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ABSTRACT

In this dissertation, we address the problem of detecting humans and vehicles, tracking

them in crowded scenes, and finally determining their activities in aerial video. Even though

this is a well explored problem in the field of computer vision, many challenges still remain

when one is presented with realistic data. These challenges include large camera motion, strong

scene parallax, fast object motion, large object density, strong shadows, and insufficiently large

action datasets. Therefore, we propose a number of novel methods based on exploiting scene

constraints from the imagery itself to aid in the detection and tracking of objects. We show, via

experiments on several datasets, that superior performance is achieved with the use of proposed

constraints.

First, we tackle the problem of detecting moving, as well as stationary, objects in scenes

that contain parallax and shadows. We do this on both regular aerial video, as well as the new

and challenging domain of wide area surveillance. This problem poses several challenges:

large camera motion, strong parallax, large number of moving objects, small number of pixels

on target, single channel data, and low frame-rate of video. We propose a method for detect-

ing moving and stationary objects that overcomes these challenges, and evaluate it on CLIF

and VIVID datasets. In order to find moving objects, we use median background modelling

which requires few frames to obtain a workable model, and is very robust when there is a

large number of moving objects in the scene while the model is being constructed. We then
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remove false detections from parallax and registration errors using gradient information from

the background image. Relying merely on motion to detect objects in aerial video may not

be sufficient to provide complete information about the observed scene. First of all, objects

that are permanently stationary may be of interest as well, for example to determine how long

a particular vehicle has been parked at a certain location. Secondly, moving vehicles that are

being tracked through the scene may sometimes stop and remain stationary at traffic lights and

railroad crossings. These prolonged periods of non-motion make it very difficult for the tracker

to maintain the identities of the vehicles. Therefore, there is a clear need for a method that can

detect stationary pedestrians and vehicles in UAV imagery. This is a challenging problem due

to small number of pixels on the target, which makes it difficult to distinguish objects from

background clutter, and results in a much larger search space. We propose a method for con-

straining the search based on a number of geometric constraints obtained from the metadata.

Specifically, we obtain the orientation of the ground plane normal, the orientation of the shad-

ows cast by out of plane objects in the scene, and the relationship between object heights and

the size of their corresponding shadows. We utilize the above information in a geometry-based

shadow and ground plane normal blob detector, which provides an initial estimation for the lo-

cations of shadow casting out of plane (SCOOP) objects in the scene. These SCOOP candidate

locations are then classified as either human or clutter using a combination of wavelet fea-

tures, and a Support Vector Machine. Additionally, we combine regular SCOOP and inverted

SCOOP candidates to obtain vehicle candidates. We show impressive results on sequences

from VIVID and CLIF datasets, and provide comparative quantitative and qualitative analysis.

We also show that we can extend the SCOOP detection method to automatically estimate the
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orientation of the shadow in the image without relying on metadata. This is useful in cases

where metadata is either unavailable or erroneous.

Simply detecting objects in every frame does not provide sufficient understanding of

the nature of their existence in the scene. It may be necessary to know how the objects have

travelled through the scene over time and which areas they have visited. Hence, there is a

need to maintain the identities of the objects across different time instances. The task of object

tracking can be very challenging in videos that have low frame rate, high density, and a very

large number of objects, as is the case in the WAAS data. Therefore, we propose a novel

method for tracking a large number of densely moving objects in an aerial video. In order to

keep the complexity of the tracking problem manageable when dealing with a large number of

objects, we divide the scene into grid cells, solve the tracking problem optimally within each

cell using bipartite graph matching and then link the tracks across the cells. Besides tractability,

grid cells also allow us to define a set of local scene constraints, such as road orientation and

object context. We use these constraints as part of cost function to solve the tracking problem;

This allows us to track fast-moving objects in low frame rate videos.

In addition to moving through the scene, the humans that are present may be perform-

ing individual actions that should be detected and recognized by the system. A number of

different approaches exist for action recognition in both aerial and ground level video. One of

the requirements for the majority of these approaches is the existence of a sizeable dataset of

examples of a particular action from which a model of the action can be constructed. Such a

luxury is not always possible in aerial scenarios since it may be difficult to fly a large number

of missions to observe a particular event multiple times. Therefore, we propose a method for
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recognizing human actions in aerial video from as few examples as possible (a single example

in the extreme case). We use the bag of words action representation and a 1vsAll multi-class

classification framework. We assume that most of the classes have many examples, and con-

struct Support Vector Machine models for each class. Then, we use Support Vector Machines

that were trained for classes with many examples to improve the decision function of the Sup-

port Vector Machine that was trained using few examples, via late weighted fusion of decision

values.
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CHAPTER 1: INTRODUCTION

One of the most fundamental applications of computer vision, involves making com-

puter systems aware of the content of the observed scene. This content includes moving and

stationary entities of interest, as well as the actions performed by them. This awareness can

be put into a wider context with the use of video data captured from a moving UAV platform,

which can observe a much larger area by either moving to a different area of the scene, and/or

utilizing a wide area sensor. Object detection, tracking, and activity recognition are active re-

search areas. However most of the methods have been designed to deal with consumer imagery

or ground level surveillance, and may not necessarily be applicable to the aerial surveillance

scenario. Even the methods that are specifically designed to deal with aerial imagery have

difficulty when presented with real data, which may have the additional challenges of large

camera motion, low resolution, strong parallax, fast moving objects and strong shadow.

In this thesis, we propose methods for detecting stationary and moving objects, tracking

their identities in a dense environment, and recognizing their actions from few examples. In

order to deal with the challenges of low resolution, shadows, fast camera motion, and parallax,

we rely on scene specific information that we extract directly from the imagery, both with and

without the use of auxiliary metadata. We show that this additional information vastly improves

the tasks of detecting and tracking objects.
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1.1 Overview and Motivation

Unmanned Aerial Vehicles, or UAVs, are becoming more widespread in both military

and civilian applications, including surveillance, rescue, and reconnaissance [75] [76] [55]. In

the course of these operations, video data containing useful information is collected. This in-

formation may be useful during the mission itself or may become useful at a later date. The

ever-increasing number of UAV missions equates to a backlog of data which can become quite

large, as it requires many man-hours to analyze the data manually. This calls for automated

video analysis tools with capabilities that include registration [80], object detection [34], track-

ing [76] [83], classification [77], and scene and action analysis [13] [35] [72].

The main purpose of utilizing a UAV for surveillance is the mobility and the increased

area of coverage that the UAV can provide. Recently, a new sensor platform has appeared on

the scene characterized by an extremely large field of view, allowing for persistent monitoring

of very large areas. Data obtained from such a sensor is quite different from the standard

aerial and ground surveillance datasets, such as VIVID and NGSIM, which have been used

in [31, 51], and [1, 78, 32]. The sensor utilizes multiple high-resolution cameras to capture

an area that is much larger than the standard datasets, which allows for thousands of objects

to be visible at one time. Specifically, in the case of CLIF dataset, the sensor covers 25km2,

compared to only 0.24km2 in the VIVID dataset. This wide area coverage comes at a price of

low frame rate, only 1.2 Hz on average compared to 15Hz in VIVID. The combination of low

framerate, moving camera, and a large number of densely moving objects create a difficult mix

of challenges that renders previously developed automated surveillance methods inapplicable
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to this data. The very wide area coverage allows one to place the observed objects into a much

broader context, requiring a capability to be able to process this kind of data.

When aerial surveillance is performed in an urban environment, not all objects of inter-

est are moving all of the time. Traffic lights or traffic jams periodically cause objects to stop.

Therefore, the system must be able to detect objects when they are stationary. One straightfor-

ward approach to this problem is to apply a state-of-the-art static frame detection algorithm,

such as [14] [18] [38] [47] [59], over the entire frame of the video. This approach, however,

runs into the problem of small object size in aerial video, which may make it impossible to

construct a meaningful model. Methods that perform part detection explicitly, such as [18]

[47] [12] [70] [67], will not be able to construct meaningful models for individual parts at very

low resolutions. Bag-of-feature methods, such as [38], also have difficulty constructing models

because only a small number of interest points can be found.

The objects are so small that even holistic methods such as [68] [14] [69] [7] will have

difficulty extracting sufficient discriminative information. Another issue introduced by the

small object size is the need to process a very large number of windows across an entire image.

This obviously increases processing time and generates many false positives, especially if the

object model is not sufficiently discriminative. The above problems can be further compounded

by motion blur and varied orientation of objects within the scene. Therefore, in order to tackle

these issues of size and performance, we propose avoiding full frame search, and instead opt

to constrain the search using a set of geometric constraints.

In addition to detecting and tracking objects in the scene, the system must also be able

to detect the individual actions that performed by those objects. Like all pattern recognition
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problems, this task requires the method to be able to account for variation within the particular

class that one is trying to recognize or detect. This is especially true for recognizing the ac-

tions of humans, where the same action can be performed by different actors of different size,

different body proportions, and different kinematics. There are two ways to account for that

intraclass variation which are commonly used. The first way is to utilize a representation of

the action that is sufficiently semantically meaningful, so that it is robust to those intra-class

variations. The second way is to construct the model of the action in such a way that it can ac-

count for variation within each class. This is typically accomplished by using machine learning

to generate the model automatically from a fairly large collection of examples [72] [62] [49].

The problem with the first approach is that the action class may be too complex to allow for

a semantically meaningful representation, or the representation may be too difficult, in prac-

tice, to generate for the particular dataset. The problem with the second approach is that it is

not always possible to collect an extensive dataset of a particular action due to an insufficient

number of available actors or resources. This is particularly true in the case of aerial video,

since one needs to perform the actions, and to fly the UAV with the sensor platform as well.

Therefore, there is a need for a well-performing action recognition framework, which has the

capability to construct the model of the action using as few examples as possible.

1.2 Contributions

In this thesis, we develop several methods for processing aerial video data under a

number of challenging conditions. These methods allows us to detect, track, and recognize the

activities of objects that are moving in aerial video. Unlike the previous approaches which we
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discuss in Chapter 2, our suggested framework can deal with the challenges of low frame rate,

high object density, strong shadows, strong parallax, and insufficiently large action datasets.

We demonstrate how detection and tracking methods can be improved by utilizing additional

scene information, which can be extracted with or without the help of metadata. We also

show how we can recognize human actions from the air, without relying on a large dataset of

examples in order to construct the model of a particular action.

1.2.1 Detecting Moving and Stationary Objects in Aerial Imagery

First, we propose a novel framework for detecting moving and stationary humans and

vehicles in aerial imagery in the presence of strong parallax and shadow. In order to detect

moving objects, we register the consequent frames using interest points and RANSAC to com-

pensate for global camera motion. Then, we take the registered frames and construct a model

for the background using the median operator, and perform background subtraction. Median

background subtraction allows us to detect moving objects in just 10 frames, and is capable of

constructing a good background model, even for areas in the scene, which have dense traffic,

meaning that the background is badly contaminated with outlier moving objects. Next, we

suppress false motion detections that have been detected due to parallax and not actual moving

objects. Homography based motion compensation assumes that the scene is planar. However,

in the case of real aerial video, the scene may not necessarily be planar, and interest points that

are used during the registration stage are not guaranteed to lie on one plane. This results in a

registration plane which will not correspond to any of the real planes in the scene. Due to this,

parts of the scene will appear to move even in motion compensated imagery. We suppress these
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false detections by computing the gradient of the median background image, and subtracting it

from the difference image.

The key idea behind our approach for detecting stationary objects is to constrain the

search for the objects in the image by assuming that humans are upright shadow casting ob-

jects, and vehicles are box-like shadow casting objects. We utilize oriented low level computer

vision techniques based on a set of geometric scene constraints derived from the metadata of

the UAV platform. Specifically, we utilize the projection of the ground plane normal to find

blobs normal to the ground plane; these blobs give us an initial set of potential out of plane

object candidates. Similarly, we utilize the projection of shadow orientation to obtain a set of

potential shadow candidates. Then, we obtain a refined set of Shadow Casting Out Of Plane,

or SCOOP, candidates, which are pairs of shadow and normal blobs that are of correct geomet-

ric configuration, and relative size. This is done based on projected directions, as well as the

ratio of assumed projected human height and projected shadow length. Once the refined set of

candidates has been obtained, we extract wavelet features from each SCOOP candidate, and

classify it as either human or clutter using a Support Vector Machine (SVM).

Since vehicles are also out of plane shadow casting objects. Application of our SCOOP

candidate detection method produces consistent candidates belonging to vehicles as well. We

show that a vehicle can be represented as a combination of a SCOOP and an inverted SCOOP.

Therefore, we can combine the SCOOP and inverted SCOOP into a vehicle candidate, and then

classify it as either a vehicle or clutter using the same framework we utilized for for humans.

Note that the main idea behind our geometric constraints is to improve the performance

of any detection method by avoiding full frame search. Hence, other models, features, and
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classification schemes suitable for aerial imagery can be used. Additionally, our method can

be used to alleviate object localization problems associated with motion detection in presence

of strong shadow.

Our method has the following assumptions and operational requirements:

First, we assume that the objects in the scene are casting a shadow. If the weather

prevents the casting of shadow, then human detection can still proceed, using only the blobs

related to the ground-plane normal as a constraint at the cost of degraded performance. In the

case of vehicles, the detection can still proceed as though the shadow is there, however it will

also result in degraded performance.

Second, we assume that humans are sufficiently upright for their shadow to be visible.

The human can be standing or sitting down, but can not be lying on the ground.

Third, we use metadata associated with the UAV imagery in order to determine the

shadow orientation in the world. We also use it to find the orientation of ground-plane normal

and shadow in the imagery, as well as their relative size. Errors in the metadata result in

incorrect orientations in the image. However, the SCOOP detection method has approximately

+10◦− 10◦ robustness to errors in orientation. If metadata is not available, we have developed

a method to determine the shadow orientation automatically assuming that the ground-plane

normal is fixed.

Fourth, we make a planar scene assumption when we determine the orientation of the

shadow in the world and when we project it into the image. When the scene is not planar,

this assumption has an effect equivalent to that of incorrect metadata, where the shadow’s ori-

entation and/or length in the image is not correct. However, since our method is resistant to
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orientation errors, its performance will degrade gradually as the surface roughness increases.

Note that if a Digital Elevation Map (DEM) is available, we do not have to make this assump-

tion. Rather, we can explicitly compute different shadow orientations for different surfaces in

the scene and regions of the image. The automated orientation detection method requires two

shadow casting objects to be present on a plane in order to find the correct shadow orientation

for that plane.

1.2.2 Tracking a Large Number of Densely Moving Targets in Low Frame Rate Video

Next, we propose a framework for tracking large numbers of densely moving objects

in low frame rate video. First, we break the scene up into a series of overlapping cells defined

in image space, and formulate the tracking problem as a series of bipartite graphs confined to

the individual grid cells. Then, solve it optimally within each grid cell using the Hungarian

algorithm. The cell idea accomplishes two things. First of all, it speeds up the solution of the

assignment problem by greatly reducing the number of objects that we have to consider within

each cell, since the complexity of the Hungarian algorithm is O(N3), where N is the number

of objets. Secondly, it allows us to locally define scene constraints that we can use in order to

generate better assignment weights between objects at different time instances.

