results of Crowd Motion Segmentation

Results of our proposed segmentation algorithm are provided here. We compare with the state of

the art [2], considering crowds with dynamic segmentations, such that the motion patterns vary in

time exhibiting different states of behavior.

Figure 4.8 provides segmentation results for two scenes, and video frames are overlaid by

colored segmentation regions. In this experiment, the length of streaklines and pathlines is l = 40.

On the left side of Figure 4.8, an intersection is shown in Boston, containing three behavioral

phases represented by frames 40, 197, and 850. (1) South bound traffic is formed. (2) Traffic lights

change and an east/west bound (from/to station) a flow of pedestrians emerges. (3) Traffic lights

change again, and a north bound vehicle flow is formed together with an east bound pedestrian flow.

On the right side of Figure 4.8, an intersection is shown in Argentina containing three behavioral

phases. (1) East/west bound traffic is formed. (2) After the traffic lights change, a south bound

vehicle flow and a north/south pedestrian flow develop. (3) Traffic lights change to the first phase

and east/west bound flows resume. Frames 115 and 213 illustrate the start of phases 2 and 3,

respectively. The optical flow of this video is particulary noisy as it is based on time-lapse imagery,

whereas the Boston sequence is a regular 30fps video. Videos are available in the supplementary

material.

Figure 4.8 demonstrates the segmentations based on streaklines are spatially and temporally

pronounced and more accurate in dynamic scenes than the state of the art. We highlight the gains

in using our method in each frame: (Frame 40) A walking pedestrian and the north bound vehicle
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Frame 040 Frame 197 Frame 850 Frame 115 Frame 213 

Figure 4.8: The comparison of segmentation results using streaklines (1st row), and pathlines [2]

(2nd row) for scenes with unsteady motions.

motion are segmented correctly. (Frame 197) Pedestrians are distinguished from the south bound

cars. (Frame 850) A south bound pedestrian (first row, green) is separated from north bound

vehicles. (Frame 115, 4th column) Different pedestrian flows are distinguished (first row, cyan and

purple). (Frame 213) West bound vehicle flow (first row, yellow) is segmented earlier, at the start

of phase 2 of the video.

In Figure 4.9, the quantitative comparison of the proposed segmentations method and [2]

is provided. In this experiment, frame by frame segmentations of both methods are compared as

follows. The number of objects (human/vehicle) in each segmented region is counted provided that

its direction of motion is no more that 90 degrees apart from the direction motion of the majority

of the objects. We refer to this number as the number of correctly segmented objects (see Figure

4.9.a). To evaluate the methods, this number is counted manually for a subset of frames of Boston

and Argentina video sequences. Figure 4.9 demonstrates that streakline segmentation outperforms

the state of the art in number of correctly and incorrectly segmented objects.
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4.5.2 Results of Abnormal Behavior Detection

This section illustrates results for abnormal behavior detection on the UMN dataset [73], con-

taining 11 sequences for 3 scenes. In this dataset, pedestrians initially walk randomly, and exhibit

escape panic by running in different directions in the end. Figure 4.4 shows that potential functions

provide rich information about global behavior. Interesting properties of potentials are revealed as

we compare φ for frames where people escape to all sides to the frames which people run in a

single direction (2nd column).

In order to illustrate the strength of potentials in representing the global behavior we compared

our method using different features. In experiment (a), we first use frame-based potentials as the

input features V for training a SVM with RBF kernels. Second, we use vectorized streak flow

Ωs = (us, vs) and third, we use average baseline optical flow (pyramidal LK) to perform the

same task. Figure 4.9.e compares the recognition results using any of these three features for a

different number of training examples. In order to reduce the computation time, we downsample

the features of each frame by factor of n = 20. In this experiment, the frames from different

scenes in the dataset are combined in a single pool and a portion is selected as the train set and the

rest is considered as the test set (no overlaps). The figure shows that after increasing the number

of examples to merely 20%, the potentials show considerable improvement in performance. In

addition, the figure illustrates the strength of streak flows compared to particle flow in providing

information for abnormal behavior detection.
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In experiment (b), we performed a leave-one-out cross validation on the UMN dataset using

downsampled versions of potentials and average optical flow. In this experiment, we trained a

SVM with RBF kernels on 10 videos and computed the false positive and true positives on one

video sequence and repeated this for all the 11 videos. Figure 4.9.f illustrates the ROC of this

experiment which indicates improvement using potentials over baseline optical flow.

