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ABSTRACT

In this dissertation, we address the problem of object detection and object association across
multiple cameras over large areas that are well modeled by planes. We present a unifying proba-
bilistic framework that captures the underlying geometry of planar scenes, and present algorithms
to estimate geometric relationships between different cameras, which are subsequently used for
co-operative association of objects. We first present aladaéct detection scheme that has three
fundamental innovations over existing approaches. First, the model of the intensities of image pix-
els as independent random variables is challenged and it is asserted that useful correlation exists
in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of
detection accuracy in the presence of dynamic scene behavior, nominal misalignments and motion
due to parallax. By using a non-parametric density estimation method over a joint domain-range
representation of image pixels, complex dependencies between the domain (location) and range
(color) are directly modeled. We present a model of the backgroundiaglaprobability density.
Second, temporal persistence is introduced as a detection criterion. Unlike previous approaches to
object detection that detect objects by building adaptive models of the backgroufatetireund
is modeled to augment the detection of objects (without explicit tracking), since objects detected

in the preceding frame contain substantial evidence for detection in the current frame. Finally, the

'Local refers to processes occurring at each individual camera.



background and foreground models are used competitively in a MAP-MRF decision framework,
stressing spatial context as a condition of detecting interesting objects and the posterior function is
maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation

of the method is performed and presented on a diverse set of data.

We then address the problem of associating objects across multiple cameras in planar scenes.
Since cameras may be moving, there is a possibility of both spatial and temporal non-overlap in
the fields of view of the camera. We first address the case where spatial and temporal overlap can
be assumed. Since the cameras are moving and often widely separated, direct appearance-basec
or proximity-based constraints cannot be used. Instead, we exploit geometric constraints on the
relationship between the motion of each object across cameras, to test multiple correspondence hy-
potheses, without assuming any prior calibration information. Here, there are three contributions.
First, we present a statistically and geometrically meaningful means of evaluating a hypothesized
correspondence between multiple objects in multiple cameras. Second, since multiple cameras
exist, ensuring coherency in association, i.e. transitive closure is maintained between more than
two cameras, is an essential requirement. To ensure such coherency we pose the problem of object
associating across cameras asdimensional matching and use an approximation to find the asso-
ciation. We show that, under appropriate conditions, re-entering objects can also be re-associated
to their original labels. Third, we show that as a result of associating objects across the cameras, a
concurrent visualization of multiple aerial video streams is possible. Results are shown on a num-
ber of real and controlled scenarios with multiple objects observed by multiple cameras, validating

our qualitative models.



Finally, we present a unifying framework for object association across multiple cameras and
for estimating inter-camera homographies between (spatially and temporally) overlapping and
non-overlapping cameras, whether they are moving or non-moving. By making use of explicit
polynomial models for the kinematics of objects, we present algorithms to estimate inter-frame
homographies. Under an appropriate measurement noise model, an EM algorithm is applied for
the maximum likelihood estimation of the inter-camera homographies and kinematic parameters.
Rather than fit curves locally (in each camera) and match them across views, we present an ap-
proach that simultaneously refines the estimates of inter-camera homographies and curve coeffi-
cientsglobally. We demonstrate the efficacy of the approach on a number of real sequences taken

from aerial cameras, and report quantitative performance during simulations.
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CHAPTER 1

INTRODUCTION AND NOTATION

“Birds do it, Bees do it, Even educated fleas do{tCole Porter

At its lowest abstraction, information about the world comes to us through the elementary senses
of sight, smell, touch, taste and sound and from it we reconstruct a particular perception of the
world. Of these different modalities, the sense that is thought to be most fundamental to the human
experience is the sense of sight. Studies indicate that over 40% of the human brain is dedicated
to processing visual information, and near 80% of a human child’s first 12 years of learning is
through vision, Big06, Whi98, RKK02, VAF92]. Vision and hearing are also intrinsically coop-
erative, using stereoscopy and stereophony, for example, to infer depth. In fact, recent research
has uncovered evidence that rats use the sense of smell in stereo to locate the source of a scent,
[RCB0G. Cooperative sensing, in a more distributed sense, is exploited by a number of species,
from schools of fish to flocks of birds, for achieving many diverse goals such as foraging of food,
evading predators and transportation. Cooperative sensing is also widely used in human society for

relatively localized tasks like guarding prisons or refereeing sports games to more sophisticated,



global data collection operations by intelligence agencies or pollsters. In itself, sensing collectively
presents an interesting paradigm: solving a difficult global sensing problem, with an ensemble of
efficient, but simpler local sensors. In this dissertation, we introduce this paradigm to the problem
of scene understanding over wide planar dynamic scenes. Dynamic scenes (as opposed to sta-
tic scenes) are scenes containing non-stationary objects such as moving vehicles and pedestrians

and/or non-stationary backgrounds such as water rippling or grass swaying in the wind.