We construct the graphs to take into account the possibility of object disappearance and

reacquisition by adding occlusion nodes and connecting observations to labels from several

frames back. Additionally, within each grid we define a set of constraints to allow the assign-

ment of labels to observations, even when the velocity estimate of an object is not available

initially. Specifically, we analyze the possible assignments within each cell, in order to com-
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pute the dominant orientation of motion within the grid cell. We also construct a model for the

contextual relationship between objects and their neighbors. This information is then utilized

for assignment weight generation when we construct the bipartite graph, in order to aid with

the initial assignment of objects. The main purpose of this is to overcome the problem of low

frame-rate and high object density. When one set of objects covers a large distance between

the frames, and the set of objects that is travelling behind them, move into an area that is close

to the initial positions of the first set of objects. Making a tracking assignment based purely on

the distance between old and new positions will invariably result in an incorrect assignment.

We demonstrate that when we utilize our derived local scene constraints in the context of high

object density and low frame rate, the tracking performance improves.

1.2.3 Action Recognition In Aerial Video From Few Examples

Finally, we propose a method to recognize human actions in aerial video, even when

there are few examples from which we can learn the model of the action (in the extreme case,

only one). We accomplish this by utilizing transfer learning to transfer knowledge from other

classes in the same dataset. We use the the popular representation of actions known as bag of

words. We detect primitive spatio-temporal features in the videos, which indicate change in

the gradient over time. We extract gradient features from these cuboids and apply Principle

Component Analysis to reduce their dimensionality. Then, we cluster the cuboids into spatio-

temporal words, and finally represent the video as a histogram of these words. Since the camera

is moving in aerial video, we compensate it’s motion prior to detecting the points.
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This is a multi-class problem, therefore, we train several OnevsAll Support Vector Ma-

chine classifiers in order to represent all the actions. We assume that some of the classes have

many examples and are learned normally, while the number of classes that contain few ex-

amples is small. Our goal is to utilize the models of the classes that have many examples

to augment the models of the classes that have few examples. We do this via a late fusion

technique during testing, where we modify the decision function of the OnevsAll classifier for

the class which contains few examples to include weighted outputs of the classifiers of similar

classes which contain many examples. We show how the weights and the classes can be deter-

mined automatically, and that they are related to the probability of the class being misclassified

as other classes.

1.3 Organization of the Thesis

The thesis is structured as follows: Chapter 2 reviews existing literature on object

detection, tracking, shadow detection, and action recognition, and attempts to contrast those

works with our contribution. Chapter 3 presents a framework for detecting moving and sta-

tionary objects in the presence of strong parallax and shadow. Chapter 4 proposes a novel

method for tracking a large number of dense fast-moving targets. Chapter 5 describes a novel

framework for detecting human actions in aerial video using few examples. Finally, the thesis

is concluded in Chapter 6, with a summary of contributions and a description of future work.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we discuss some of the prominent approaches for detecting moving

and static objects, tracking their identities across multiple frames, detecting their shadows, and

classifying their actions. The previous works include methods that have been developed both

for ground and aerial view, since the key ideas can be applied across different domains.

2.1 Moving Object Detection and Tracking

There is extensive literature on background subtraction for moving object detection in

stationary cameras [65] [30] [85] [31] [25] [46] [21]. The general framework for these ap-

proaches is to model the most common observations for each pixel in order to represent the

background. Once this is done, the moving objects are detected on a per-pixel basis as outliers

to the model, and the model is updated. The models proposed range in sophistication depend-

ing on the problem domain and the data. In [21], Friedman and Russel model the background

as a single gaussian distribution in gray-scale imagery. Foreground objects and shadows are

also modelled as single Gaussian distributions, and are separated from the background and

each other using heuristics. In [65] and [25], the background for each pixel in color video is

modelled as a mixture of Gaussians. The idea there is that observations of a background pixel

can be generated from multiple processes - the actual static background and moving back-

ground of limited dynamics, such as a tree branch. Therefore, the different components of the
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Gaussian mixture will correspond to different processes which have produced the observations.

Pixel values at each time instance are compared against the mixture model, and if a genuine

moving object appears in the scene, its color value will be different from all of the components

in the mixture and it will be labelled as a moving object. Mittal and Paragios in [46] allow

for greater dynamism of the background by constructing a non-parametric Kernel Density Es-

timation model of optical flow for the background. This allows them to handle a background

that consists of dynamic textures, such as the ocean. A dynamic texture model based on Au-

toregressive Moving Average is used for a similar purpose in [85]. Complex statistical models

generally require a fairly large number of observations, which are easily available in the case

of long term static surveillance and high frame rate video; However, in the case of aerial video

on the other hand, the luxury of persistent observation without large camera motion is very

seldom available.

In [1], the authors detect and track moving objects in high frame rate aerial video. They

use gradient based direct registration to compensate for global camera motion, then they utilize

cumulative frame difference to detect moving objects. Finally, they track the moving objects

by constructing probability distributions of the colors contained within the moving blob of the

object. Unfortunately, appearance and color based tracking is not that meaningful in single

channel imagery, since most of the objects appear to be either white or different shades of gray.

The authors also assume a homographic model of global motion compensation, and do not take

into account parallax errors caused by the 3D structure of the scene.

One popular method of handling false detections due to parallax is the plane plus par-

allax model, which was utilized in [32] [29] and [61]. The key idea behind this particular
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framework is to assume that the scene is dominated by just one plane, and there are a few iso-

lated out-of-plane structures. When these assumptions hold and a robust registration method

is utilized, a valid homography can be estimated for pixels belonging to the ground plane.

Since the homography does not hold for the out of plane objects, they are also are detected

as ‘movers’ during background subtraction. Finally, detections are filtered as either moving

or stationary out of plane by applying two or three view geometric constraints based on the

fundamental matrix or the tri-focal tensor. The issue with the above framework is that while

it is more general than the initial planar scene assumption, it is not sufficiently general to deal

with scenes that do not have a dominant plane, or scenes that are so cluttered with out of plane

objects that it prevents the correct estimation of homography for any actual plane in the scene.

The former scenario was the one found in the WAAS data that we experimented with. The

data was captured in mostly urban and sub-urban environments, which have a large number

of buildings and trees of different heights. Therefore, the interest points used for registration

belong to different planes, and as a result the registration plane does not correspond to any of

the planes that are in the scene. Because of this, areas of misalignment, drift, and therefore

false motion detections can happen on the ground-plane as well.

In [78], Xiao et.al focus exclusively on detecting and tracking moving vehicles in aerial

video. In order to suppress false detections due to parallax, the authors exploit metadata asso-

ciated with the imagery. They use it to aid in stereo-like 3D reconstruction of buildings present

in the scene, as well as color, texture, and depth based classification to detect vegetation. The

3D knowledge is exploited to suppress false detections that appear on out of plane objects. The

authors also perform GIS guided road detection, which is used in tracking as an estimate of
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the direction of the motion of objects. In order to perform 3D reconstruction as suggested by

the authors, a complex geo-registration process is required in order to refine the metadata as-

sociated with the imagery. However, the geo-registration process itself requires fairly accurate

metadata to begin with, which may not always be available or correct. The GIS information

for determining road orientation may be unavailable, additionally the use of GIS requires geo-

registration. In contrast we show that our constraints can be derived directly from the scene

without relying on metadata. When we do use metadata, we do not require it to be as accurate

as georegistration does.

In [28], the authors combine the output of supervised class based segmentation, un-

supervised gradient and color based segmentation, and moving object segmentation to detect

different types of blobs in the scene. Supervised class based segmentation relies on color and

gradient information to refine the boundaries of the blobs, which were obtained by the super-

vised segmentation. The resulting blobs are tracked through the scene, and their labels are

refined using adjacency information via a Bayesian graphical model. As pointed out by the au-

thors, semantic blob detection is not particularly reliable and has to be refined using Mean-Shift

color segmentation. The use of Mean-Shift color segmentation will not give the best results in

single channel data.

The tracking problem can typically be separated into two main stages: the assignment

weight generation stage, which computes the likelihood of each track being assigned to a new

observation, and the actual assignment stage, where the tracks or labels are assigned to new

observations. Occasionally there will be a third correction stage to improve the quality of the

tracks. A large variety of weight generation, matching, and correction frameworks exist (see
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[83] for a survey of these approaches). In the context of surveillance, a combination of kine-

matic and appearance features is a popular framework for tracking targets in both aerial [51]

and ground views [33]. In both [51] and [33], the authors use a template based approach and

greedy assignment strategy for obtaining initial short tracks or tracklets, then in the correc-

tion stage they obtain longer tracks by utilizing kinematic information, such as velocity and

acceleration of the individual tracklets, and a Gibbsian model of appearance of the tracklets.

In our case however, appearance does not provide sufficient discriminative information due to

the small number of pixels on the target, single channel gray-scale video, and dense targets.

Relying exclusively on kinematics during initialization is unreliable.

Hardware has been one way to tackle the problem of tracking dense, fast moving tar-

gets. In [5] [74], the authors track large numbers of flying bats by utilizing several 125Hz

infrared cameras to observe the same scene. The authors perform tracking in each view indi-

vidually, while simultaneously estimating cross-camera correspondences, and fusing the tracks

across views in 3D, and correcting incorrect assignments that occurred in individual cameras.

The high speed of the cameras improves the effectiveness of matching initial assignments based

purely on proximity, while multiple overlapping cameras provide a way of disambiguating as-

signments due to the density of objects by 3D reconstruction of the trajectories and observa-

tions. Unfortunately, in our case of WAAS data, the cameras do not have sufficient overlap or

relative translation to allow for 3D reconstruction of trajectories.
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2.2 Static Object Detection in Ground Level Imagery

Static object detection can generally be separated into and holistic methods [68] [69]

[7] [14],parts based methods [18] [47] [12] [38] [40] [70] [67]. Holistic methods construct a

model for the entire human, and then search over the image utilizing sub-window search, com-

monly following the framework of feature extraction and classification. In a seminal work by

Dalal and Triggs [14], objects (in their case humans) are represented by a histogram of oriented

gradients. First gradient is computed over an image, then the image is separated into overlap-

ping cells. Then, a histogram of orientations of the gradient are computed within each cell and

concatenated into one vector. Finally, a Support Vector Machine is trained on these vectors, in

order to separate images containing humans from images containing background. Covariance

features are used in [68], where covariance matrices of various features are computed in over-

lapping windows of the image of a human. Covariance matrices lie on a manifold and cannot

be handled by standard vector based machine learning methods. Hence, the authors project the

covariance features onto a subspace locally tangential to the manifold, and use LOGITBOOST

to classify them.

The disadvantage of holistic approaches is that they are sensitive to the object of interest

being occluded. One solution to this is parts based approaches. In [18], the authors train a

holistic support vector machine using histograms of oriented gradients as features, as described

in [14]. In addition to this main holistic template, which the authors call the ”root” filter, they

train a collection of models for parts of the human. During testing, the confidence of a detection

is given by the confidence of the holistic root filter, and the sum of the confidences of individual
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parts filters minus some deformation cost, which are defined within the root filter via a star

graph. The models and locations for the parts are learned automatically via latent SVM.

In [47], Mikolajczyk et. al. use a collection of supervised parts detectors to detect

humans. They use 7 manually specified parts for the front/profile of the head, front/profile

of the face, front/profile of the upper body, and the legs. A set of candidate parts is detected

using co-occurrence features and ADABOOST classifier. The final location of the human is

determined by a Bayesian decision function as an optimal configuration of the parts and their

confidences. Wu and Nevatia in [70] use a combination of edgelet features and ADABOOST

to learn holistic model for the human as well as a collection of parts such, as the head, torso,

and legs. However, when combining parts into humans they propose utilizing a joint image

likelihood, to take care of multiple inter-occluded humans.

In cases of aerial video, as the size of objects becomes smaller and smaller, the fea-

sibility of using static frame detection algorithms decreases. Static object detection methods

are generally developed for datasets that have objects which are fairly large, such as INRIA,

however they run into limitations when the size of the objects decreases. We can see this fact

by using [14] as an example. The authors report that on human images of 128x64, the optimal

cell size was 6x6, which corresponds to 4.69% of the height and 9.38% percent of the width.

In the case of VIVID (an aerial video dataset), the humans are only 24x14, the smallest cell

size possible is 2x2, which corresponds to 8.3% of the height and 14.28% of the width. There-

fore, it is no longer possible to generate a descriptor using optimal settings, which in turn hurts

the crucial requirement of a full frame classifier of achieving a low rate of false positives per

window.
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This fact is very problematic because as the size of humans decreases, the number of

windows that one has to search increases. For example, for humans of size 128x64, image size

480x640 and window shift of 8, there are 26624 windows to consider at single scale (ignoring

the border). However, for humans of size 24x14 and window shift of 2, the number of windows

increases to 143528. In the case of high resolution imagery, the search space was reduced by

about a third in [23] through clever re-sampling of the search space. That reduction may still

not be sufficient in the case of aerial video. That approach also needs a classifier that has low

sensitivity to small translations and scale shifts, hence it is not universal.

2.3 Static Object Detection In Aerial Imagery

Previous works that specifically deal with aerial imagery ([77] and [48]), opt to con-

strain the search by extracting additional features via preliminary processing. Miller et al use

features points to constrain the search for humans [48] by assuming that at least one Harris cor-

ner feature point will be detected on the human in each frame. This generates a large number

of candidates, which are then suppressed through tracking, the Harris corners in global refer-

ence frame. Then, each corner is classified using an Optimum Trade-off Maximum Average

Correlation Height (OT-MACH) filter. If a track contains more human classifications than 20%

of the total track length, all points within the track are labelled as human. The problem with

the above approach is the large number of potential human candidates, they report 200 for a

320x240 image, and the need for a sophisticated tracker to filter them out.

Rudol and Doherty use an infrared camera in [58] to constrain the search for humans

that are sitting or prone. First, they threshold the infrared imagery to isolate areas of hu-
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man body heat, then projected those areas to a color camera. Next, they apply a cascaded

ADABOOST classifier to those areas to detect humans. Unfortunately, this process requires

mounting two cameras on the UAV. In this case, reliable detection of body heat requires expen-

sive high-quality infra-red cameras.

Gaszczak et. al. also use an infrared camera in [22] for both human detection and

vehicle heat-signature confirmation. Initial human detections were found in the infrared camera

using cascaded ADABOOST, and then refined using a generative shape model. Initial vehicle

detections on the other hand, were obtained in EO imagery using cascaded ADABOOST, and

then verified by region-growing of hot spots in the IR camera.

Cascaded ADABOOST is also applied to EO imagery by Breckon et. al. [8] to detect

vehicles. The initial detections obtained were then refined by using the height and field of view

of the UAV to filter out detections which did not conform to proper vehicle sizes.

Skokalski and Breckon suggest a framework for detecting salient objects in color aerial

imagery [64]. Given an input frame, they extracted nine feature images including a contrast

map of the meanshift image and various normalized color channels. Next, they applied edge-

detection and gradient operators to each, then combined them using AND and OR operators.