4.6 Conclusion

Based on a Lagrangian particle dynamics framework for fluid flow, we juxtapose three vector

field representations of the flow, given by streamlines, pathlines, and streaklines. With application

to problems in segmentation and abnormal behavior detection for crowd and traffic dynamics, we

show that the streakline representation is advantageous. When compared to the other two represen-

tations, which are commonly used to solve problems in computer vision, streaklines demonstrated

the ability to quickly recognize temporal changes in a sequence, in addition to finding a balance

between recognition of local spatial changes and filling spatial gaps in the flow. When used to

compute potential functions and to perform segmentation, the streakline approach was superior to

using optical flow and comparable to using particle flow, aside from the ability to recognize scene

changes. With regard to abnormal behavior detection, the method of streaklines proved superior

to both of the other representations, and the introduction of potential functions for this purpose

proved valuable.
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Figure 4.9: (a) The criterion for segmentation evaluation, (green) correctly segmented object, (red)

incorrectly segmented object. (b), (c), and (d) Quantitative comparison of segmentation results

using streaklines (blue), and pathlines [2] (red). (e,f) Abnormal behavior recognition, (e) Variation

of the number of training examples. (f) ROC of the cross validation.
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CHAPTER 5: GROUP BEHAVIOR RECOGNITION

5.1 Introduction

In the previous chapters, we analyze the crowd behavior as a single holistic entity which under-

goes certain dynamics or as a body of parts where each exhibits a coherent motion. In this chapter,

we propose a new approach to model the inter-relations of motion entities in a scene. Therefore,

a group behavior is modeled not as isolated motions patterns but as coordinated movements of

people. The intuition comes from the fact that behaviors are a mixture of coordinated but distin-

guishable motion patterns in certain geometrical and temporal order. Thus, without studying the

relation of the motions patterns in a scene, any behavior recognition algorithm will face severe

scalability issues when applied to another scene or in a different time other that the place and time

it is designed for. In this chapter, we propose a method to represent the spatial layout of the motion

patterns in a compact and discriminative form. We propose a method to model the structural layout

of the behaviors by considering the higher order inter-relation of motion descriptors in the scene.

We apply this method to solve the new problem of group choreography recognition in conjunction

with introducing a new dataset.
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5.2 Group Behavior Recognition Challenges

The group behavior is a challenging task in computer vision. The ideal method to perform this task

should answer the following concerns.

• Group behaviors, such as group dances or stage performances, involve a large variety of

articulated movement in addition to the common challenges such as occlusion and clutter.

Therefore, the motion representation should be robust and discriminative.

• The group behaviors are collections of different actions in certain geometric layout or tem-

poral order. This creates a large variance in the space of possible behaviors even with a

limited number of possible actions. Therefore, the behavior recognition method should be

scalable and comprehensive.

To study the group behaviors of humans, we focus on choreography recognition since the pop-

ularity of the subject has created an abundance of data on Internet which definitely helps us in

creating a dataset and in applying machine learning algorithms. However the concept and the

structure of the problem is common among other group activities, and researchers can apply the

same proposed techniques in other contexts such as transportation research, group sports like soc-

cer and basketball, stage performances, religious ceremonies, and even animal swarms with proper

adaptations.
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Figure 5.1: The hierarchy of the choreography concepts.

5.2.1 Elements of Choreography

Choreography is the art of dance design and the word choreography literally means dance writing

in Greek language. The role of choreography in dance performances is the same as the role of

musical notation in creation of music. In an inclusive definition, a choreography is a composition

of pieces of visual manifestations such as movements, light, space, music, costumes, and improvi-

sations which are referred by dance elements. In this thesis we are investigating the choreography

formation merely based on composition of movements or the motion. Therefore, in the following

arguments we plainly consider the movement as the only element of the dance. The further explo-

ration of visual understanding of chorographies based on other elements or their combination is

left for future research and is beyond the scope of this thesis.

Almost exclusively, the building blocks of the dance movements are called dance moves or

dance steps which are short or atomic, yet articulated, actions in tune with music. There are
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multitudes of dance moves such as Michael Jackson’s Moonwalk, basic step, and pomp turn [18].

Table 5.1 contains examples of dance moves, and Figure 5.2 illustrates sample dance moves. The

hierarchy of concepts in choreography is depicted in Figure 5.1. The dance moves are at the lowest

level of semantic hierarchy of choreographies.