The concept of a cooperative multi-camera ensemble, informally a ‘forest’ of carh&®&6(],
has recently received increasing attention from the research community. The idea is of great prac-
tical relevance, since cameras typically have limited fields of view, but are now available at low
costs. Thus, instead of having a single high-resolution camera with a wide field of view that surveys
a large area, far greater flexibility and scalability can be achieved by observing a scene ‘through
many eyes’, using a multitude of lower-resolution COTS (commercial off-the-shelf) cameras. It
is difficult to survey wide areas using one sensor due to occlusions in the scene and the trade-
off between resolution and field of view. Several approaches with varying constraints have been
proposed, highlighting the wide applicability of co-operative sensing in practice. For instance,
the problem of associating objects across multgiionarycameras with overlapping fields of
view has been addressed in a number of papers, KJ9B], [QA99], [CGO1], [DTO1], [MDO03],
[KHMOOQ], [DEP93, [AP9q, [LRS0(Q and [KS95. Extending the problem to associating across
cameras with non-overlapping fields of view, geometric and appearance based approaches have
also been proposed recently, e gR97], [KZ99], [CLF01], [JRS03, and [SG0(J. Motion too has

been introduced to the ‘forest’, where correspondence is estimated across pan-tilt-zoom cameras,
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Figure 1.1:(a) Multiple stationary cameras observe a scene with moving objects, two of the camera
FOVs are overlapping and one is not. (b) Multiple moving cameras observing a scene with moving

objects. The camera FOVs can move in and out of overlap.

[MUO2], [CAKO2] and [KI96]. Allowing motion is particularly attractive since it allows much

wider areas to be monitored by fewer cameras and introduces the possibility of active target track-
ing. In general, when using sensors in such a decentralized but cooperative fashion, knowledge of
inter-camera relationships becomes of paramount importance in understanding what happens in the
environment. Without such information it is difficult to tell, for instance, whether an object viewed

in each of two cameras is the same object or a new object. These inter-camera relationships may be
in the form of prior knowledge of relative positions and this information can be assumed known,
through calibration, or can otherwise be learned over a training period. In the scenario under study

in this dissertation (see Figutel), obtaining calibration information usually requires sophisti-



cated equipment, such as a global positioning system (GPS) or an inertial navigation system (INS)
(see BKS03h or [SKS034), perhaps with a geodetically aligned elevation map. Furthermore, the

telemetry provided by such equipment is usually noisy, and for cameras mounted on aerial vehicles
even nominal noise projects to errors of hundreds of meters due to the altitude of the aerial vehicle.
As a result, approaches to recovering or refining inter-frame relationships based on video data are

particularly useful.

Before objects can be associa@cfosscameras, some degree of local sensing must occur
at each camera. In this work, the local requirement at each camera is the detection of objects
within each camera. The assumption that the sensor remains stationary (or that ego-motion can be
compensated) between the incidence of each video frame allows the use of statistical background
modeling techniques for the detection of moving objects sucM@€)97, SG0Q and [EHDO0Z.
Since ‘interesting’ objects in a scene are defined to be moving ones, such object detection provides
a reliable foundation for other surveillance tasks like trackindHPOO, IB98, CRMO(Q]) and is
often also an important prerequisite for action or object recognition. However, the assumption of
a stationary sensor does not necessarily imply a statidresiyground Examples of ‘nonstation-
ary’ background motion abound in the real world, including periodic motions, such as a ceiling
fans, pendulums or escalators, and dynamic textures, such as fountains, swaying foliage or ocean
ripples. The assumption that the sensor remains stationary is alsmoftenallyviolated by com-
mon phenomena such as wind or ground vibrations and to a larger degree by (stationary) hand-held
cameras. Thus, if natural scenes are to be modeled it is essential that object detection algorithms