The contrast map is weighted by the inverse of the probability of belonging to the global color

distribution of the image. While this method shows impressive results without relying on meta-

data, it requires color information for most of its features. Conversely, in grey-scale imagery

with non-uniform background it would lose most of it’s discriminative ability.
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2.4 Shadow Detection

Since our static object detection method is based around detecting shadow casting ob-

jects, we feel that it is necessary to review some of the literature on shadow detection. There

are generally two main types of shadow detection methods. One addresses with detecting and

removing shadows from moving objects in video, while the other deals with detecting and

removing shadows in single images.

2.4.1 Video

When attempting to detect and track moving objects in a video, both detection and

tracking can have a number of issues, which we highlight in Figure 3.19. It is difficult to

localize the object, since its shadow is part of the moving blob. The fact that the object and the

shadow blobs are treated as one by the system makes the motion blobs more similar to each

other; This makes it more difficult for the tracker to disambiguate them when their shadows

overlap. A number of works have appeared on detecting and removing shadows from moving

objects in a surveillance scenario for both people [45] [11] [6] [53] and vehicles [26] [44] [71]

[27] [84] [39] (see [54] for a survey of these approaches).

Some works in this area are similar to [39] and [45], they extend the Gaussian Mixture

Model based background subtraction to detect shadows in addition to the foreground object.

For example, in [45] the key idea is that as objects move over the same surface, the appearance

of foreground pixels belonging to objects will be different among the different objects; How-

ever, pixels belonging to shadows that are cast by those objects will have pixel values that are

similar among the different objects. Therefore, the Gaussian Mixtures, which are constructed
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for pixels that have observed the shadows of moving objects, will develop a strong component

that describes the shadows. Components that are identified as belonging to shadow are used to

construct another Gaussian mixture model called the Gaussian Shadow model.

Other works, such as [11] [6] [26], first perform background subtraction to detect mov-

ing objects, and then apply a set of heuristics to the blobs in order to determine which parts

of the blob contain shadow and which ones contain the object. In [11], Chang et.al. perform

background subtraction and obtain blobs of moving people. The moving blobs include both

the person and the shadow. In order to separate the person from the shadow, they determine

the dominant orientation of the moving blob via the central moments of the blob, and separate

the moving blob into person and shadow along the orientation of the blob based on contour

heuristics. In order to refine the detected shadow, they construct a Gaussian probability density

to represent the shadow. In [6], the heuristics are based on fitting ellipses to the motion blobs

and analyzing the orientation of their dominant axes. In [26], vehicles are detected in a traffic

surveillance scenario, then those detections are used to estimate the orientation of lanes in the

scene. Finally, the parts of the moving blob that belong to shadow are removed based on their

position relative to the lane dividers.

Such methods are useful in both ground and aerial surveillance scenarios. However,

they require good statistical background subtraction, and the existence of moving objects in

order for them to work. We, on the other hand, propose an integrated shadow and static object

detection method where the two parts of the method can complement each other.
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2.4.2 Single Frame

Detecting shadows in a single image is much more challenging than in video, and there

are fewer methods for doing that (such as [20] [79] [50]). In theory, one of these methods can

be used in place of the one suggested by us to find the shadows in the image. The methods are

based on obtaining illumination invariant (shadow-less) images, and comparing edges between

these and original images. The edges that belong to the shadow will appear in the original

image, but not in the shadowless image, and therefore can be removed. In [20], the authors

obtain the illumination invariant image by projecting pixel values in the 2d log-chromaticity

space onto the direction orthogonal to the lighting direction. The authors of [79] also add

l2 normalization of the color channels. However, we found that the above methods perform

poorly on our data (see Figure 3.15). We found that the illumination invariant images would

remove parts of shadows, humans, and strong background gradients.

2.5 Recognition Using Few Examples

Researchers are aware of the limitations caused by an insufficient number of training

examples. Hence, there are a number of works in various computer vision domains that ad-

dress this problem. The problem has been explored in the domains of object recognition [66],

concept detection [81], action recognition [82] [63] [42] [43] [4], object detection [17] [3], and

handwritten character recognition [19] [36]. It is important to note that there is no standard

definition of the problem, experimental setup, or metrics. Some authors define the problem as

having few example for all of the classes of interest, while others allow multiple examples for

22



some of the classes, and others are only interested in learning to separate the class of interest

from an amorphous background class, which does not include other classes.

The authors of [66] utilize a nearest neighbor framework for object recognition, where

each image is represented by a concatenation of six different features (RGB color histograms,

SIFT, rgSIFT, PHOG, SURF, and local self-similarity histograms), which are concatenated

and reduced to 500 dimensions using principle component analysis. The key idea behind their

method of one-shot recognition is that prior to computing the distance between test examples

and training examples, they project the feature vectors into a different space. The projection

function is learned automatically through training using other classes, where the classes that

are repeatedly separated into a series of one-shot recognition problems and the parameters of

the projection are optimized using stochastic gradient descent. One issue with this framework,

as reported by the authors, the performance of the method is tied to the number of classes that

are available. The more classes that are utilized for learning the projection function, the better

the method performs. In action recognition however, the datasets are generally smaller than in

object recognition.

In [3], Aytar and Zisserman propose acquiring information about the one-shot class by

utilizing a manually specified similar class that contains many examples. Then, the transfer

learning is formulated in the the Support Vector Machine framework via Adaptive-SVM. The

energy minimization function is almost the same as the one used in the standard SVM formula-

tion, but with an additional term that includes the output of the similar class SVM. The authors

show that that the adapted SVM achieves better performance than baseline SVM on PASCAL

data. However, one issue is that the similar class is selected manually. While the similar class
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can be obvious given the problem of object detection and the features used by the authors, it

may not be so obvious given some of the more abstract representations that are popular in the

field, such as Bag of Words. Additionally, it appears the problem that is solved is one of ob-

ject detection vs background, the authors did not report what would happen if the test images

included examples from the similar class.

In [17], the problem is defined as determining whether a particular object is present in

an image or not. Objects are represented by several parametric mixture models which include

the appearance and shape information of interest points. The authors train these models for ob-

ject classes that have many examples multiple times, in order to obtain a set of possible parame-

ters of the probability distributions. Then, they define several probability distribution functions

using the parameters of the probability distribution that represent the objects. Then, when

learning the parameters of the object containing few examples, they use the hyper-parameters

to guide the learning process.

Learning from few examples has also been attempted in template based approaches by

building in additional generality, as was done in [82] and [63]. In [82], Yang et. al. do not

match the template holistically, instead they break the template up into patches and optimally

match each patch within a small neighborhood of the test window, and then sum the match

scores across all of the patches. The purpose is to account for small variations in the actor’s

appearance and kinematics. The authors also attempt to use other datasets to learn weights for

the patches, however it is not clear whether or not that actually helped, since the results they

obtained are inconsistent. In [63], authors propose a novel technique based on locally steerable

kernel, or LSK, for constructing a 3D template, which has some built-in robustness to small
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temporal and spatial variations in the performance of the action. The main issue with template-

based methods is that not all actions are simple enough to be represented by templates.

2.6 Summary

The review of existing literature provided an overview of approaches for detecting,

tracking, and recognizing the actions of objects of interest in both ground and aerial imagery.

The main purpose was to provide an overview of the different directions in the field, and to

focus on the limitations of these approaches when confronted by our problem domain. Also,

we wanted to describe how some authors have attempted to address the challenges of small

object size, fast object motion, high object density, strong shadows, and incomplete training

sets.

In the next chapter, we describe in detail our proposed framework for detecting moving,

as well as static objects in aerial imagery in the presence of parallax and strong shadow.
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CHAPTER 3: DETECTION OF MOVING AND STATIC OBJECTS IN
PRESENCE OF PARALLAX AND SHADOW

In this chapter we present a method for detecting moving and stationary humans and

vehicles in imagery taken from a UAV in presence of strong shadow and parallax. First, we in-

troduce a method for detecting moving objects in presence of fast camera motion and parallax.

Then we describe our approach for detecting static objects based on constraining full-frame

search by detecting shadow-casting out of plane candidates for humans and vehicles based on

orientation of shadow and ground-plane normal in the image. We show how we can obtain

this information from the me metadata available on the UAV platform. We also show that

the candidate detection method can be extended to determine the orientation of the shadow

in the image automatically. The chapter is organized as follows. In section 3.1 we describe

how we compensate camera motion. Section 3.2 describes our approach for detecting densely

moving objects. Section 3.3 describes the removal of false detections due to parallax. Section

3.4 describes how we can use the metadata to derive a set of world constraints for detecting

humans and vehicles, and how we can project them into the image space. Section 3.5 focuses

on how we use those constraints for human detection and classification, while section 3.6 does

the same for vehicles. Section 3.7 describes how we can derive constraints directly from image

information, in cases when metadata is unavailable. Section 3.8 presents results.
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Figure 3.1: Different stages of our moving object detection pipeline. First, we remove global
camera motion using point based registration, then we model the background using a 10 frame
median image, perform background subtraction, and suppress false positives due to parallax
and registration errors.

3.1 Registration

Prior to motion detection in aerial video, we remove global camera motion. The struc-

tured man-made environment in these scenes and large amount of detail yields itself nicely to

a point-matching based registration algorithm. It is also much faster than direct registration

method. We detect Harris corners in frames at time t as well as at time t+1. Then we compute

SIFT descriptor around each point and match the points in frame t to points in frame t+1 using

the descriptors. Finally, we robustly fit a homography H t+1
t using RANSAC, that describes the

transformation between top 200 matches. Once homographies between individual frames have

been computed, we warp all the images to a common reference frame by concatenating the

frame to frame homographies.

3.2 Motion Detection

After removing global camera motion, we detect local motion generated by objects

moving in the scene.
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Figure 3.2: On the left, a background model obtained using mean, which has many ghosting
artifacts from moving objects. On the right, a background model obtained using median with
almost no ghosting artifacts.

To perform motion detection, we first need to model background, then moving objects

can be considered as outliers with respect to the background. Probabilistic modeling of the

background as in [65] has been popular for surveillance videos. However, we found these

methods to be inapplicable to this data. In the parametric family of models, each pixel is

modeled as either a single or a mixture of Gaussians. First, there is problem with initialization

of background model. Since it is always that objects are moving in the scene, we do not have

the luxury of object-free initialization period, not even a single frame. Additionally, since the

cameras move, we need to build the background model in as few frames as possible, otherwise

our active area becomes severely limited. Furthermore, high density of moving objects in the

scene combined with low sampling rate makes the objects appear as outliers. These outliers

can be seen as ghosting artifacts as shown in Figure 3.2. In the case of single Gaussian model,

besides affecting the mean, the large number of outliers make the standard deviation high,

allowing more outliers to become part of the model, which means many moving objects become

part of the background model and are not detected.

A mixture of Gaussians makes background modelling even more complex by allowing

each pixel to have multiple backgrounds. This is useful when background changes, such as in
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Figure 3.3: Left to right: A section of the original image, gradient of the median image, motion
blobs prior to gradient suppression, motion blobs after gradient suppression. The bottom row
shows an area of the image that has false motion detections due to parallax and registration
errors. The top row shows a planar area of the image.

the case of a moving tree branch in surveillance video. This feature, however, does not alleviate

any of the problems we highlighted above.

Therefore, we avoid probabilistic models in favor of simple median image filtering,

which learns a background model with less artifacts using fewer frames (Figure 3.2). We

found that 10 frame median image has fewer ghosting artifacts than mean image. To obtain a

comparable mean image, it has to be computed over at least four times the number of frames

which results in smaller field of view and makes false motion detections due to parallax and

registration errors more prominent.

We perform motion detection in the following manner. For every 10 frames we compute

a median background image B, next we obtain difference image i.e. Id = |I − B|. Prior

to thresholding the difference image, we perform gradient suppression. This is necessary to

remove false motion detections due to parallax and registration errors.
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3.3 Parallax Suppression

Since we fit a homography to describe the transformation between each pair of frames,

we are essentially assuming a planar scene. This assumption does not hold for portions of the

image that contain out of plane objects such as tall buildings. Pixels belonging to these objects

are not aligned correctly between frames and hence appear to move even in aligned frames.

Additionally due to large camera motion, there may be occasional errors in the alignment

between the frames. An example of this is bottom row of Figure 3.3 where we show a small

portion of an image containing a tall building (left). Due to parallax error, the building produces

false motion detections along its edges (third image from the left). We suppress these by

subtracting gradient of the median image ∇B (second column) from the difference image i.e.

Ird = Id −∇B. The top row shows a planar section of the scene and contains moving objects.

As evident from Figure 3.3, this procedure successfully suppresses false motion detections due

to parallax error without removing genuine moving objects. Also, the method has the advantage

of suppressing false motion detections due to registration errors, since they too manifest along

gradients. Note that above method works under an assumption that areas containing moving

objects will not have parallax error which is valid for roads and highways.

3.4 Ground-Plane Normal and Shadow Constraints

Our detection method relies on a series of geometric constraints. One way of obtaining

these constraints is to use the metadata provided by the UAV platform. In this section we
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Figure 3.4: On the left, frames from some of the VIVID 3 sequences, also examples of humans,
which are only around 24x14 pixels in size, making them difficult to distinguish from the
background. On the right, a frame from one of our sequences we have taken which was shot
from a balloon. still image shadow detection using techniques from [79]. Pixels belonging to
humans, and large parts of background were incorrectly labelled as gradient which belongs to
shadow.

describe how metadata of the UAV can be used to define a set of constraints in the world

coordinate system, as well as how we can project those constraints into the image space.

3.4.1 Metadata

The imagery obtained from the UAV has the following metadata associated with most

of the frames. It has a set of aircraft parameters latitude, longitude, altitude, which define the

position of the aircraft in the world, as well as pitch, yaw, roll which define the orientation of

the aircraft within the world. Metadata also contains a set of camera parameters scan, elevation,

and twist which define the rotation of the camera with respect to the aircraft, as well as focal

length, and time. We use this information to derive a set of world constraints and then project

them into the original image.
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Figure 3.5: The overall pipeline of our system. First, we use metadata to derive geometric
constraints. Second, we find normal and shadow blobs in the image. Third, using the geometric
constraints, we combine blobs into SCOOP candidates. Fourth, using geometric constraints
we combine blobs into inverted SCOOP candidates. Fifth, we combine SCOOP and inverted
SCOOP into vehicle candidates. Finally, from each SCOOP candidate we extract wavelet
features and classify it as either human or clutter. From every vehicle candidate we extract
wavelet features and classify it as either human or clutter.

3.4.2 World Constraints

The shadow is generally considered to be a nuisance in object detection and surveillance

scenarios. However, in the case of aerial human and vehicle detection, the shadow information

augments the lack of visual information from the object, especially in the cases when the aerial

camera is almost directly overhead. For human detection we define three world constraints:

• The person is standing upright.

• The person is casting a shadow.

• There is a geometric relationship between person’s height and the length of their shadow

(see Figure 3.6).

For vehicle detection, the constraints are:

• The vehicle is a box-like object.

• There is a geometric relationship between the boundaries of the vehicle and the bound-

aries of its shadow.
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Figure 3.6: Our world. X corresponds to the East direction, Y to the North, Z to the vertical
direction. Vector S⃗ is pointing from an observer towards the sun along the ground. It is defined
in terms of α - azimuth angle between the northern direction and the sun. The zenith angle γ
is between the vertical direction and the sun. The height of a human is k and the length of the
shadow is l.