The mid level concept is called a dance routine, which is a series of dance moves in certain

composition. For instance, a choreographer would design a dance routine by composing three

dance moves such as: basic step, turn, and basic step. The composition, definitely, encompasses

the duration and the rhythm of the movements as well, but we ignore that for the sake of argument.

Based on our observations, the dance routines are much easier to visually recognize than atomic

moves.

The highest conceptual level of understanding dances is the dance style. The style of a dance

is defined by the composition of the dance routine. For example, in a certain style of dance the

choreographer would use only certain moves in certain spatio-temporal formations which is the

signature of that style. Table 5.1 enlists a few popular dance styles such as Ballet, Hip hop, and

Country dance. Certain styles of dances are performed in groups and the choreography for those

dances contains the layout and the inter-relation of dance routines of individuals or subgroups

in the whole performance. In this thesis we focus on group dances in the following styles: (1)

Bollywood (Hindi), (2) Country, (3) Folk, and (4) Line.
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Frame 1

Frame N

Figure 5.2: Sample dance movies. (Left) ballet pomp jump, middle (Basic steps of Salsa), and

(right) Moonwalk.
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Dance Style Common routines Common Moves Group Dance

Ballet

Adagio Pas de chat Yes

Allegro Pas de cheval

Coda Pas de valse

Hip hop

Breaking Running man Yes

Locking Kick cross step

Popping The wave

Country

Chass walk Yes

Clockwise turn

Gypsy bending arms

Stars holding hands

Table 5.1: The list of a few popular dance styles with their common routines and moves.

5.3 Coordinated Behaviors as Bag of Phrases

In this chapter, we introduce an algorithm to model the group behavior involving coordinated

behaviors in the bag of words framework. However, instead of only using motion descriptors such

as Dollar motion descriptor [27] to construct the code book, we consider the first, second, third,

and other higher order combination of visual words. Visual words are quantized motion descriptors

from the set of all visual words or the visual word vocabulary (codebook). A group of visual words

in certain geometrical layout is referred to as a visual phrase. Our proposed method extends the

recent work of [76] in the object recognition research community in using higher order visual

features that contain the spatial layouts of visual words, and applies this extension to video activity

recognition.
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Despite the success of the BoVW model in recognizing objects, actions, and activities, it has a

notorious limitation in ignoring the spatial relationships among the visual words. This plays as a

major disadvantage in modeling objects or behaviors with distinct spatial structures, and therefore,

reduces the discriminative power of the method. For instance, in an activity recognition problem

such as group dancing, bag of visual words cannot discriminate betwen distinctly different be-

haviors which occur in different spatial layouts but involving the same visual words. Figure 5.3

illustrates this ambiguity in visual word model in an example group behavior where two different

behaviors would, incorrectly, have similar representations, whereas two similar behavior would,

ambiguously, have totally different representations.

In this section, we introduce an extension to the recent work in [79] to identify visual phrases

invariant to any geometric transformation such as similarity, affine, and projective transformations.

In addition, we introduce an efficient algorithm for the special case of similarity transformations.

Finally, we apply the extended representation to the choreography recognition problem. We follow

the notation of the original framework for geometrically preserved bag of visual phrases in [79],

and we present our adaptation of the method to activity recognition in videos as our first step

toward extending it.

5.3.1 Adapting Visual Phrases for Videos

In this section, we review a general definition of visual word and visual phrases methods by adapt-

ing the core idea to videos and activity recognition problems. A visual phrase of length k is

defined as k visual words in a certain spatial layout. Different words or different spatial layouts
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Figure 5.3: A schematic of the ambiguity of group behaviors in bag of visual words representation.

The spatio-temporal volumes are represented by rectangular patches and the arrows indicate the

visual words. The color arrows represent the label of the visual word in the codebook. (a) and (b)

illustrate two different behaviors, convergence and divergence, which is confused in BoVW as the

same behavior. (c) and (d) illustrate two similar behaviors, circling, which have totally different

BoVW representations.
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define different phrases. We first review the simple case of visual phrases of length one which the

representation reduces to visual words. In bag of visual words framework, and image or a video

clip is represented by a histogram of visual entities or visual words. The visual words are quan-

tized sets of spatial pathes or spatio-temporal volumes of data using a clustering algorithm such

as k-means algorithm. Given an initial visual vocabulary V = {w1, w2, ..., wm}, where wi ∈ Rd,

and d is the dimension of the descriptor for the patch or the spatio-temporal volume, a video clip c

is represented by a histogram Φ = {h1, h2, h3, ..., hk} where is hi is the term frequency of visual

word hi in the video clip. Later in this section, we a more comprehensive representation of a video

clip in the bag of visual phrases representation.