operate reliably in such circumstances. Background modeling techniques have also been used for



foreground detection in pan-tilt-zoom camerad/M96]. Since the focal point does not change
when a camera pans or tilts, planar-projective motion compensation can be performed to create
a background mosaic model. Often, however, due to independently moving objects motion com-
pensation may not be exact, and background modeling approaches that do not take such nominal
misalignment into account usually perform poorly. Furthermore, for aerial video, which consti-
tutes the primary source of test data in this dissertation, small misalignments and parallax can also
violate a ‘stationary’ camera assumption. Thus, a principal proposition in this work is that model-
ing spatial uncertainties is important for real world deployment, and we describe an intuitive and

novel representation of the scene background that consistently yields high detection accuracy.

1.1 Problem Stratification

In a planar scene with multiple cameras, there are several possible configurations that can arise.
In literature, a distinction has been drawn between approaches that assume spatially overlapping
and non-overlapping fields of view for stationary caméra&avidently, associating objects across
stationary cameras can be treated as a special case of associatingramroggameras (where

there is zero camera motion). If the cameras are moving independently, the fields of view of
different cameras can alternatively move in and out of overlap and as a result the problem of
correspondence becomes considerably more complicated than that of the stationary camera case.

It is useful to think of the problem in terms spatio-temporal overlamnalogous to spatial overlap

LA detailed literature review is provided in Chapger



in the case of stationary cameras, i.e. for some duration of time, the FOV of each camera overlaps
(spatially) with the FOV of another camera while observing the moving objects. In terms of spatio-

temporal overlap, we identify four possible cases:

1. Each object is simultaneously visible by all cameras, all the timeln this instance, there is
continuous spatial and temporal overlap between the fields of view. This is a reasonable assumption
for stationary cameras configurations, but rarely occurs when cameras are continuously moving,
especially over extended sequences.

2. Each object is simultaneously visible by some cameras, all the tim&his is an instance of
limited spatial overlap, where all objects are within the ‘collective’ field of view of all the cameras

all the time (but not necessarily witheachcamera’s field of view). This situation occurs most
often when each camera is in pursuit of a separate target.

3. Each object is simultaneously visible by some cameras for a limited duration of timefhis

is the case where all objects are visible in some subset of cameras simultaneously. For stationary
cameras that would mean (at least) pairwise overlap between fields of view.

4. Each object is visible by some cameras, but not necessarily simultaneoushhis is the most
general case whergatiotemporabverlap does not necessarily occur between any two cameras,
while objects are visible in their field of view. Without making some strong assumptions about
object or camera motion it is difficult to address this case. This case is the spatio-temporal analog

of the problem of associating across stationary cameras with non-overlapping fields of view.



1.2 The Approach

In this dissertation, we present a unifying probabilistic framework that captures the underlying
geometry of planar scenes, and present algorithms to estimate geometric relationship between
different cameras. We subsequently use these relationships for scene understanding across a col-
lection of cameras, gaining a global picture of the behavior of objects in the world. The thesis
describes the local process of detecting objects in dynamic scenes, i.e. detecting moving objects
of interest. To account for commonly encountered dynamic phenomena in video like temporal
textures, nominal misalignments, and residual motion due to parallax we present a novel model
of the entire background as a distribution in 5-space. We present a new constraint for object
detection and demonstrate significant improvements in detection. The central criterion that is tra-
ditionally exploited for detecting moving objectsbackground differengesome examples being

[JN79 WAD97, ORPO0OQ and [SG0Q. When an object enters the field of view it partially occludes

the background and can be detected through background differencing approaches if its appearance
differs from the portion of the background it occludes. Sometimes, however, during the course of
an object’s journey across the field of view, some colors may be similar to those of the background,
and in such cases detection using background differencing approaches fails. To address this limi-
tation and to improve detection in general, a new criterion caéetporal persistences presented

here and exploited in conjunction with background difference for accurate detection. True fore-
ground objects, as opposed to spurious noise, tend to maintain consistent colors and remain in

the same spatial area (i.e. frame to frame color transformation and motion are small). Thus, fore-