Given the latitude, longitude, and time of day, we use the algorithm described in [56]

to obtain the position of the sun relative to the observer on the ground. It is defined by the

azimuth angle α (from the north direction) and the zenith angle γ (from the vertical direction).

Assuming that the height of the person in the world is k we find the length of the shadow as

l =
k

tan(γ − π/2)
, (3.1)

where γ is the zenith angle of the sun. Using the azimuth angle α we find the ground plane

projection of the vector pointing to the sun and scale it with the length of the shadow S⃗ =

⟨l cos(α), l sin(α), 0⟩.
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3.4.3 Image Constraints

Before we can use our world constraints for human detection, we have to transform

them from the world coordinates to the image coordinates. To do this we use the metadata to

obtain the projective homography transformation that relates image coordinates to the ground

plane coordinates. For an excellent review of the concepts used in this section see [24].

We start by converting the spherical latitude and longitude coordinates of the aircraft

to the planar Universal Transverse Mercator coordinates of our world Xw = east and and

Yw = north. Next, we construct a sensor model that transforms any image point p′ = (xi, yi)

to the corresponding world point p = (Xw, Yw, Zw). We do this by constructing the following

sensor transform

Π1 = T aZwT
e
XwT

n
Y wR

y
ZwR

p
XwR

r
Y wR

s
ZaR

e
XaR

t
Y a. (3.2)

Matrices T aZw, T eXw, and T nY w are translations for aircraft position in the world: altitude, east,

and north respectively. Matrices Ry
Zw, Rp

Xw, and Rr
Y w are rotations for the aircraft: yaw, pitch

and roll respectively. Matrices Rs
Za, R

e
Xa and Rt

Y a are rotation transforms for camera: scan,

elevation, and tilt, respectively.

We transform 2D image coordinates p′ = (xi, yi) into 3D camera coordinates p̂′ =

(xi, yi,−f), where f is the focal length of the camera. Next, we apply the sensor transform

from equation 3.2 and ray trace to the ground plane (see Figure 3.7 (a))

p = RayTrace(Π1p̂′). (3.3)

Ray tracing requires geometric information about the environment, such as the world

height at each point. This information can be obtained from the digital elevation map of the
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Figure 3.7: On the left, the sensor model Π1 maps points in the camera coordinates into world
coordinates. We place the image plane into the world, and ray trace through it to find the world
coordinates of the image points (we project from the image plane to the ground plane). We
compute a homography H1 between the image points and their corresponding world coordi-
nates on the groundplane. The panel on the right, illustrates how we obtain the projection of
the ground plane normal in the original image. Using a lowered sensor model Π2, we obtain
another homography H2, which maps the points in camera coordinates to a plane above the
ground plane. Mapping a world point pc1 using H1 and H2 gives two image points p′c1 and p′c2,
respectively. Vector from p′c1 to p′c2 is the projection of the normal vector.

area - DEM. In our case, we assume the scene to be planar and project the points to the ground

plane at zero altitude Zw = 0.

For any set of image points p′ = (xi, yi), ray tracing gives a corresponding set of

ground plane points p = (Xw, Yw, 0). Since we are assuming that only one plane exists in the

scene, we only need correspondences of four image corners. We then compute a homography,

H1, between the two sets of points, such that p = H1p′. Homography, H1, will orthorectify

the original frame and align it with the North Direction (see Figure 3.8 (a)). Orthorectification

removes perspective distortion from the image and allows for the measurement of world angles
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Figure 3.8: (a) shows an orthorectified frame from one of the sequences. The vertical direction
is aligned with the world north direction N⃗ . The sun vector S⃗ is defined by the azimuth angle α
between the north vector and the vector pointing to the sun. (b) is the original frame showing
the projected sun vector S⃗′, the projected normal vector z⃗′, and the ratio between the projected
normal and shadow lengths, 2.284.

in the image. We use the inverse of the homography, H−11 , to project the shadow vector defined

in world coordinates into the image coordinates (see Figure 3.8 (b)).

S⃗′ = S⃗H−11 . (3.4)

Next, we obtain the projected ground plane normal (refer to Figure 3.7 (b)). We generate a

second sensor model,

Π2 = (T aZw − [I|k])T eXwT nY wR
y
ZwR

p
XwR

r
Y wR

s
ZaR

e
XaR

t
Y a, (3.5)

where we lower the camera along the normal direction Zw, by k, which is the assumed height

of the person.

Using the above sensor model Π2, we obtain a second homography H2 using the same

process that was used for obtaining H1. We now have two homographies: H1 maps the points

from the image to the ground plane, and H2 maps the points from the image to a virtual plane
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parallel to the ground plane that is exactly k units above the ground plane. We select the center

point of the image p′c1 = (xc, yc), and obtain its ground plane coordinates pc1 = H1p′c. Then

we map it back to the original image using H2, p′c2 = H−12 pc. The projected normal is then

given by

Z⃗′ = p′c2 − p′c1. (3.6)

We compute the ratio between the projected shadow length and the projected height of the

person as

η =
|S⃗′|
|Z⃗′|

. (3.7)

3.5 Human Detection

Now that the world constraints have been projected into the image, we can avoid search-

ing over the entire frame and instead search the space of potential object candidates. We define

the search space as a set of pairs of blobs oriented in the direction of shadow and direction of

normal. These combinations of normal and shadow blobs represent a set of shadow casting out

of plane (SCOOP) candidates which can belong to humans, vehicles, or background. In the

case of human detection, a single SCOOP candidate makes for a sufficient human candidate.

In this section we describe how we use the constraints that we have projected into the image

space to find blobs belonging to the ground plane normal and shadow, how to combine them

into SCOOP candidates, and finally how to classify those candidates as human or clutter.
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Figure 3.9: This figure illustrates the pipeline which utilizes image constraints to obtain an
initial set of human and normal blobs, by applying a series of oriented filters to the original
image.

3.5.1 Detecting Shadow and Normal Blobs

The first step of human detection is to detect blobs that potentially belong to out of

plane objects, and blobs belonging to shadows. To do so, we use the image projection of the

world constraints derived in the previous section: the projected orientation of the normal to the

ground plane Z⃗′, the projected orientation of the shadow S⃗′, and the ratio between the projected

height of the person, and projected shadow length η (see Figure 3.9). This image contains

gradients oriented in many different directions, therefore we employ directed filters to enhance

gradients oriented in the directions of interest while suppressing gradients oriented in other

directions.

Given a frame I , we compute gradients oriented in the direction of the shadow by

applying a 2D Gaussian derivative filter,

G(x, y) = cos(θ)2xe−
x2+y2

σ2 + sin(θ)2ye−
x2+y2

σ2 , (3.8)

and take the absolute values of its responses. In the above equation θ is the angle between the

vector of interest and the x axis. To further suppress gradients not oriented in the direction of

the shadow vector we perform structural erosion along a line in the direction of the shadow
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orientation

|∇IS⃗′| = erode(∇I, S⃗′). (3.9)

We obtain |∇IZ⃗′ | using the same process. Next, we smooth the resulting gradient images with

an elliptical averaging filter whose major axis is oriented along the direction of interest:

IB
S⃗
′ = |∇IS⃗

′| ∗GS⃗
′ , (3.10)

whereBS⃗′ is an elliptical averaging filter, whose major axis is oriented along the shadow vector

direction. This process fills in the blobs. We obtain IB
Z⃗′ using GZ⃗′ . Next, we apply an adaptive

threshold to each pixel to obtain shadow and normal blob maps

MS⃗
′ =


1 if IB

S⃗′ > t ·mean(IG
S⃗′ )

0 otherwise.
(3.11)

See Figure 3.10 for resulting blob maps overlaid on the original image. We obtain MZ⃗′

using the same method. From the binary blob maps we obtain a set of shadow and object

blobs using connected components. Notice from Figure 3.10 that a number of false shadow

and object blobs were initially detected. In the next section, we describe how to remove those

false positives by combining normal and shadow blobs into SCOOP candidates.

3.5.2 Exploiting Object Shadow Relationship to generate SCOOP candidates

The initial application of the constraints does not take into account the relationship

between the normal blobs and their shadows, hence generating many false positives. Our next

step is to relate the shadow and normal blob maps. We obtain a set of SCOOP candidates

and remove shadow-normal configurations that do not satisfy the image geometry which we
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Figure 3.10: The left shows shadow blob map MS⃗
′ (shown in red) and normal blob map MZ⃗′

(shown in green) overlayed on the original image. There are false detections at the bottom
of the image. The right shows refined blob maps after each normal blob was related to its
corresponding shadow blob. The false detections at the bottom are now gone.

derived from the metadata. We search every shadow blob, trying to pair it up with a potential

object blob. If the shadow blob fails to match any object blobs, it is removed. If an object blob

never gets assigned to a shadow blob it is also removed.

Given a shadow blob, M i

S⃗
′ , we search in an area around the blob for a potential object

blob M j

Z⃗′ . We allow for a single shadow blob to be assigned to multiple normal blobs, but not

vice versa since the second case is rarely observed. The search area is determined by major

axis lengths of M i

S⃗
′ and M j

Z⃗′ . For any object candidate blob, M j

Z⃗′ that falls within the search

area, we ensure that it is in the proper geometric configuration relative to the shadow blob (see

Figure 3.11) as follows. We make two line segments, li, and lj , each defined by two points as

follows li = {ci, ci + QS⃗
′
} and lj = {cj, cj − QZ⃗

′
}. Where ci and cj are centroids of shadow

and object candidate blobs, respectively, and Q is a large number. If the two line segments

intersect, then the two blobs exhibit correct object shadow configuration.
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(b)(a)

Figure 3.11: (a) A valid configuration of normal and shadow blobs results in an intersection of
the rays, and is kept as a SCOOP candidate. (b) An invalid configuration of blobs results in the
divergence of the rays, and is removed from the set of SCOOP candidates.

We also check to see if the lengths of the major axes of M i

S⃗
′ and M j

Z⃗′ conform to the

projected ratio constraint η. If they do then we accept the configuration.

Depending on the orientation of the camera in the scene, it is possible for the person

and shadow gradients to have the same orientation. In that case the shadow and normal blobs

will merge. The amount of merging depends on the similarity of orientations S⃗
′
and Z⃗

′
. Hence,

we accept the shadow object pair if

M i

S⃗
′ ∩M j

Z⃗′

M i

S⃗
′ ∪M j

Z⃗′

> q(1− abs(S⃗
′
· Z⃗
′
)), (3.12)

where q was determined empirically. For these cases, the centroid of the object candidate blob

is not on the person. Therefore, for these cases we perform localization where we obtain a new

centroid by moving along the shadow vector S⃗
′
as follows

c̃ = c+
m

2
(1− 1

η
)

S⃗
′

∥S⃗
′
∥
, (3.13)

where m is the length of the major axis of shadow blob M i

S⃗
′ .
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3.5.3 Obtaining Human Candidates

The outlined procedures generate the final set of SCOOP candidates KZ⃗′

S⃗
′ = {kZ⃗′

S⃗
′
1
, ..., kZ⃗′

S⃗
′
n
},

where each candidate kZ⃗′

S⃗
′ = {M i

S⃗
′ ,M

j

Z⃗′} is a pair of normal and shadow blobs that were de-

tected at normal orientation Z⃗
′

and shadow orientation S⃗
′
. Since a single SCOOP candidate is

sufficient to capture a human in low resolution aerial video, KZ⃗′

S⃗
′ is the set of human candidates

where we classify each normal blob MZ⃗′ as human or clutter.

3.5.4 Classifying Human Candidates

The final step of human detection is to classify each SCOOP candidate kZ⃗′

S⃗
′ as either

human or clutter. For this purpose, we compute the centroid of the normal blob M i

Z⃗′ of each

remaining SCOOP candidate, and extract a w × h chip around that centroid. We then extract

wavelet features from each chip and apply a Support Vector Machine (SVM) classifier (see

Figure 3.12). We use the Daubechies 2 wavelet filter, where the low-pass (L) and high-pass

(H) filters for a 1-D signal are defined as

ϕ1(x) =
√
2

3∑
k=0

ckϕ0(2x− k), (3.14)

ψ1(x) =
√
2

3∑
k=0

(−1)k+1c3−kϕ0(2x− k), (3.15)

where ϕ0 is either row or column of the original image and c = (
(1+

√
(3))

4
√

(2)
,
(3+

√
(3))

4
√

(2)
,
(3−

√
(3))

4
√

(2)
,
(1−

√
(3))

4
√

(2)
),

are the Daubechies 2 wavelet coefficients. In the case 2D signals, such as images, the 1D filters

are first applied along x, and then y directions. This produces four outputs: LL, LH ,HL,HH .

Where LL is a scaled version of the original image and LH , HL, and HH , correspond to gra-

dient like features along horizontal, vertical and diagonal directions. We used only one level,
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since adding more did not improve the performance. We vectorize the resulting outputs, nor-

malize their values to be in the [0, 1] range, and concatenate them into a single feature-vector.

We train a Support Vector Machine [10] on the resulting feature set using the RBF kernel. We

use 2099 positive and 2217 negative examples w × h pixels in size.

Note that if focal length data is available, then the chip size could be selected auto-

matically based on the magnitude and orientation of the projected normal |Z⃗′|. Additionally,

if perspective distortion in the imagery is fairly strong, we would have to assume different

sizes of humans and shadows for different regions of the image, which would require a minor

change in the geometric part of the method. The change would include computing multiple

shadow and normal vector magnitudes for different regions of the image. Since there is little

perspective distortion in VIVID, no drastic zoom changes within a video, and the focal length

information provided is not correct, we kept w× h constant over the entire video. We selected

w × h to be 24× 14 equal to the size of images in the training set.

3.6 Vehicle Detection

Since vehicles are larger, and more complex objects than humans (at typical aerial

surveillance resolutions), a single SCOOP candidate is too simple to serve as a vehicle candi-

date. While the vehicle does generate a SCOOP (see Figure 3.13 (b)), the normal blob of the

SCOOP (shown in green) captures only a small part of the vehicle without giving a clear idea

of the size of the vehicle or the location of its centroid. This makes it difficult to localize the

vehicle for actual classification. Additionally, if our goal is to minimize the number of classi-

fications that we want to perform, then treating every SCOOP candidate as a potential vehicle
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Figure 3.12: Object candidate classification pipeline. Four wavelet filters (LL, LH, HL, HH)
produce a scaled version of original image, as well as gradient like features in horizontal,
vertical, and diagonal directions. The resulting outputs are vectorized, normalized, and con-
catenated to form a feature vector. These feature vectors are classified using SVM.