Kernel methods such as Support Vector Machines (SVM) are among the most popular ap-

proaches for developing learning algorithms for activity recognition using BoVW representation.

A kernel function is a function that calculates a metric, usually an inner product, between two

patterns after mapping to the feature space. The mapping, in this case, is the visual word represen-

tation of a video clip or φ(c). For any mapping Φ : C → F , from the input space C, to the feature

space F , a kernel function is defined as

K(ci, cj) = 〈Φ(ci),Φ(cj)〉, ∀ci, cj ∈ C. (5.1)

However, in BoVW framework the kernels does not capture any spatial information, and the pop-

ular kernels such as histogram intersection and χ− square ignore the geometrical relationships of

the visual words.
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In order to overcome these shortcomings, in [79, 80], the authors present a new kernel for the

bag of visual words which considers visual phrases in addition to visual words. The basic idea is

to compute the metric not only based on the visual words but also based on their spatial locations

and geometrical relationships. The trivial approach would be to redesign the mapping function

Φ to include the histograms of visual phrases as well. Then, the previouly known kernels can be

applied directly. However, this approach is extensively costly in terms of memory and speed as it

increases the complexity of the algorithm exponentially.

Therefore, in [79, 80] an efficient method is proposed to construct the kernel based on the

matching co-occurring visual phrases using an intermediate transformation which is Generalized

Hough Transform (GHT). Figure 5.4 illustrates the basic idea. We refer to the visual words or

visual phrases as features, and in the following, we describe the video representation and the

kernel for higher order spatial relations of features in the framework presented in [80].

Video representation: A video clip c is represented as set of pairs of visual words xi and its

corresponding spatial information in the frame. That is, c = {(w1, r1), (w2, r2), (w3, r3), . . . , (wn, rn)},

where ri = (x, y, s) is a triplet of xy location in pixels and the scale of the feature.

Kernel for higher order Spatial Relations: A feature of order n is defined as a combination of

n visual words in a certain spatial relationship as is referred to by fn. Therefore, different relative

spatial locations or scales of the features creates different features. For the visual vocabulary

V = {x1, x2, ..., xm}, features of order n are members a set of Sn = mn × q selection of n

visual words in q possible spatial layouts. n-word feature representation of a video is presented as

Φn = {h1, h2, h3, . . . , hSn
}, where hi is the number of occurrence of the corresponding feature in
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Figure 5.4: Illustration of the algorithm to count the co-occurring visual phrases which are in

certain geometrical layout in two video clips using Generalized Hough Transform. (a) Two frames

of two different video clips are are illustrated. Ellipses illustrate the visual words and the color and

the labels refer to the word index. The size and orientation of visual words are represented by the

size of the ellipse and the orientation of the major axis. The yellow triangle indicates the spatial

relationship between three words. (b) The parameter space of GHT that considers translation and

scale between visual words. Each word correspondence contributes to a bin in the parameter space.

A group of words in the same spatial relationship contributes to the same bin.

the video clip c. Therefore, for any mapping Φn : C → F n, from the input space C, to the n− th

order feature space F n, a kernel function is defined as

Kn(ci, cj) = 〈Φn(ci),Φn(cj)〉, ∀ci, cj ∈ C. (5.2)
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By combining the kernels from different orders of features, the final kernel is written as

K(ci, cj) =
n

∑

r=1

αrKr(ci, cj), (5.3)

where αr = µ1−r and 0 < µ < 1 weighs the higher order features.

Defining the kernel as an inner product in the feature space facilitates its use for SVM learning

as it satisfies the Mercer’s condition. However, direct computation of the kernel is computationally

expensive because the size of feature space grows exponentially with respect to n, the order of the

features. It is shown in [79] that we can avoid the facing the computation of Φ(c) by computing

the inner product indirectly and efficiently. This is because the inner product equals to the sum

of the co-occurrence of all n − th order features. Therefore, the practical solution is to develop

a method to count the number of features co-occurring in both video clips ci and cj in the similar

spatial layouts. In the next section, we review the use of Generalized Hough Transform for this

purpose.