ground information from the frame incident at tirheontains substantial evidence for the detection

of foreground objects at time+ 1. In this dissertation, this fact is exploited by maintaining both
background and foreground models to be used competitively for object detection in stationary cam-
eras, without explicit tracking. Finally, once pixel-wise probabilities are obtained for belonging to
the background, decisions are usually made by direct thresholding. Instead, we assgdtihht
contextis an important constraint when making decisions about a pixel label, i.e. a pixel's label is
not independent of the pixel’s neighborhood labels (this can be justified on Bayesian grounds using
Markov Random Fields3G84 Li95]). We introduce a MAP-MRF framework, that competitively
uses both the background and the foreground models to make decisions based on spatial context.
We demonstrate that thmaximum a posteriorsolution can be efficiently computed by finding

the minimum cut of a capacitated graph, to make an optimal inference based on neighborhood

information at each pixel.

Once detection and tracking (through any number of tracking algorithms) is performed locally,
we turn our attention to global object association across cameras. There are three main objectives
to be achieved: (1) Computing inter-camera associations, (2) Computing location parameters of
the cameras, and (3) recovering best estimates of the true underlying trajectories that was viewed
in the cameras. First we describe an approach that requires at least partial spatiotemporal overlap
between the fields of view of the cameras (Case 3). This imthenalassumption that is required
by this approach to discern the relationship of observations in the uncalibrated moving cameras.
We describe an extension to the re-projection error for the estimation of the set of homographies

for multiple views, providing a geometrically and statistically sound means of evaluating the like-



lihood of a candidate association. We formulate the problem of maximizing this joint likelihood
function as &-dimensional matching problem and use an approximation that maintains transitive
closure. The underlying concept of co-operative sensing is to use these relationships to give global
context to ‘locally’ obtained information at each camera. It is desirable, therefore, that the data
collected at each camera and the inter-camera relationship discerned by the system be presented
in a coherent visualization. For moving cameras, particularly airborne ones where large swaths
of areas may be traversed in a short period of time, coherent visualization is indispensable for
applications like surveillance and reconnaissance. Thus, in addition to presenting an algorithm to
track objects across multiple moving cameras with spatiotemporal overlap of fields of view, we
provide a means to simultaneously visualize the collective field of view of all the airborne cameras
and demonstrate that under special conditions, trajectories interrupted due to occlusion or missing

detections can be repaired. For this approach, no constraints are placed on the object motion.

To include Case 4 configurations, explicit kinematic models of objects are used and this allows
us to describe a general global object association algorithm. By including kinematic models, such
as constant velocity, constant acceleration and higher order models we demonstrate that as long
as the kinematic models are valid, global association of objects is possible. Under an appropriate
measurement noise model, an EM algorithm is presented for the maximum likelihood estimation of
the inter-camera homographies and the parameters of the kinematic model, where the associations
are treated as hidden variables. Experiments are presented both qualitatively and quantitatively on

videos collected from aerial cameras and on simulated data respectively.



1.3 Overview of the Thesis

The rest of the thesis is divided into five chapters, covering object detection, global association
across multiple cameras with overlapping fields of view, general global association and a chapter
on concluding remarks. In Chaptgrwe review different solutions proposed in current literature

to the problem stratifications described earlier and place the ideas contained in this thesis in context
of earlier work. In ChapteB, we describe an algorithm to detect objects in dynamic scenes, in the
presence of dynamic textures, misalignments and residual parallax motion. A general MAP-MRF
decision framework is used and graph cuts are used to efficiently maximize the posterior term. In
Chapter4, algorithms that require at least limited spatio-temporal overlap between the fields of
view of the cameras (Case 3) are described. The planarity assumption is exploited to posit the
existence of a homography between corresponding trajectories, which is then used to associate
object across frames and compute maximum likelihood estimates of inter-camera homographies
and the ‘true’ underlying trajectories. Finally, in Chapirwe propose a unifying framework

for learning inter-camera homographies between overlapping and non-overlapping cameras (both
spatially and temporally), whether they are moving or non-moving (Case 4). Kinematic models of
the objects are used to associate object across views and the Expectation Maximization algorithm
is used to compute the maximum likelihood estimate of the inter-camera homographies and the

kinematic model parameters.
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CHAPTER 2