(a) (b) (c) (d)

Figure 3.13: (a) All shadow and normal blobs obtained using method described in section
3.5.1. (b) A SCOOP candidate detected using the method described in section 3.5.2 at normal
orientation Z⃗

′
and shadow orientation S⃗

′
. (c) An inverted SCOOP candidate that was detected

at normal orientation −Z⃗
′

and shadow orientation −S⃗
′
. (d) A car candidate assembled from a

SCOOP and an inverted-SCOOP candidates.

is less than optimal since SCOOPs can be generated by humans, poles, or simply background

gradients. As can be seen in Figure 3.13 (a), a vehicle will have at least two shadow and two

normal blobs associated with it. In this section we describe how we can use multiple SCOOP

candidates to obtain vehicle candidates.
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3.6.1 Obtaining Vehicle Candidates

In addition to obtaining a set of SCOOP candidates KZ⃗′

S⃗
′ as described in section 3.5.2,

we use the exact same process in obtaining a set of inverse-SCOOP candidates K−Z⃗′

−S⃗
′ , where

we negate the direction of the normal Z⃗
′
and the direction of the shadow S⃗

′
. Next, we combine

the regular and inverted-SCOOP candidates.

For every scoop candidate kZ⃗′

S⃗
′ = {M i

S⃗
′ ,M

j

Z⃗′}, we search for the closest inverted SCOOP

candidate k−Z⃗′

−S⃗
′ = {Mk

−S⃗
′ ,Mk

−Z⃗′}. The distance between the candidates is defined as the Euclid-

ian distance between the points e1 and e2 (see Figure 3.14 (a)). Where e1 is a point on shadow

blob M i

S⃗
′ , of SCOOP candidate kZ⃗′

S⃗
′ that is closest to the corresponding normal blob M j

Z⃗′ , and

e2 is a point on shadow blob Mk

−S⃗
′ of inverse-SCOOP candidate k−Z⃗′

−S⃗
′ , that is furthest from its

corresponding normal blob M l

−Z⃗′ . Since we want the SCOOP candidates to enclose the car, we

impose an additional constraint that the orientation of the vector between the centroids of the

shadow blobs M j

Z⃗′ and Mk

−S⃗
′ must be at least 30◦ different from the orientation of the shadow

blobs. Since this gives better localization and excludes a large part of the shadow, a vehicle

candidate is represented by a bounding box that encompasses both the SCOOP and the centroid

of the shadow blob of the inverse SCOOP.

A single vehicle may have multiple SCOOP pairs detected on it. Distractions like

specular reflections or decals can create multiple SCOOP and inverse-SCOOP candidates for a

single vehicle. Therefore, as a final processing step we merge bounding boxes that have more

that 50% overlap given by the following formula
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Figure 3.14: (a) Shows the distance computation between the SCOOP and inverted SCOOP
candidates. The distance is computed between points e1 and e2. (b) Shows the orientation
constraint between the SCOOP and inverted SCOOP candidates which must be satisfied for
their configuration to be considered a valid car candidate.

A ∩B
min(A,B)

, (3.16)

where A and B are areas of two vehicle candidate bounding boxes. Dividing by the minimum

of the two areas makes it easier to merge boxes. In cases where a small bounding box is

enclosed within a larger one, it will be merged. We perform the merge procedure recursively

until no additional bounding boxes can be merged.

3.6.2 Classifying Vehicle Candidates

As with humans, the final stage of vehicle detection is classifying each vehicle can-

didate as either vehicle or clutter. Since vehicle candidates encompass the entire object, we

simply extract the region within the candidate’s bounding box and resize it to 40×40. Next we

extract Daubechies 2 wavelet coefficients and classify them using SVM. The vehicle training
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set consisted of 1900 positive and 1889 negative examples. We included vehicles at different

orientations in the positive set.

3.7 Constraints without Metadata

Having all of the metadata provides a set of strict constraints for a variety of camera

angles and times of day. However, there may be cases when the metadata is either unavailable

or is incorrect. In such cases it is acceptable to sacrifice generality and computation time to

obtain a looser set of constraints that still perform well. If we assume that humans are vertical in

the image and ignore the ratio between the size of humans and their shadows, we can determine

the orientation of the shadow in the image by exploiting the relationship between out of plane

objects and their their shadows.

When SCOOP objects are present in the scene the shadows they cast will be at similar

orientations. Therefore, SCOOP objects will be consistently detected in the shadow orientation

range of about −10◦ to +10◦ of the actual orientation. If we assume that the scene is mostly

planar, then the orientation range will be consistent across all SCOOP objects in the scene. We

apply the SCOOP detector at all orientations of the shadow, then search for the longest range

of orientations consistent across multiple SCOOP objects. This corresponds to the longest

common consecutive subsequence (LCCS) among orientation ranges of all potential SCOOP

objects detected in the scene. Hence we need at least two SCOOP objects on the plane. If the

scene is not planar, shadow orientation ranges for some SCOOP objects will exhibit a shift.

This shift will simply shorten the length of the LCCS, though a reasonable orientation allow-

ing for SCOOP detection will still be found. Multiple planes, each with drastically different
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Figure 3.15: Still image shadow detection using techniques from [79]. The dark edges are
the gradients labelled by the method as belonging to shadow. The gradients belonging to
humans and large parts of the background were incorrectly labelled as gradients which belong
to shadow.

orientations, will correspond to multiple LCCSs which can be found if two or more SCOOP

objects are present on each plane. The details of this method are as follows.

We quantize the search space of shadow angle θ between 0 and 2π in increments of

d (we used π/36 in our experiments). Keeping the normal orientation fixed, and ignoring

shadow-to-normal ratio, we find all human candidates in image I for every orientation θ using

techniques described in sections 3.5 and 3.5.2 (see Figure 3.16). We track the candidates across

different θ. Similar angles θ will detect the same human candidates. Therefore, each human

candidate Ci has a set Θi for which it was detected, and a set Oi which is a binary vector,

where each element corresponds to whether the shadow and human blobs overlapped. The set

of orientations for which it was detected due to overlap is Θo
i , and the set of orientations for

which it was detected without overlap is Θō
i (see Figure 3.16). We remove any candidate which
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Figure 3.16: Shows our method for finding optimal shadow orientation for a given image in
the absence of metadata. The top row shows human candidate responses obtained for different
shadow orientations. A human candidate is then described by a vector of orientations for
which it was detected and a binary overlap vector. Optimal orientation θ̂ is the average of the
longest common consecutive non-overlapping subsequence of orientations among all human
candidates.

has been detected over less than p orientations, since a human is always detected as a candidate

if shadow and normal orientations are similar and the resulting blobs overlap according to

equation 3.12 (as in Figure 3.16 (b) & (f)). Here p depends on quantization; we found that it

should encompass at least 70◦.

We now find the optimal shadow orientation θ̂ by treating each Θō
i as a sequence and

then finding the longest common consecutive subsequence β among all Θō. Subsequence β

must span at least 20◦ but no more than 40◦. Finally, the optimal orientation θ̂ = mean(β).

If we cannot find such a subsequence then there are either no shadows, or the orientation of

the shadow is the same as the orientation of the normal, so we set θ̂ to our assumed normal.

Figure 3.17 shows an example frame for which human candidates were detected using the

automatically estimated shadow orientation. There is a 10◦ difference between the estimated

orientation and the orientation derived from the metadata. This is the same frame as in Figure
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(a) (b)

Figure 3.17: (a) The refined human candidate blobs for an automatically estimated shadow ori-
entation of 35◦ without metadata. (b) The refined blobs that were obtained using the metadata-
derived orientation value of 46.7◦.

3.10, qualitative examination of the shadow blobs indicates that the estimated orientation is

more accurate than the one derived from the metadata, however the computation time of ob-

taining it is much larger. In practice, the angle can be estimated in the initial frame and then

predicted in subsequent frames using a Kalman filter.

3.8 Results

In this section we present both quantitative and qualitative results of human and vehicle

detection on the VIVID and CLIF datasets. These results are compared against motion con-

strained detection, Harris corner constrained detection, and an unconstrained full frame search.

3.8.1 Human Detection

We evaluated our detection methods on three sequences from the DARPA VIVID3

dataset of 640x480 resolution and compared the detection against manually obtained groundtruth.
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Table 3.1: This table provides details on the VIVID sequences that were used for quantitative

evaluation of the human detection methods.

Sequence1 Sequence2 Sequence3

Frames 1191 1006 823

Total People 4892 2000 3098

The Table 3.1 shows the number of frames and the number of people in each sequence. We

removed the frames where people congregated into groups. We used the following evaluation

criteria Recall (True detection rate) vs. False Positives Per Frame (FPPF). Recall is defined

as TP
TP+FN

, where FN is number of false negatives in the frame and TP is the number of true

positives. To evaluate the accuracy of the geometry-based human candidate detector method,

we require the centroid of the object candidate blob to be within w pixels of the centroid blob,

where w is 15. We did not use the PASCAL measure of 50% bounding box overlap, since in

our dataset the humans are much smaller and make up a smaller percentage of the scene. In

the INRIA set introduced in [14], an individual human makes up 6% of the image, in our case

the human makes up about 0.1%. Under these circumstances, small localization errors result

in a large area overlap difference. Hence, the centroid distance measure is more meaningful

for aerial data.

Figure 3.18 compares ROC curves for the following methods: our geometry based

method with and without the use of object-shadow relationship refinement and centroid local-

ization, our geometry method augmented with temporal information, conventional full frame

detection method (we used HOG detection binaries provided by the authors), and standard

motion detection pipeline of registration, detection, and tracking.
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Figure 3.18: SVM confidence ROC curves. Our geometry method based on classifying SCOOP
candidates is shown in red. The orange curves reflect our geometry based method without
the use of object-shadow relationship refinement or centroid localization. The Magenta curves
show our geometry based method augmented with temporal information. A standard full frame
detector (HOG) is shown in blue. Green shows results obtained from classifying blobs obtained
through registration, motion detection, and tracking, similar to [77]. The black curves are for
our modified implementation of [48], which uses Harris corner tracks.

Figure 3.21 shows qualitative detection results. Conventional full frame detection is not

only time consuming (our MATLAB implementation takes several hours per 640x480 frame),

but it also generates many false positives. By contrast, preprocessing the image using the pro-

posed geometric constraints to obtain human candidates is not only much faster (0.72 seconds

per frame), but gives far better results. Geometric constraints with the use of shadow based re-

finement and centroid localization provide the best performance. However, even without these

additional steps the geometric constraint based only on the projection of the normal still gives

superior results to full frame and motion constrained detection.
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Motion based detection suffers from problems discussed in Section 2.4.1 and shown in

Figure 3.19. Which is why the green ROC curve in Figure 3.18 is very short. We implemented

a part of the method found in [48], where instead of using the OT-Mach filter, we used our

wavelet SVM combination for classification. This ROC curve is shown in black. We suspect

that the poor performance is due to the large number of initial candidates, since multiple corners

are likely to occur on man-made background objects, their shadows, and airfield markings.

By contrast, when proper initialization and localization is provided, temporal informa-

tion is a convenient way of improving performance. This is illustrated by the magenta curve

in Figure 3.18. In this case, detections obtained by refined geometric constraints (red curve)

are tracked in a homography-constrained global coordinate system. Objects that persisted for

less than 5 frames are discarded. Classification is performed using wavelets and SVM: if 20%

of the track is classified as human, then the entire track is labelled as human. The above

technique further suppresses false positives, however the maximum detection rate is slightly

reduced since we probably removed incidents of short human tracks.

3.8.2 Vehicle Detection

Quantitative evaluation of vehicle detection was performed on the entire frame range

of the same VIVID3 sequences used in the quantitative evaluation of human detection. Table

3.2 shows the number of frames and vehicles contained within each sequence. In order to de-

termine true detections, we used the 33% bounding box overlap criteria from [34]. Figure 3.20

shows the Recall vs FPPF ROC curves of the same 6 detection methods described in 3.8.1,

with a few slight differences specific to vehicle detection. In the geometry method enhanced
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(a) (b) (c)

Figure 3.19: Qualitative comparison of motion detection (top row) to our geometry based
method (bottom row). (a) The human is stationary and was not detected by the motion detector.
(b) The moving blob includes a shadow, the centroid of the blob is not on the person. (c) Two
moving blobs were merged by the tracker because of shadow overlap, the centroid is not on
either person. In contrast our method correctly detected and localized the human candidate
(green).

with temporal information (the magenta curve), we removed tracks of lengths less than ten. In

the case of geometry method without using the SCOOP concept (the orange curve), we repre-

sented vehicle candidates as pairs of normal blobs instead of classifying each blob individually.

In the Harris corner constrained method (the black curve), we did not track and classify indi-

vidual Harris corners. Because a single vehicle will have multiple corners belonging to it, we

clustered the locations of the corners using mean shift then tracked and classified the resulting

clusters.

At this resolution, the vehicles are much larger than humans and have a sufficient

amount of interesting visible features. Therefore, as can be seen in Figure 3.20, the perfor-

mance of all detection methods is much better than in the human case. Another thing to note,

is that the relative performance of some of the methods is now different. Full frame detection
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Table 3.2: This table provides the details for the 3 VIVID sequences which were used for

quantitative vehicle detection evaluation

Sequence1 Sequence2 Sequence3

Frames 1812 1785 1813

Total Vehicles 1719 1742 2019

receives very large performance gain, since the classifier can construct a good object model at

this resolution. The gains from constraining the search using SCOOP candidates is moderate,

though the speed advantage is still there.

Another drastic difference is the performance of motion detection based method (green

curve). It is actually better than the geometry method without utilizing temporal information

(red curve). This is because the camera observes the scene persistently allowing for a good

background model to be constructed. Additionally, unlike humans, the vehicles are always

moving fairly quickly in these sequences. This allows the background subtraction to detect

them with ease. Another issue is that unlike in the case of humans, the shadows cast by the ve-

hicle do not severely distort the motion blob creating localization problems at the classification

stage and the ground-truth comparison stage.

Detection based on grouping of normal blobs without utilizing the SCOOP concept

(orange curves) is not very meaningful. This is because it essentially represents the vehicle as

two neighboring parallel gradients, ignoring the box-like nature of the object.

Finally, representing shadow casting vehicles as clusters of Harris corners is rather chal-

lenging, since multiple Harris corners are detected on the vehicle and its shadow. These corners

have to be clustered to estimate the location of the vehicle. The relative location and quantity
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of these corners differs with changes in orientation of the vehicle, and corners from back-

ground and neighboring objects can become part of the cluster as the vehicle moves through

the scene. This, of course, causes localization problems, not unlike those of motion detection

in the human case.

Qualitative evaluation (see Figure 3.26) was performed on segments of the CLIF 2007

dataset. Here the resolution is smaller than in VIVID and there are more confusers. In this

case, full frame detection once again starts to perform poorly and there is a clear gain from

using SCOOP candidates to constrain the search. In the case of CLIF, the camera is very

close to nadir, making the normals very short and in the case of vehicles almost non existent.

However, our method can still find the candidates. Additionally, if the vehicle is oriented with

the orientation of the shadow, the actual presence of the shadow is not even necessary to be

able to detect it as a candidate, since the primitive blobs will be detected on the sides of the

vehicle. Whether a vehicle can be correctly detected as a candidate while it is at a 45◦ angle

relative to shadow’s orientation depends on whether the resolution is high enough to be able to

detect the primitive shadow blobs on the corner of the vehicle.