5.3.2 Generalized Hough Transform and the Co-occuring Features

As described in [79] and [80], the Generalized hough Transform (GHT) is effective and efficient

in computing the number of co-occuring n− th order visual features. As illustrated in Figure 5.4,

the algorithm forms a 3 dimensional parameter space T of possible transformations using (x, y)

coordinates and scale s. The space is quantized into a finite number of bins to allow invariance

to small deformations. Every bin in this 3 dimensional space corresponds to a specific amount of

possible translation and scale. A pair of spatio-temporal features with the same visual word assign-
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ments (wi = w′
i) from two video clips c and c′ contributes a single vote to a bin with corresponding

coordinates (⌊xi−
si
si
xi⌋, ⌊yi−

si
s′
i

y′i⌋, ⌊log(
si
s′
i

)⌋). The value of the corresponding bin is accumulated

by considering the location and scales of every matching visual word pairs from two video clips.

After casting all the votes from the all the possible pairs, the value at each bin, R, indicates the

total number of pairs with a specific relative transformation. Therefore, the number of co-occuring

features of order n is represented by the number of n chooses from the R possible choices. This

equals to
(

R
n

)

for any n <= R.

Therefore, to compute the n− th order kernel Kn, the kernel is computed as

Kn(ci, cj) =

Q
∑

b=1

(

Rb

n

)

, (5.4)

where Q is the total number of bins in the parameter space and Rb is the number of votes in b-th

bin.

5.3.3 Difficulties in Matching Visual Phrases Invariant under Similarity Transformations

Extending the method in previous section to include invariance under rotation, scale, and trans-

lation (similarity transform) is not a trivial task. First, adding another parameter, rotation, to the

parameters space grows the space exponentially and significantly affects the speed of the algorithm

and raises serious concerns regarding required memory space which makes the method impracti-

cal. In [80, 76] authors ignore the rotation because of the same concerns. Second, the parameters

space is the space of similarity transform which belongs to a nonlinear manifold. Quantizing this

space into fixed size bins leads to inconsistent matchings in regards to similar transformations.

73



This is because the fixe size bins ignore the metric of the manifold. To avoid these two problems

the authors in [79] proposed a peudo-invariant method that includes rotation and scale, which we

will discuss its limitations in the following.

A close scrutiny reveals that the method proposed in [79] incorrectly matches visual phrases in

degenerate cases. That is because, in their method, the authors normalize the scale or the rotation

of features separately before comparing the spatial distances, and they do not include scale in the

parameter space. However, this creates incorrect matches of high order visual phrases. In addition,

the number of possible degenerate cases increases exponentially with increase in the feature order.

Therefore, the higher order features will be affected even more. Figure 5.5 illustrates an example

degenerate case where a triplet of features is matched using the method in [79] even though the

geometric layout is totally different. In this figure, three features have occurred, where the scale

of one of them, feature b (in green color), has changed in two different video clips. Therefore, the

geometric layout of the triple is different in these video clips. In other words, no single geometrical

transformation, involving translation and scale, exists that could explain the transformation of pair

of features from the first clip to the second clip. Therefore, the three features in these two video

clips do not belong to a same visual phrase. This suggest that to perform the higher order visual

feature matching that is invariant to geometric transformations, we need to consider the geometric

transformation as a whole. In the next section, we propose a method that achieves this goal and

correctly matches high order visual words under any geometrical transformation.
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Figure 5.5: An example of a degenerate case where the method in [80, 76] incorrectly matches a

third order feature from two video clips. Visual words are identified with colors and labels. (a)

The first instance of the visual features, x1 = 1
2
x2 = x3, y1 =

1
2
y2 =

1
2
y3, s1 = 2s2 = s3. (b) The

second instance of the visual features, x′1 = 2x′2 = x′3, y
′
1 = y′2 =

1
2
y′3, s

′
1 = 2s′2 = s′3.

5.3.4 High Order Features under Similarity Transformations

In this section, we introduce a novel and efficient method to compute the kernel for high order

features that is invariant under geometrical transformations. We focus on similarity transforma-

tions (i.e, translation, rotation, and scale) in this section, since are using an efficient algorithm to

compute the metric of similarity transformation in on the nonlinear manifold. However, excluding

the efficient metric computation, the proposed framework is general and applicable to any arbitrary

matrix transformation such as affine or projective transforms. In our proposed method, since we

consider the correct metric of the nonlinear manifold of the geometrical transformations, we are

able to form a smaller parameter space with far less number of quantized bins and use soft assign-

ments instead of hard assignments (voting) to form the parameter space for the Generalized Hough