LITERATURE REVIEW

Since the seminal work of Sittler ir§jt64] on data association, multitarget-multisensor tracking

has been extensively studied in the past three decades. In the data association community it is typ-
ically assumed that the sensors are calibrated and data is available in a common coordinate system
(a good summary is available iEf90). Optimal multi-target multi-sensor association is known

to be NP-Hard GJ79 and with n sensors an@ objects there ar¢k!)™ possible configurations

which makes exhaustive evaluation computationally prohibitive. Sequential logic techniques in-
clude nearest neighbor filters, strongest neighbor filters, one-to-few assignments and one-to-many
assignments. These methodologies are computationally very efficient, but since decisions are irre-
versible at each time step they are prone to error rates particularly when the number of objects is
large. Deferred logic techniques typically use some form of multiple hypothesis testing and many
variations have been proposed in literature. It was showPao94 and [PDB9( that this data
association problem can be formulated as a multi-dimensional assignment problem. The analysis
contained in this area is important and many ideas are relevant, however these approaches assume
a registered setting with overlapping fields of view which cannot be used directly in the context of

this work, where the coordinate systems differ up to a homography.
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In this chapter we provide a context for our algorithms in the backdrop of previous work.
Prior work can be broadly classified into three categories based on the assumptions they make on
the camera setup: (1) Multiple stationary cameras with overlapping fields of view, (2) Multiple
stationary cameras with non-overlapping fields of view and (3) Multiple pan-tilt-zoom cameras. In
addition, we review related work on object detection in single cameras and discuss the limitations

that we address.

2.1 Multiple Stationary Cameras with Overlapping Fields of View

By far, the largest body of work in associating objects across multiple camera make the assump-
tions that the cameras are stationary and have overlapping fields of view. The earliest work in-
volving associating objects across cameras with overlapping fields of view stemmed from an in-
terest in Multiple Perspective Interative Video in the early 90s, in which users observing a scene
selected particular views from multiple perspectives. 3iMK94], Satoet al, CAD based en-
vironment models were used to extract 3D locations of unknown moving objects; once objects
entered overlapping views of two agents, stereopsis was used to recover exact 3D positions. Jain
and Wakimoto, JW95, also assumed calibrated cameras to obtain 3D locations of each object in
an environment model for Multiple Perspective Interactive video. Although the problem of associ-
ating objects across cameras was not explicitly addressed, several innovative ideas were proposed,
such as choosing the best view given a number of cameras and the concept of interactive television.

In [KKK95], Kelly et al. constructed a 3D environment model using the voxel feature. Humans

12



were modelled as a collection of these voxels and they used this model to resolve the camera-
handoff problem. These works were characterized by the use environment models, and calibrated

cameras.

Tracking across multiple views was addressed in its own right, in a series of papers from the
latter half of the 90s. InNIK198], Nakazaweet al. constructed a state transition map that linked
regions observed by one or more cameras, along with a number of action rules to consolidate infor-
mation between cameras. Cai and Aggarw@A99], proposed a method to track humans across a
distributed system of cameras, employing geometric constraints between neighboring cameras for
tracking. Spatial matching was based on the Euclidean distance of a point with its corresponding
epipolar line. Bayesian Networks were used in several papers as welC3fA], Chang and
Gong used Bayesian networks to combine geometry (epipolar geometry, homographies and land-
marks) and recognition (height and appearance) based modalities to match objects across multiple
sequences. Bayesian networks were also used by Dockstader and TeRdIp1htp track objects
and resolve occlusions across multiple calibrated cameras. Integration of stereo pairs was another
popular approach, adopted by Mittal and DawdJ03], Krumm et al. [KHMOO] and Darrellet al

[DEPY3.

Several approaches were proposed that did not require prior calibration of cameras, but instead
learned minimal relative camera information. Azarbayejani and Pentlairfd, developed an
estimation technique for recovering 3D object tracks and the multi-view geometry from 2D blob
features. Leet al,, [LRS0(Q, made an assumption of scene planarity and learned the homography

related views by robust sampling methods. They then recovered 3D camera and plane configura-
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tions to construct a common coordinate system, and used this coordinate to analyze object motion
across cameras. 1KB95, Khan et al. proposed an approach that avoided explicit calibration of
cameras and instead used constraints on the field of view lines between cameras, learned during a

training phase, to track objects across the cameras.