3.9 Summary

We proposed a novel method for detecting humans and vehicles in aerial imagery. This

method works on a single image and is is based on constraining the search space of the image

by detecting Shadow Casting Out Of Plane (SCOOP) object candidates. Our method takes ad-

vantage of the metadata information provided by the UAV platform to derive a set of geometric

constraints, and to project them into the imagery. In cases where metadata is not available,
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Figure 3.20: SVM confidence ROC curves. Our geometry method based on combining multi-
ple SCOOP candidates is shown in red. The orange curves reflect our geometry based method
without the use of object-shadow relationship refinement or centroid localization. The magenta
curves are for our geometry based method augmented with temporal information. A standard
full frame detector (HOG) is shown in blue. Green shows results obtained from classifying
blobs obtained through registration, motion detection, and tracking, similar to [77]. The Black
curves are for classifying tracks of clusters of Harris corners.

we proposed a method for estimating the constraints directly from image data. The constraints

were then used to obtain candidate out-of-plane objects which were then classified as either

human or non-human. For vehicles we combined multiple SCOOP candidates to obtain a ve-

hicle candidate. In the case of humans, we evaluated the method on challenging data from

the VIVID 3 and 2 datasets, and obtained results superior to both full frame search, motion

constrained detection, and Harris track constrained detection. In the case of vehicle detection,

we performed evaluation on the VIVID3 and CLIF datasets obtaining superior results. The

purpose of the method is to augment the performance of any full frame classifier but could
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Figure 3.21: Qualitative detection results on VIVID 3, VIVID 2, and some of our own data.
Columns labelled (Full Frame) show the result of full frame search (HOG) applied to the entire
frame (human detections are shown in red). Columns labelled (Geom Constrained) show the
results of our geometry constraint based method. Human candidates that were discarded by the
wavelet classifier as clutter are shown in magenta, candidates that were classified as human are
shown in black.

also be used for shadow detection and removal in the case of background subtraction based

surveillance.
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Figure 3.22: This figure shows the metadata derived geometric constraints for images from the
CLIF 2007 dataset. The yellow arrow is the vector S⃗′ pointing towards the sun. The blue arrow
is a vector pointing in the direction of the shadow (opposite of sun direction). The green arrow
is the vector Z⃗′ pointing in the direction of the normal. The shadow to normal ratio is shown in
red text. Note that in the first three images the camera is close to NADIR, hence the shadow to
normal ratio is very high.

Figure 3.23: This figure shows metadata derived geometric constraints for images from the
VIVID 3 dataset. Yellow arrow, is the vector S⃗′ pointing towards the sun. Blue arrow is a
vector pointing in the direction of the shadow (reverse of sun direction). Green arrow is the
vector Z⃗′ pointing in the direction of the normal. The shadow to normal ratio is shown as red
text.
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(a) (b) (c) (d)

Figure 3.24: This figure shows the candidate refinement process. Figure (a) shows all of
the shadow and normal blobs that were obtained using the method described in Section 3.5.1.
Figure (b) shows the set KZ⃗′

S⃗
′ of refined SCOOP candidates after refining the blobs by exploiting

object shadow relationship, as described in Section 3.5.2; this set is used as human candidates
in the classification stage. Note that a lot nonsense shadow and normal blobs (circled in black)
were removed from the areas of strong gradient. Figure (c) shows the set K−Z⃗′

−S⃗
′ of refined

inverse scoop blobs, which were obtained using method described in 3.5.2, but where the sun
and normal directions were reversed. Finally, figure (d) show vehicle candidates obtained
by combining SCOOP and inverse SCOOP candidates using the method described in Section
3.6.1.
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(a) (b)

Figure 3.25: Figure (a) shows the vehicle detection results for the geometrically constrained
method on the CLIF 2007 dataset. The candidates that were classified as vehicles are shown
in blue. The candidates that were discarded by the classifier are shown in magenta. Figure (b)
shows results for full frame detection in red. Full frame detection has generated significantly
more false positives. Note that in the top image, one can see two vehicles that our method
misses because their shadows are obscured by the shadow cast by the bridge, full frame detector
misses only one of those vehicles.
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(a) (b)

Figure 3.26: Figure (a) shows the vehicle detection results for the geometrically constrained
method on the CLIF 2007 dataset. Candidates that were classified as vehicles are shown in
blue, candidates that were discarded by the classifier are shown in magenta. Figure (b) show
results for full frame detection in red. Full frame detection has generated significantly more
false positives. Note that in the top image, one can see two vehicles that our method misses
because their shadows are obscured by the shadow cast by the bridge the full frame detector
misses only one of those vehicles.
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CHAPTER 4: TRACKING A LARGE NUMBER OF DENSE OBJECTS IN
LOW FRAMERATE VIDEO

In this chapter, we present a framework for tracking a large number of dense, fast mov-

ing objects in low frame rate video. In order to deal with the sheer number of objects present in

the scene, we break the scene up into overlapping grid cells. This splits the tracking problem up

into a number of smaller problems which are solved optimally using the Hungarian algorithm.

In order to deal with the difficulties of fast object motion, high density, and low frame rate

we propose utilizing scene constraint information which we derive directly from the imagery.

We use these constraints to generate better assignment weights, which are used to solve the

tracking problem. The chapter is organized as follows. Section 4.1 defines the tracking frame-

work within each individual grid cell. In section 4.2, we describe how we generate and use the

structured scene constraints to aid with the tracking problem. Section 4.3 describes how we

track objects across multiple cameras. Finally, in section 4.4 we present metrics and results.

4.1 Formulating the Tracking Problem Within Cells

After detecting moving objects, we track them across frames using bipartite graph

matching between a set of label nodes (circled in blue) and a set of observation nodes (circled

in magenta). The assignment is solved optimally using the Hungarian algorithm which has

complexity O(n3) where n is the number of nodes. When we have thousands of objects in the

scene, an optimal solution for the entire scene is intractable. To overcome this problem, we
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Intra Cell Tracking Inter Cell HandoverSplit Sene Into Cellls

Figure 4.1: The figure shows the major steps of our tracking pipeline.

(a) (b)

Figure 4.2: (a) shows two consecutive frames overlayed in two different color channels: red is
frame t, green is frame t+1. (b) shows how far the vehicles move between consecutive frames.
Red boxes show vehicle’s positions in previous frame and the blue boxes show vehicle’s posi-
tions in next frame.

break up the scene into a set of overlapping grid cells (see Figure 4.6). We solve the corre-

spondence problem within each grid cell independently and then link tracks across grid cells.

The use of grid has an additional advantage of allowing us to exploit local structured-scene

constraints for objects within the grid cell, which will be discussed later.

For each grid cell in every pair of frames we construct the following graph. Figure 4.3

shows an example graph constructed for assigning labels between frames t and t + 1. We add
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Figure 4.3: The figure shows an example of the bipartite graph that we solve at every frame.
Four different types of edges are marked with numbers.

a set of nodes for objects visible at t to the set of label nodes. A set of nodes for objects visible

at t+1 are added to the set of observation nodes, both types are shown in green. Since objects

can exit the scene, or become occluded, we add a set of occlusion nodes to our observation

nodes, shown in red. To deal with the case of reappearing objects, we also add label nodes for

objects visible in the set of frames between t− 1 and t− p, shown in yellow. We fully connect

the label set of nodes to the observation set of nodes, using four types of edges.

1. Edge between label in frame t and an observation in frame t+ 1.

2. Edge between label in frame t− p and an observation in frame t+ 1.

3. Edge between a new track label in frame t and an observation in frame t+ 1.

4. Edge between a label and an occlusion node.
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We define edge weights in the following manner. Weight for edge of type 3 is simply a

constant δ. Weights for edges of type 1 and 2 contain velocity orientation and spatial proximity

components. Spatial proximity component Cp is given by

Cp = 1− ∥xt−k + vt−k(k + 1)− xt+1∥√
S2
x + S2

y

, (4.1)

where x is the position of the object, Sx and Sy are the dimensions of the window within which

we search for a new object and k is the time past since last observation of the object.

Velocity orientation component Cv is given by

Cv =
1

2
+

v⃗t · v⃗t+1

2∥v⃗t∥∥v⃗t+1∥
, (4.2)

where v⃗t is the last observed velocity of an object, v⃗t+1 is the difference between xt+1, the

position of observation in current frame, and xt−k, the last observed position of object at frame

t− k.

We define the weight for edges of type 1 and 2 as follows

w = αCv + (1− α)Cp. (4.3)

We found these to be sufficient when object’s velocity is available. If on the other hand,

velocity of the object is unavailable as in initial two frames or when new objects appear in the

scene, we use structured scene constraints to compute weights for edges.
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(a)

(b)

(c)

Figure 4.4: This figure shows the process of estimating road orientation within a grid cell.
Objects tracked in frame t are shown in red, objects detected in frame t + 1 are shown in
blue. (a) Obtain all possible assignments between the objects in frame t and frame t + 1. (b)
Obtain a histogram of the resulting possible velocities. (c) Take the mean of velocities which
contributed to the histogram peak.

4.2 Structured Scene Constraints

Assigning labels based simply on proximity between object centroids is not meaningful

in wide area scenario. Due to low sampling rate (2 Hz), high scene density and high speed of

objects, proximity based assignment is usually incorrect (see Figure 4.5). Therefore we use

road orientation estimate and object context as constraints from the structured scene.

Road orientation estimate g⃗ is computed for each grid cell in the following manner (see

Figure 4.4). First, we obtain all possible assignments between objects in frame t and t+1. This

gives us a set of all possible velocities between objects at frames t and t+1. Next, we obtain a

histogram of orientations of these velocities and take the mean of orientations that contributed

to peak of the histogram. See Algorithm 1 for a formal description.
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Algorithm 1 Algorithm to compute global velocity for each cell in grid of size m x n using detections Dt and Dt+1.

1: procedure COMPUTEGLOBALVELOCITY

2: for i← 1,m do

3: for j ← 1, n do

4: for all d ∈ Di,j
t do

5: for all d′ ∈ Di,j
t+1 do

6: θ = tan−1 (d′ − d)

7: Store θ in Θ

8: end for

9: end for

10: h = histogram(Θ)

11: Find bin ψ s.t. mode(h) ∈ ψ

12: θ′ = mean(θ|θ ∈ ψ)

13: −→g (i, j) = [cos(θ′) sin(θ′)]

14: end for

15: end for

16: end procedure

Algorithm 2 Algorithm to compute context Φ(Oa
t ) for object a at frame t.

1: procedure COMPUTECONTEXT

2: for all c do

3: if ∥Oc
t −Oa

t ∥2 < r then

4: θ = tan−1 (Oc
t −Oa

t )

5: d = ∥Oc
t −Oa

t ∥2

6: Φ = Φ+N (µ,Σ) ◃N centered on (d, θ)

7: end if

8: end for

9: end procedure

Note that orientation of g⃗ essentially gives us orientation of the road along which ve-

hicles travel, it does not give us the direction along that road. However, even without the

direction, this information is oftentimes sufficient to disambiguate label assignment as shown
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Figure 4.5: Vehicles tracked at time t are shown in red, while vehicles detected in frame t + 1
are shown in blue. White arrows indicate the assignment of labels to objects based on prox-
imity only and correspond to the resulting velocities of objects. Yellow arrows indicate the
road orientation estimate for this particular grid cell. (a) shows a case where road orientation
estimate can be used to disambiguate the assignment of labels, and (b) shows where it is not
useful. To handle cases such as (b), we introduce a new constraint for the context of each
vehicle, as shown in (c). At frames t and t + 1, we compute vectors between the vehicle of
interest (green) and its neighbors (orange). We then compute a 2D histogram of orientations
and magnitudes of the vectors as shown in (c).

in Figure 4.5(a). When vehicles travel along the road in a checkerboard pattern, proximity

based assignment will result in velocities which are perpendicular to g⃗. That is not the case

when a number of vehicles are travelling in a linear formation as in Figure 4.5(b). Therefore,

we introduce an additional formation context constraint (see Figure 4.5(c) and Figure 4.5(d)).

If we are trying to match an object Oa in frame t (or t − k) to an observation in frame t + 1,

we compute object context as a 2 dimensional histogram of vector orientations and magnitudes

between an object and its neighbors.

In order to account for small intra-formation changes, when computing the context

histograms Φa and Φb, we add a 2D Gaussian kernel centered on the bin to which a particular

vector belongs. Furthermore, since 0◦ and 360◦ are equivalent, we make the kernel wrap around

to other side of orientation portion of the histogram.

The road orientation constraint component is defined as
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Figure 4.6: (a) This figure shows an example frame with the grid overlayed onto an image. (b)
shows the grid cell search procedure for handing over tracks. The bold colored lines correspond
to OLLeft, OLBottom, and OLRight, in counterclockwise direction. Only colored grid cells
are searched, white cells are ignored.

Cg =
1

2
+

|⃗g · v⃗t+1|
2∥g⃗∥∥v⃗t+1∥

(4.4)

The purpose of this constraint is to prevent tracks from travelling across the road. The

context constraint is the histogram intersection between histograms Φa and Φb:

Cc =

Nbins∑
p

Mbins∑
q

min(Φp,q
a ,Φp,q

b ) (4.5)

Finally, weight for edge of type 3 is computed as follows,

w = α1Cg + α2Cp + (1− α1 − α2)Cc (4.6)

We solve the resulting bipartite graph using Hungarian algorithm. We track all objects

within each grid cell by performing the above procedure for all frames. Next, we find and

link tracks that have crossed the cell boundaries, using Algorithm 3 utilizing the overlapping

regions of the neighboring grid cells. (see Figure 4.6 for reference).
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Algorithm 3 Algorithm for object handover across grid cells. The size of grid is m x n. S(i, j) represents all tracks for the sequence
in the cell at ith row and jth column in grid.

1: procedure INTERCELLHANDOVER
2: for i← 1,m do
3: for j ← 1, n do
4: Calculate OLLeft, OLRight and OLBottom ◃ See figure Figure 4.6
5: for all si,j ∈ S(i, j) do
6:
7: if ∃ k | si,jk > OLRight then
8: completeTrack(si,j , S(i+ 1, j))

9: else if ∃ k | si,jk > OLRight ∧ ∃ k | si,jk > OLBottom then
10: completeTrack(si,j , S(i+ 1, j + 1))

11: else if ∃ k | si,jk > OLBottom then
12: completeTrack(si,j , S(i, j + 1))

13: else if ∃ k | si,jk < OLLeft ∧ ∃ k | si,jk > OLBottom then
14: completeTrack(si,j , S(i− 1, j + 1))
15: end if
16:
17: end for
18: end for
19: end for
20: end procedure

1: procedure COMPLETETRACK(s, S) ◃ s=track to complete, S=tracks in neighboring cell
2: for all s′ ∈ S do
3: if ∃ (l,m) | sl.detectionID = s′m.detectionID ∧ sl.t = s′m.t then
4: assign s and s′ unique label
5: end if
6: end for
7: end procedure

4.3 Handling Multiple Cameras

There can be several possible frameworks for tracking objects across overlapping cam-

eras which employ inter-camera transformations. One possible way is to establish correspon-

dences at the track level where objects are detected and tracked in each camera independently,

and afterwards, tracks belonging to the same object are linked. But, this approach has a serious

issue which arises from the fact that background for a particular frame of a camera can only

be modeled on overlapping region of all frames used for background. This reduces the area of

region where objects can be detected. When objects are detected in cameras separately, reduc-

tion in detection regions results in the loss of overlap between two cameras. While methods

for matching objects across non-overlapping cameras exist [31, 52, 33, 2], low resolution and
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Figure 4.7: CLIF data - all six cameras.

single channel data disallow the use of appearance models for object hand over, and reacqui-

sition based on motion alone is ambiguous. The increased gap between cameras arising from

detection adds further challenge to a data already characterized by high density of objects and

low sampling rate of video.