Transform efficiently. In this way, our method gains performance over the previous work without

by maintaining the same order of computation complexity.
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The parameter space of the similarity transforms has four components: (x, y, s, θ). We quan-

tize the parameter space such that each dimension has q levels. Therefore, the total number of

bins in the parameters space is q4. Each bin in the parameter space corresponds to a quadruplet

of x-translation, y-translation, scale, and rotation parameters. In other words, a similarity trans-

formation is a way to describe the quadruplet. We represent each bin, i, in the parameter space

as Tj = R(θ)S(s)Tr(x, y), where T(θ) is the rotation, S(s) is the scale, and Tr(x, y) is the

translation transforms, and the ranges of the parameters are

x ∈ [0, 1], y ∈ [0, 1], s ∈ [smin, smax], θ ∈ [−π, π], (5.5)

where the (x, y) location is normalized with width and hight of the frame. Provided the bins, we

extend the video clip representation, c, to include the visual words wi and its corresponding loca-

tion, scale, and orientation in the frame. That is, c = {(w1, r1), (w2, r2), (w3, r3), . . . , (wn, rn)},

where ri = (x, y, s, θ). Then, in our proposed method, we form a similarity transformation T in

homogeneous coordinates that corresponds to every pair of spatio-temporal volumes of data with

the same visual word assignments (wi = w′
i) in two video clips c and c′ such that

T =

















s× cos(θ) −s× sin(θ) tx

s× sin(θ) s× cos(θ) ty

0 0 1

















, (5.6)

where s = si
s′
i

, θ = θi − θ′i, and (tx, ty)
T = (xi, yi)

T − (cos(θ), sin(θ))(sx′i, sy
′
i)
T .

Given the similarity transformation matrix T for a pair of feature points, the bins in the param-

eters space are accumulated by weighted votes. These votes are computed with the respect to the

76



distance of T with the corresponding transformation to the center of the bin such that bins closer

to T get higher shares of the vote. Hence, the vote for the bin j is computed as

βj =
e−d(T,Tj/λ)

∑

j e
−d(T,Tj)/λ)

, (5.7)

where d(., .) is the distance defined on transformation matrices. After accumulating the votes of

all of the pairs we use integer part of values in the bins. Since, our extension has merely changed

the vote casting method, the rest of the GTH method, which is the computation of the kernel for

n− th order features, remains the same as Equation (5.4). Figure 5.6 illustrates the concept.

We know that geometric transformation matrices belong to a nonlinear manifold [57], and the

distance on that manifold is, therefore, a non-Euclidean metric. The distances on manifolds are

defined in terms of minimum curves between points on the manifold [30]. The curve with the

minimum length is referred to as geodesic and the length of the curve is the intrinsic distance. The

intrinsic distance between two similar transformation is, therefore, defined as

d(Ti, Tj) =‖ log(T−1
i Tj) ‖F , (5.8)

where log(T ) =
∑

∞

i=1
(−1)i−1

i
(T − I)i is the matrix logarithm and ‖ . ‖F is Frobenius norm.

Provided the metric of the geometrical transformations, we are able to use GTH method for the

geometric layout of visual features.

The computation of d(Ti, Tj) for arbitrary transformations can be a bottleneck as it involves

matrix logarithm which is typically calculated through an iterative algorithm. However, for special

cases of pure rotation or similarity transformation, direct solutions exist which boost the compu-

tation of matrix logarithm. We incorporate the method in [29] to compute the logarithm of the
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transformation matrix as

log(









sR v

0 0









) =









σI3 +A P
−
1v

0 0









, (5.9)

where σ = ln(s), A = log((Tr)(θ)), v is the translation vector, and s is the scale. Since the rotation

matrix R is skew symmetric its matrix logarithm can be computed through Rodrigues’ formula [?]

as

A = log(Tr(θ)) =



















0, θ = 0

θ
2 sin θ

(Tr(θ)−T
T

r
(θ)), | θ |∈ (0, π)

. (5.10)

P is defined as

P =
eσ − 1

σ
I3+

1

θ2 + σ2
(
σeσ sin θ

θ
+1−eσ cos θ)A+

1

θ2 + σ2
(σeθ

1− cos θ

θ2
−eσ

sin θ

θ
+
eσ − 1

σ
)A2.

(5.11)

We emphasize that the proposed method does not fail for the degenerate cases such as the

example case of Figure 5.5. In this example, each feature correspondence in Figure 5.5 can be

represented by a similarity transformation matrix Ti, where i ∈ {1, 2, 3}. Since

T1 =

















s1 0 0

0 s1 0

0 0 1

















6= T2 =

















s2 0 x1

2

0 s2
y1
2

0 0 1

















, (5.12)

the matching of first and second features will not incorrectly contribute to the same bin in parameter

space.