In order to avoid above problems, we perform detection and tracking in global coor-

dinates. We first build concurrent mosaics from images of different cameras at a particular

time instant using the Registration method in §3.1 and then register the mosaics treating each

concurrent mosaic as a single image.
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One problem with this approach, however, is that cameras can have different Camera

Response Functions or CRFs. This affects the median background, since intensity values for

each pixel now come from multiple cameras causing performance of the detection method to

deteriorate. To overcome this issue, we adjust the intensity of each camera with respect to a

reference camera using the gamma function [16] i.e.

I ′C(x, y) = βIC(x, y)
γ , (4.7)

where IC(x, y) is the intensity of the original image at location (x, y). We find β, γ by mini-

mizing the following cost function:

argmin
β,γ

∑
(x,y)∈IC1∩IC2

(IC1(x, y)− I ′C2(x, y))
2, (4.8)

where IC1∩IC2 is the overlap between the two cameras. The cost function is minimized using a

trust region method for nonlinear minimization. The approximate Jacobian matrix is calculated

by using finite difference derivatives of the cost function. Transformation in equation 4.7 is

then applied to each frame of the camera before generating concurrent mosaics. Results for

this procedure are shown in Figure 4.8.

4.4 Results

We validated our method on four sequences from CLIF 2006 dataset. Sequences 1 to 3

are single camera sequences while sequence 4 has multiple cameras. The average number of

objects in these sequences are approximately 2400, 1000, 1200 and 1100 respectively. Objects

in sequence 2 and 3 undergo merging more often than objects in the other two sequences. This
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Figure 4.8: This figure shows the results of multi-camera intensity equalization. Notice the
seam in the image on the left which in not visible in the equalized image on the right.

is primarily due to oblique angle between highway and camera in these sequences as opposed

to top view in sequences 1 and 4. Figure 4.9 shows some of the tracks from these sequences.

For quantitative evaluation, we manually generated ground truth for the four sequences.

Due the sheer number of objects, smaller size and similar appearance, generating ground truth

for each object is a daunting task. We selected one region from sequence 1,3 and 4 and two

regions from sequence 2 for ground truth. Objects were randomly selected and most of them

undergo merging and splitting. The number of objects for which ground truth was generated

are 34 for sequence 1, 47 and 60 for sequence 2 and 50 each for sequences 3 and 4.

Our method for evaluation is similar to [51] and measures performance of both detec-

tion and tracking. We compute the following distance measure between generated tracks and

ground truth tracks:

D(Ta, Gb) =
1

|Ω(Ta, Gb)|2
∑

t∈Ω(Ta,Gb)

∥xat − xbt∥2, (4.9)
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where Ω(Ta, Gb) denotes the temporal overlap between Ta andGb, |.| denotes cardinality while

∥.∥ is the Euclidean norm. A set of pairs are associated i.e. (a, b) ∈ A iff Ta and Ga have an

overlap. The optimal association,

A∗ = argmin
A

∑
(a,b)∈A

D(Ta, Gb) subject to Ω(Ta, Tc) = ∅ ∀(a, b), (c, b) ∈ A (4.10)

is used to calculate the performance metrics. Abusing notation, we define

A(Gb) = {Ta|(a, b) ∈ A}. (4.11)

The first metric Object Detection Rate, measures the quality of detections prior to any

association:

ODR =
# correct detections

# total detections in all frames
. (4.12)

We cannot compute ODR for each track and then average, because that would bias the

metric towards short tracks as they are more likely to have all detections correct. Further notice

that, it is not possible to detect false positives as the number of ground truth tracks is less than

number of objects. A related metric, Track Completeness Factor,

TCF =

∑
a

∑
Tb∈A(Ga)

|Ω(Tb, Ga)|∑
a |Ga|

, (4.13)

measures how well we detect an object after association. TCF will always be less than or equal

to ODR. The difference between ODR and TCF is the percentage of detections that were not

included in tracks. Finally, Track Fragmentation measures how well we maintain identity of

the track,
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Table 4.1: Quantitative Comparison

ODR TCF TF NTF TCF TF NTF

Seq1 0.975 0.716 2.471 2.506 0.361 13.06 13.11

Seq2 0.948 0.714 2.894 2.895 0.489 12.55 12.55

Seq3 0.972 0.727 2.76 2.759 0.583 8.527 8.53

Seq4 0.984 0.824 1.477 1.48 0.638 6.444 6.443

Our Method GreedyBIP

TF =

∑
a
|A(Ga)|

|{Ga|A(Ga) ̸= ∅}|
. (4.14)

Weighing the number of fragments in a track with length, we get Normalized Track

Fragmentation,

NTF =

∑
a
|Ga| · |A(Ga)|∑

a|A(Ga )̸=∅
|Ga|

. (4.15)

which gives more weight to longer tracks as it is more difficult to maintain identity for long

tracks than short ones.

We compare our method with the standard bipartite matching using greedy nearest-

neighbor initialization. Initial assignment is done based on proximity while linear velocity

model is used for prediction. Standard gating technique is used to eliminate unlikely candi-

dates outside a certain radius. The same registration and detection methods were used for all

experiments. The values of parameters for our tracking method were α = 0.5 (eq. 4.3) and α1

= α2 = 0.33 (eq. 4.6). Table 4.1 shows the comparison between both methods:

As can be seen from Table 4.1, our method achieved better TCF and TF because unique

characteristics of WAS demand the use of scene-based constraints which were not leveraged
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by the standard bipartite matching. We derived road orientation estimate and object context

using only the image data, which allowed for better initialization and tracking performance.

4.5 Summary

We analyzed the challenges of a new aerial surveillance domain called Wide Area

Surveillance, and proposed a method for detecting and tracking objects in this data. Our method

specifically deals with difficulties associated with this new type of data: unavailability of object

appearance, large number of objects and low frame rate. We evaluated proposed method and

provided both quantitative and qualitative results. These preliminary steps pave way for more

in-depth exploitation of this data such as scene modelling and abnormal event detection.
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Figure 4.9: This figure shows a number of results for different sequences. The top group is for
sequence 1, while the second group is for sequence 2. In the bottom group, first column is from
the multiple camera sequence (camera boundary is shown in black), the next two columns are
from sequence 4.
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CHAPTER 5: ACTION RECOGNITION IN AERIAL VIDEO FROM FEW
EXAMPLES

In this chapter we propose a method for recognizing actions in aerial video from few ex-

amples using a simple and popular action recognition framework. We use the easy to compute

Bag of Words model in order to represent the actions, which usually requires a large number

of examples. In order to overcome this limitation, we augment the classifier of the action class,

which has only one example, with a a weighted fusion of responses of classes that have many

examples.

5.1 Problem Description

One of the requirements of any recognition method is to construct a model of a class

with sufficient generality so as to be able to capture variations within the class, class; This as-

sures that these variations do not negatively affect the performance of the model during testing.

In the case of computer vision, there are two main paradigms for tackling this problem. The

first involves constructing a semantically meaningful representation of the class. For example,

in the problem of human action recognition, a classic formulation is to analyze the kinematics

of body parts or joints of the humans [9]. In this scenario, the semantic meaning comes from

the knowledge about the anatomy of a human. While the methods are generally intuitive and

elegant when it is assumed that the joints have already been detected, things become very dif-

ficult when the joints and/or limbs have to be detected automatically. Hence, the main problem
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with the first paradigm is that obtaining a semantically meaningful representation is a diffi-

cult problem in itself. Therefore, researchers have generally opted for the second paradigm of

building generality into the model by utilizing a data-driven approach of constructing a model

by using multiple examples.

The most common way to approach this particular paradigm is to utilize a dual stage

framework of extracting features and then using machine learning to automatically learn the

model from a set of training examples, as demonstrated [73] [49] [41] [62] [37]; However,

some researchers have generalized templates to utilize multiple examples as well [57]. One

representation of actions that is commonly used today is the bag of words model, similar to

[15]. First, simple spatio-temporal interest points are detected. Then, a cuboid is extracted

around each point, and descriptors of gradient that describe the local motion and appearance

are obtained around each point. Next, these descriptors are clustered into spatio-temporal

words using K-means to obtain a collection of clusters. Each cluster represents a visual word,

and it can be determined which cluster or word each cuboid belongs to. Therefore, the videos

in the dataset can be represented by a histogram of visual words (See Figure 5.1). The advan-

tage of this approach is that primitive spatio-temporal features are easy to detect, hence this

framework can be used in many different cases. The disadvantage is that since the words are

not very semantically meaningful they pass the problem of generalization to the next stage of

the framework, namely classification, as we illustrate below.

Once the histogram descriptors of every video have been obtained, one can take the

histograms and automatically construct a model of each class by utilizing a Support Vector

Machine, or SVM. In a two class case, given a set of tuples ⟨x, y⟩, where x is a feature vector
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Figure 5.1: This figure illustrates the Bag of Words processing stages.

and y ∈ {−1, 1} is the class label, an SVM will construct a model {w, b}, s.t. the label ŷ of an

unknown example x̂ is given by

f(x̂) = sign(wT x̂ + b). (5.1)

Where w is the normal to the hyperplane that best separates the data, and b is the hyperplane

bias. Because w is obtained by solving the dual of the original problem. The actual decision

function that is used in practice is

f(x̂) = sign(
N∑
k=1

αixTi x̂ + b) (5.2)

where N is the number of examples, and αi is the lagrange multiplier for that particular

example. SVM is a maximum margin classifier that selects only the examples that are closest

to the hyperplane and discards the rest. The lagrange multiplier α is zero for examples that

have been discarded, and non-zero for the examples that have been retained, which are referred

to as the support vectors. If a kernel function K is used for matching the vectors, then the

decision function becomes
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Sideways Skip Walk Wave Two Hand Wave

Figure 5.2: Examples from the Weizmann dataset of actions.

f(x̂) = sign(
N∑
k=1

αiK(xi, x̂) + b). (5.3)

The number of support vectors required to separate the data can be viewed as an indi-

cation of the complexity of the model, which is needed in order to recognize the classes. The

more support vectors that SVM has selected, the more complicated the model is. This can be

viewed as an indication of the separability of the data, and by extension the quality of the fea-

tures that are used to represent the data. This can be illustrated in the case of action recognition

in the following experiments on the Weizmann Action dataset; Examples of which can be seen

in Figure 5.2.

The Weizmann action dataset contains 10 classes, with 9 examples per class. When

actions from this dataset are represented using the Bag of Words model, where each video is

represented by a histogram vector of 1000 dimensions, cross validation performance obtained

on the data is 98.8%. However, almost all of the data was selected as support vectors, 82
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examples or 91.11%. In contrast, when actions were represented by a 25 dimensional histogram

of motion patterns from [60], only 22 examples or 24.44% of the data was selected as support

vectors, while the cross-validation performance was identical at 98.8%. The low number of

support vectors indicates that we do not need a very large number of examples in order to learn

the model. We can confirm this by repeatedly forcing one class in the dataset to have only

one training example, in that case the performance drops only slightly to 97.36%. In contrast,

in the case of BOW representation, the performance drops significantly to 24.16% when few

examples are available. Applying various dimensionality reduction techniques, such as PCA

or PLSA, on Bag of Words representation does not improve this result, which indicates that

this is not just a matter of dimensionality. Unfortunately, generating motion patterns is a more

sensitive and involved process than the Bag of Words and may not necessarily be applicable to

data that is blurrier, nosier, and more contaminated with camera motion than Weizmann.

In summary, there is a tradeoff between how semantically meaningful the action rep-

resentation is, how easy it is to compute, and how many examples are required to construct a

meaningful action model. Complex meaningful representations can be difficult to obtain, but

in the end require few examples to construct the final model. While simple, easy to compute

representations require a large number of examples to construct the final model, and exhibit

degradation of performance when those examples are not available.

As we have pointed out before, there are a number of problems that appear in aerial

video. The moving camera can create additional motion blur in the imagery, motion com-

pensation can introduce geometric distortions, and there are more possible viewpoints that an

action can take. Therefore, in the case of aerial video, simple, easy to compute action represen-
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OpenTrunk Running Throwing Walking Waving

Figure 5.3: Examples from the UCF-ARG Dataset of actions.

tation should be utilized, which unfortunately, requires a larger number of examples in order to

construct the model. However, these examples may not always be available due to the added

difficulty of having to fly the UAV while collecting the data (See Figure 5.3).

5.2 Method

In this section, we describe our experimental setup, as well as the details of our method.

We assume that one of the action classes has only one example, while the rest of the classes

have many examples. We want to augment the model of the one-shot class by transferring

knowledge from similar classes that have many examples. This is somewhat similar to [3],

however our approach is different in the following ways: First, we want to select multiple

similar classes, and to do so automatically. In contrast to [3], only one similar class was used
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and it was selected manually. Second, we want to include the similar classes in testing. In

[3], on the other hand, similar classes were not included in testing. Including similar classes in

testing makes the problem more challenging.

5.2.1 Experimental Setup and Definitions

Prior to describing our method in detail we feel that it is necessary to describe the setup

of our experiments in detail . We have N classes, and Mi examples per class. Each example is

a tuple ⟨x, c⟩, where c ∈ {1, ..., N}. Adopting a 1vsAll multi-class classification framework,

we train a binary Support Vector Machine fc(x) for each class c. So that fc(x) > 0 if x ∈ c and

fc(x) < 0 if x /∈ c. The predicted class ĉ of the unknown example x̂ is then given by

ĉ =
argmax

i
{f1(x̂), ..., fi(x̂), ..., fN(x̂)}. (5.4)

It is typically assumed that all classes have many examples Mi >> 1. The standard

procedure is to repeatedly split examples for each run j from each class i into training and

testing sets Rj
i and Sji , respectively, where the cardinality of the sets is Mi > |Rj

i | ≫ 1 and

Mi > |Sji | ≥ 1. Then, training and testing is performed for each split, and the results are

averaged across different runs. The resulting framework performs quite well on a number of

datasets. We refer to this approach as Multi-Shot classification. In the right-most column of

Figure 5.10 we show the result of performing this experiment on the 6 class KTH action dataset,

using around 85 training and 15 testing examples per class. The performance is clearly quite

good when many examples are available, on average an accuracy rate of 90% was achieved.
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Figure 5.4: This figure shows our experimental setup. The vertical rectangles are individual
feature vectors. The confusion matrices displayed here are for KTH data, using our proposed
fusion method.