Although the proposed framework is presented for similarity invariant n − th order visual

features, the method is extendable to any geometrical transformation. For instance, the only change
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Figure 5.6: Illustration of the algorithm to count the co-occurring visual phrases which are in cer-

tain geometrical layout in two video clips using Generalized Hough Transform. (a) Two frames of

two different video clips are are illustrated. Ellipses illustrate the visual words and the color and

the labels refer to the word index. The size and orientation of visual words are represented by the

size of the ellipse and the orientation of the major axis. The yellow triangle indicates the spatial

relationship between three words. (b) Parameter space of GHT that considers translation, scale,

and rotation between visual words. Each word correspondence contributes to a bin in the param-

eter space. A group of words in the same spatial relationship contributes to the same bin. Prior

to finding the corresponding bin, the similarity transformation is formed from the corresponding

translation, scale, and orientation of the features.

needed to adapt the algorithm to affine invariant kernel of n−th order features is to define an affine

transformation between every pair of spatio-temporal volumes of data similar to Equation 5.6. It is

evident that in case of affine transformation the Rodrigues’ formula does 5.9 not hole and therefore

the computation of matrix logarithm becomes costly.
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Style Examples Routine Clips Total # Frames

Ballet 12

Bollywood 12

English Country 12

Folk 12

Hiphop 12

Kick 12

Line 12

Swing 12

Table 5.2: The statistics of the collected dataset for group dances.

5.4 The Choreography Dataset

We collected a dataset of eight group dance styles from YouTube website from user upload videos.

Currently, the videos for four classes are prepared properly by converting to a fixed frame rate of

30fps and dividing into at least eight short clips where each clips is dominated by a single dance

routine. The statistics of the dataset is provided in Table 5.2. Figure 5.7 illustrates example frames

from the dataset. Each category of the dataset is dedicated to a specific dance style. Different

categories may share some similar dance routines but the collection of dance routines in one class

is different from other classes.
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Figure 5.7: Sample frames of the four categories of group dances in the dataset.
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Figure 5.8: The classification block diagram for dance style recognition.

5.4.1 Classification Strategy

In this section, we provide the outline of the classifier for classification of dance styles in the

provided dataset. Figure 5.8 illustrates the block diagram of the proposed method for classification.

In this setup, we use the kernel computation for visual phrases to train a SVM classifier to learn

the class labels (dance styles) of a video clip. Provided the video clips of a input video example,

the SVM classifier is capable of assigning a label to each clip separately. We recognize the label of

the video example as the label with majority of the votes from the containing clips of that video. In

this dataset, we provided the video clips for all of the video examples through manual annotation.

5.5 Experiments and Results

In this section, we describe the setup and the experiments to evaluate the proposed method. In

these experiments, we used a subset of the collected dataset that contains 4 dance style categories

of Bollywood, English Country, Folk, and Line which contains total of 321 video clips. The

distribution of number of clips in the subset provided in Table 5.3. To demonstrate the effects of

the proposed method, we extracted features as spatio-temporal cuboids of image intensity using the
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Dance Style # Examples # Clips

Bollywood 8 73

English Country 8 106

Folk 8 72

Line 8 71

Table 5.3: Subset dataset (Bollywood, English Country, Folk, and Line).

Parameter value Role

σ 2 Spatial Scale

τ 1.5 Temporal scale

n 11 # rows

m 11 # columns

t 20 # time slices

Table 5.4: Parameters of the feature extraction in [27].

method of [27] over the video clips. The cuboids have the same dimensions in space and time, and

we ignore the temporal ordering between cubiods. During feature extraction, the center location

of the the cubiods are assigned to their (x, y) and the average orientation of spatial gradients is

assigned as the orientation (θ) of the feature by considering the spatial gradients form all of the

time slices of a cubiod. In this experiment, the scale of the feature is considered the same (s = 1)

for all of the the features. Table 5.4 summarizes the selected parameters for feature extraction

using the method of [27].
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The bag of words (BoW) representation is considered as the baseline method. For this purpose,

generated a codebook of size k = 200 visual words from the pool spatio-temporal feature detected

over the pool all video clips in the subset dataset using k-means clustering. The spatio-temporal

features are mapped into a lower dimensional space (dim = 200) using PCA prior to applying

k-means algorithm.