In order to test the performance of the one-shot approach, we perform the following

procedure (see Figure 5.4 for reference). We repeatedly select a class to be the one-shot class

o. Next we split examples from each of the classes in the following manner: we select only

one example for training from class o so that |Rj
o| = 1 |Sjo| = Mo − 1, on the other hand we

perform standard selection for other classes so Mi > |Rj
i | >> 1 and Mi > |Sji | >> 1 for

j ̸= o. We perform training and testing for different selections j, combining the results into a

confusion matrix Ko, and normalizing each row independently. We refer to this approach as

Naive One-Shot, the resulting confusion matrices can be seen in the leftmost column of Figure

5.10. As can be seen from the confusion matrices, a problem arises when one of the classes has

only one example. If one of the classes has only one example, then the Support Vector Machine

corresponding to that class (let’s call it fo(x)) will have only one positive example. This also

means that it will have only one positive support vector, and a smaller collection of negative

support vectors than it would have if its corresponding class had many examples. When this
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SVM fo(x) is used in the same pool as other multi-example SVMs, i.e. that the pool of binary

SVMs is {f1(x̂), ..., fo(x̂), ..., fN(x̂)}, problems arise in the testing stage. As can be seen in

the left column of the confusion matrices in Figure 5.10, the testing examples of the class that

was selected as the one-shot class becomes greatly confused with other classes. In fact, in the

case of the KTH dataset, none of the testing examples belonging to the one-shot class were

classified correctly. However, the performance of the other classes is unchanged. In the next

section, we will describe how to alleviate some of these problems.

5.2.2 Weighted Fusion

The fundamental idea behind our approach is that we replace the binary SVM for the

one-shot class fo(x̂), using the following fusion of all of the binary SVM responses

fô(x̂) = sign(
N∑
i=1

[fi(x̂)P o
i ]− P o

s . (5.5)

In the above equation, P o
i is the probability of an example xo from the one-shot class

o being confused with class i when using the 1vsAll multi class classification framework with

only one example available for class o. Formally, we define P o
i = P (ĉ = i|xo). Similarly,

P o
s is the probability of an example xo from the one-shot class o to be confused with a similar

class s, formally P o
s = P (ĉ = s|xo), we define s as the most likely class for the one-shot to be

confused with. Given the collection of probabilities that an example of the one-shot class xo is

confused with other classes {P (ĉ = 1|xo), ..., P (ĉ = i|xN)}. We define Ps as

87



Multiclass Probabilistic SVM
without 1-shot class

…

1vsAll Binary SVMs

Fusion function

Probabilities of 
MisclassificationTraining Set

( )
111
df += xwx ( )

222
df += xwx ( )

ooo
df += xwx ( )

NNN
df += xwx

( ) ( )( )[ ]
s

N

i iio
PPff −+=∑

=1ˆ
1xx

1
c

2
c

M
o
c

N
c

( )
o

F x ( )

( )

( )
oN

o

o

NcPP

cPP

cPP

x

x

x

|

|2

|1

2

1

==

==

==

M

M
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different classes.

Ps = max({P (ĉ = 1|xo), ..., P (ĉ = N |xo)}). (5.6)

We fix P o
o , the probability of an example xo belonging to the one-shot class being confused

with the one-shot class itself P (ĉ = 0|xo) = 1. The final multi-class decision function is given

by

ĉ =
argmax

i
{f1(x̂), ..., fô(x̂), ..., fN(x̂)}. (5.7)

One possible way to obtain P o
i is to use the information directly from the confusion ma-

trix obtained via the Naive experiments described in section 5.2.1. To use the specific example
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of the KTH dataset, if we have currently selected boxing as the one-shot class o, the probability

of boxing being confused with clapping P boxing
clapping = K1(boxing, clapping) = P 1

2 = K1(1, 2) =

0.96, while the probability of boxing being confused with waving and walking is P boxing
waving =

K1(boxing, waving) = P 1
3 = K1(1, 3) = 0.02 and P boxing

walking = K1(boxing, walking) =

P 1
6 = K1(1, 6) = 0.02, respectively. The probability of confusing boxing with jogging and

running is 0. The highest probability of misclassification is with clapping, at 0.96. Hence,

P o
s = P boxing

clapping = 0.96.

While the above approach for estimating the confusion probabilities works quite well,

it is not very practical for realistic scenarios since it essentially trains on the testing data. At

the very least, it assumes the existence of a validation set for the one-shot class on which the

experiments can be run and P o
i can be estimated, which in the case of one-shot learning should

not be available. Instead, we can estimate the P o
i as follows: we take the training examples for

the classes that have many examples, excluding the one shot Rj
i i ̸= o, and train a probabilistic

multi-class Support Vector Machine F . Given an unknown testing example x̂, the output of

this SVM is a set of probabilities of the unknown example belonging to the N − 1 classes,

excluding the one-shot class.

F (x̂) = {P (ĉ = i|x̂)}, (5.8)

where i ̸= o. When we input the one example xo from the one-shot class into the SVM F ,

we get the similarity of the one-shot class to the other multi-shot classes, this provides a good

estimate of the probability of misclassifying the one-shot class as each one of the multi-shot

classes. Thus we set

89



box

cl
ap

w
ave

jo
g

ru
n

w
alk

0.19

0.04

0.39

0.02

0.01

0.12

0.01

0.16

0.01

0.01

0.06

0.01

0.59

0.80

0.94

0.78

0.87

0.98

box clap wave jog run walk box

0.19

0.04

0.39

0.02

0.01

0.12

0.01

0.16

0.01

0.01

0.06

0.01

0.59

0.80

0.94

0.78

0.87

0.98

box clap wave jog run walk

Measure 1 Measure 2 Measure 3

0.05

0.410.59

0.95

box

cl
ap

w
ave

jo
g

ru
n

w
alk

clap | wave | jog

       run | walk

box

cl
ap

w
ave

jo
g

ru
n

w
alk

1
K 1

K̂
1
K

Figure 5.6: This figure demonstrates how the three performance measures are computed from
the confusion matrix. The confusion matrices displayed here are for the KTH dataset and
were obtained using our proposed fusion method. In the figure, boxing, circled in red, was
treated as the one-shot class. The green circles show the values that we average to compute the
corresponding measures.

P o
i = F (xo). (5.9)

5.3 Experiments

We perform experiments on 4 datasets. Three of these datasets are standard action

recognition datasets KTH, UCF11, and UCF50. The fourth dataset is the UCFARG dataset

which is an aerial action recognition dataset. KTH (see Figure 5.7) contains 6 classes, approx-

imately 100 examples per class, and 1000 dimensions per example. UCF11 (see Figure 5.8)

is a much more unconstrained dataset obtained from Youtube consisting of 11 actions approx-

imately 100 to 150 examples per action around 4000 dimensions per example. UCF 50 (see

Figure 5.9) is an expanded Youtube dataset consisting of 50 actions with approximately 100 to

150 examples per action 2000 dimensions per example. For our experiments we used a subset

of the UCFARG dataset consisting of 6 actions, 48 examples per action, 1000 dimensions per

example.
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The bag of words framework was designed to work best when the camera is static,

however since UCFARG is an aerial dataset there is a lot of camera motion. In order to over-

come this, we first perform registration to compensate the camera motion, next we assume that

rough motion detection and tracking have been done, and crop a small region around the person

performing the action and process that as our clip of interest.

In order to evaluate the performance we use two baselines and three different measures.

The baselines have been described in section 5.2.1 they are Naive One-Shot which provides

the lower bound on performance that can be expected, and Multi-Shot which is the standard

training and testing frame work which uses a large number of training examples and provides

an upper bound on performance. We need to get as close to this level as possible.

The three measures that we use are defined as follows (See Figure 5.6 for reference). As

described in section Figure 5.4 we select a class to be the one-shot class o, and then perform

many possible splits of the data performing training and testing for each while pooling the

results from different splits into the same confusion matrix which is then normalized row by

row, giving us the confusion matrix Ko. The confusion matrix K1 for the boxing action class

can be seen on the left in Figure 5.6. MeasureD1i for the experiment when class iwas selected

as the one-shot class is just the average accuracy of the diagonal of the confusion matrix Ki.

D1i =
1

N

N∑
j=1

Ki(j, j) (5.10)

This measure measures the level of confusion between the one-shot and multi-shot

classes, as well as the level of confusion of the multi-shot classes among themselves. The

shortcoming of this measure is that when as the number of multi-shot classes increases, the

91



WalkingBoxing Clapping Waving Jogging Running

Figure 5.7: This figure shows examples of actions from the KTH datset.
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Figure 5.8: This figure shows examples of actions from the UCF11 dataset.

measure becomes dominated by the multi-shot classes and differences in performance between

different methods becomes difficult to notice. Because of this we also introduce measures 2

and 3 which are more sensitive to the accuracy of the one-shot class.

To compute Measure2 we first convert the N × N confusion matrix Ki, into a 2 × 2

confusion matrix K̂i. The confusion matrix K̂i only captures the level of confusion of the one-

shot class with multi-shot classes and vice versa, while the confusion between the multi-shot

classes is ignored. D2i for the experiment when class i was selected as the one-shot class is

just the average accuracy of the diagonal of the confusion matrix K̂i.
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D2i =
1

2

2∑
j=1

K̂i(j, j) (5.11)

The danger of using the second measure is that it is possible to achieve an improvement

in performance by misclassifying one of the classes as the one-shot class. The class that is

most likely to be misclassified as the one-shot class is the similar class s. To make sure that

this is not happening, we compute the third measure D3i that measures the level of confusion

between the one-shot class o and the similar class s.

D3i =
1

2
(Ki(o, o) +Ki(s, s)) (5.12)

Since different classes can be selected as the one-shot class, we can compute the average

of each measures across all of the classes in the dataset. The average measures are simply

computed as

D̄1 =
1

N

N∑
i=1

D1i D̄2 =
1

N

N∑
i=1

D2i D̄3 =
1

N

N∑
i=1

D3i. (5.13)

The results of our method are summarized in Table 5.1. As can be seen from the table,

there is a clear disparity in the performance between the Naive one-shot and the Multi-Shot

methods. While our proposed method improves all three measures for all of the four datasets.

Note that the gain in performance for avgMeasure1 may seem small for UCF50, but this as

we pointed out previously is due to the fact that Measure1 captures the confusion among the

multi-shot examples as well, and since UCF has a lot more examples than KTH, avgMeasure1
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Table 5.1: This table shows the average measures for all four datasets that we have tested.

Naive is the lower bound for performance, and Multi is the upper bound. The performance of

our method falls between the two.

AvgMeasure1 AvgMeasure2 AvgMeasure3

KTH Naive 74.79% 50.12% 47.45%

KTH Fusion 82.20% 74.97% 66.61%

KTH Multi 90.13% 91.85% 86.71%

UCF11 Naive 77.19% 50.49% 39.46%

UCF11 Fusion 78.33% 68.78% 55.13%

UCF11 Multi 83.95% 90.63% 77.87%

UCF50 Naive 76.14% 50.30% 39.05%

UCF50 Fusion 76.32% 62.52% 50.43%

UCF50 Multi 77.48% 88.23% 74.85%

UCFARG Naive 55.12% 50.01% 37.79%

UCFARG Fusion 56.77% 55.22% 40.09%

UCFARG Multi 57.52% 73.96% 51.39%

is dominated by the multi-shot classes. Hence for UCF50 it is more meaningful to examine

measures avgMeasure2 and avgMeasure3.

5.4 Summary

In summary we have developed a framework for improving classification accuracy for

when dealing the the problem of having few examples available for training. The key idea is

that we want to utilize information from classifiers that were trained for classes that have many

examples, to aid the classifier that was trained using only one positive example. We do this
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Figure 5.9: This figure shows examples of actions from the UCF50 dataset.

via late fusion of all classifier decision values, where the weights in the fusion are estimated

automatically and correspond to the probability of the one-shot class being misclassified.
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Figure 5.10: This figure shows confusion matrices for the KTH dataset for our proposed fusion
method (center column), and the two baseline methods (left and right columns). The action
circled in red is the action with only one example (class o). In the case of multi-shot (right
column), we select many examples around the one-shot example.
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CHAPTER 6: CONCLUSION

In this thesis we have addressed the problems of detecting, tracking, and recognizing

activities of targets of interest in aerial imagery under a number of challenging conditions.

These conditions include fast camera motion, low frame-rate parallax, strong shadows, fast

moving targets, dense targets, and insufficient number of action examples.

The first problem we addressed was the detection of moving and stationary objects in

presence of fast camera motion, low frame-rate, parallax, and shadows. We compensated cam-

era motion using interest points and homographic framework, detected moving objects using

median background subtraction, and removed false parallax detections using the gradient of

the background image. To detect stationary humans and vehicles we utilized a set of geometric

constraints in order to detect blobs that are oriented in the directions of ground-plane normal

and shadow. We then combined these blobs into a set of shadow casting out of plane object

candidates, with which we primed static object detectors in order to constrain their search-

space.

The second problem we addressed was the tracking of large numbers of dense and fast

moving objects in low frame-rate video. In order to manage the large complexity of the tracking

problem, we split the scene into overlapping grid cells, solved the tracking using bipartite graph

matching, and linked the tracks across cells. When solving the tracking problem within each

cell, we could not rely on appearance due to low resolution and single channel data. Instead
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we used the cells to derive a set of scene constraints directly from the data, in order to help the

tracker with initial assignments.

The third problem we addressed was that of action recognition in Aerial Video in the

challenging case of having few examples. Here we utilized transfer learning to transfer infor-

mation from the classes that had many examples to the classes that had few examples. We did

this via late fusion of weighted SVM decision functions of classes that are similar to the class

with few examples.

6.1 Summary of Contributions

Our main contributions are summarized below.

1. Object Detection In Aerial Video

(a) A new approach to detecting moving objects in presence of parallax.

(b) A new approach to detecting stationary objects in presence of shadow.

(c) A new approach to detecting shadows of objects in aerial video.

(d) A new approach to estimating the orientation of the sun in aerial video.

2. Object Tracking in Aerial Video

(a) Handling large number of targets.

(b) Handling large target density.

(c) Deriving scene constraints from the imagery.

3. Action recognition from few Examples in Aerial Video.
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(a) A new method of improving classification accuracy in one-shot action recognition

framework.

(b) A new way of performing classifier fusion.

(c) A new method for estimating the weights needed for the late fusion of classifier

outputs.

6.2 Future Work

In this section we explore some of the possible improvements, extensions, and direc-

tions that can be explored.

The obvious direction to take the stationary object detection framework, is to further

expand the classes of objects that can be detected with the help of their shadows and the rela-

tionship between the shadows and the objects that are casting them. More complex objects can

include various types of aircraft on the runways, construction equipment, and buildings. How-

ever since these objects, their shadows, and the relationship between them are more complex

than humans and vehicles, it would require reworking of the rule-based detection of candidates

into a softer probabilistic framework, to allow for misdetections of shadow and object parts.

This work can also be extended to aid in a more general semantic analysis of the scene, such as

aiding in the detection of large shadow regions, being cast by multiple large overlapping scene

structures.

In the case of tracking large number of targets, additional scene constraints need to be

explored for better assignment disambiguation. Additional constraints can be derived through

better analysis of the environment in the scene. This can include detecting bridges and over-

99



passes to allow for a more explicit target reacquisition handling as opposed to leaving it up

to the graph structure, detecting traffic markers such as zebra crossings, stop sign lines, and

roundabouts. These additional constraints can either be made part of the kinematic model, or

to generate additional weights to be made part of the graphical structure.

The framework for recognizing actions from few examples can be extended into other

representations, and other domains such as object recognition or event detection. Additionally

improving the representation of actions themselves should also be explored.
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