We implemented several experiments to evaluate the effect of each part of the extensions pro-

posed over the recent work in [76] which we refer here has BoVP. In BoVP method, higher order

features of two video clips are matched invariant to translation, and q = 441 = 212 bins are used

to quantize the parameter space. In the first set of experiments, we studied the effect of the the

weighted Generalized Hough Transform using the weighting function in Equation 5.7 on BoVP

method. We refer to this experiment by Weighted BoVP which involves weighted votes and trans-

formation invariance of higher order features. In the second set of experiments, we used using

the weighted votes, invariance to rotation, and invariance to translation using the metric described

in Equation 5.8 since the features contain the same scale factor. We refer to this experiment as

Weighted BoVP+θ. In both Weighted BoVP we used q = 9 = 32, and in Weighted BoVP+θ we

used q = 27 = 32 bins.

Through the use of visual phrases, we are able to discriminate similar video clips through

distinguishing groups of visual phrases in certain spatial layout. We verify this in Figure 5.9

by comparing the results of histogram intersection results of visual words and visual phrases for

the 321 video clips in the subset dataset. In this experiment, the visual phrases and histogram

intersection is performed through use of the method in [76] which is digested in Section 5.3.2. In
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this experiments, the visual phrases are matched invariant to translation and Generalized Hough

Transform with hard assignment is used to compute the histogram intersection in an effective

manner. As illustrated in Figure 5.9 by including the higher order visual features in the matching

process the similarity map between video clips in the dataset converges toward a block diagonal

matrix which is an expected behavior for discriminative features. This provides an insight to

understand the better discriminative power of the visual phrases in contrast to visual words.

Figure 5.10 and Table 5.5 summarize the recognition rates obtained by the proposed method

and juxtapose them with the results form the state of the art method in [76] over the subset dataset.

The recognition rate is obtained through leave one out cross validation by excluding all the clips

of one example video from every category. The examples are picked once randomly for 300 trials

and the reported recognition rate is the average of these trials. In this experiment, we evaluated the

methods by incrementally increasing the order of the visual phrases from 1 to 4, and observed the

effect of higher order visual words. As Figure 5.10 indicates, the highest classification rate of all

three method is achieved when a higher order visual phrases is used. That is 2nd order in BoVP

method, 2nd order in Weighted BoVP method, and 3rd order in Weighted BoVP+θ method.

In addition, we observed that we obtained consistent improvement in the result using the pro-

posed Weighted BoVP instead of hard assignments in BoVP over different orders of visual phrases.

BoVP for visual phrases order 1 reduces to bag of words, however, Weighted BoVP and Weighted

BoVP+θ does not. Therefore, the results are more appealing when we consider the improvement

gained through the weighted methods for the 1st order visual phrases.
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Figure 5.9: The similarity map between video clips in the subset dataset (321 video clips) using

histogram intersection of visual word or phrases. Blue = low similarity, Red = high similarity. (a)

Visual words (visual phrases of order 1), (b)visual phrases of order 2, (c) visual phrases of order 3,

(d) visual phrases of order 4

The use of feature orientation improves the performance almost all orders of visual phrases,

and the best performance is obtained through the use of Weight BoVP that includes up to 3rd

order visual phrases that are invariant to rotation and translation. In particular, the orientation has

improved the performance more than 10% (Table 5.5) when we considered higher order features.
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Figure 5.10: The average recognition rate % over four classes of the subset dataset using the

proposed method in comparison to the state of the art [76] by considering different orders of visual

phrases.

This this indicates that the rotation invariance is more effective when me consider higher order

feature or in other words more complex layouts.

For better understanding the effects of the proposed methods in improving the classification

performance, we provide the comparison of the confusion tables of BoVP, Weighted BoVP, and

Weighted BoVP+θ in Figure 5.11. In this figure, the recognition rate and the amount confusion

between each pair of classes is provided in percentage. In addition, the white color corresponds to

the highest correlation and black indicates the lowest correlation.
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Figure 5.11: The comparison of confusion tables for classification of 4 classes in the subset dataset,

(a) BoVP, (b) Weighted BoVP, and (c) Weighted BoVP+θ.
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Kernel Order BoVP Weighted BoVP BoVP+θ

1 54.45 57.25 61.33

2 60.5 63.83 59.08

3 55.92 59.33 75.43

4 56.42 60.83 71.33

Table 5.5: Average recognition rate (%) on 4 class classification (Bollywood, English Country,

Folk, and Line).
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