2.2 Multiple Stationary Cameras with Non-Overlapping Fields of View

The assumption of overlapping fields of view restricts the area over which cameras can be dis-
persed. It was realized that meaningful constraints could be applied to tracking objects across
cameras with non-overlapping fields of view as well. This allowed the collective field of view of the
system of cameras to be dispersed over a far wider area. In the research community, this sub-field
seems to initially have been an offshoot of object recognition, where it was viewed as a problem
of recognizing objects previously viewed in other cameras. A representative workAR&5][

in which Huang and Russell proposed a probabilistic appearance based approach for tracking ve-
hicles across consecutive cameras on a highway. Constraints on the motion of the objects across
cameras were first proposed by Kettnaker and Zaliz9p], where positions, object velocities

and transition times across cameras were used in a setup of known path topology and transition
probabilities. In CLFO1], Collins et al. used a system of calibrated cameras with an environment
model to track objects across multiple views. The method proposed by dbakdn [JRS03, did

not assume a site model or explicit calibration of cameras, instead they learned the inter-camera

illumination and transition properties during a training phase, which were then used to track ob-
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jects across the cameras. RecentlySGP(, Stauffer and Tieu tracked across multiple cameras
with both overlapping and non-overlapping fields of view, building a correspondence model for the
entire set of cameras. They made an assumption of scene planarity and recovered the inter-camera

homographies.

Some work has been published for recovering the pose and/or tracks between cameras with
non-overlapping fields of view. Fisher, ifig0d, showed that, given a set of randomly placed
cameras, recovering pose was tractable using distant moving features and nearby linearly moving
features. InMEBO4], Makris et al. also extracted the topology of a number of cameras based
on the co-occurrence of entries and exits. Ratetral, in [RDDO04], presented an approach that
reconstructed the trajectory of a target and the external calibration parameters of the cameras, given

the location and velocity of each object.

2.3 Multiple Pan-Tilt-Zoom Cameras

So far, the discussion has addressed approaches that assumed the camera remained stationary, witl
overlapping and non-overlapping FOVs. Clearly, the collective field of view of the sensors can

be further increased if motion is allowed in sensors. With the introduction of motion, the camera
fields of view can be overlapping or non-overlapping at different times, and one of the challenges

of tracking across moving cameras is that both situations need to be addressed. A limited type

of camera motion has been examined in previous work: motion of the camera about the camera
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center, i.e. pan-tilt-zoom (PTZ) motion. One such workhBJ02], where Matsuyama and Ukita
present a system-based approach using active cameras, developing a fixed point PTZ camera for
wide area imaging. InKI96] Kang et al. proposed a method that involved multiple stationary

and PTZ cameras. It was assumed that the scene was planar and that the homoheawbies
cameras were known. Using these transformations, a common coordinate frame was established
and objects were tracked across the cameras using color and motion characteristics. A related
approach was also proposed @®4K02], where Collinset al. presented an active multiple camera

system that maintained a single moving object centered in each view, using PTZ cameras.

2.4 Object Detection

Since the late 70s, differencing of adjacent frames in a video sequence has been used for object
detection in stationary cameradN79. However, it was realized that straightforward background
subtraction was unsuited to surveillance of real-world situations and statistical techniques were
introduced to model the uncertainties of background pixel colors. In the context of this work, these
background modeling methods can be classified into two categories: (1) Methods that kmglloy

(pixel-wise) models of intensity and (2) Methods that heaggonalmodels of intensity.

Most background modeling approaches tend to fall into the first category of pixel-wise mod-
els. Early approaches operated on the premise that the color of a pixel over time in a static scene

could be modeled by a single Gaussian distributitiiz, >). In their seminal work, Wreret
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al [WAD97] modeled the color of each pixel(z,y), with a single 3 dimensional Gaussian,
I(x,y) ~ N(u(x,y), 2(x,y)). The meanu(x,y) and the covariancE(z, y), were learned from

color observations in consecutive frames. Once the pixel-wise background model was derived,
the likelihood of each incident pixel color could be computed and labeled as belonging to the
background or not. Similar approaches that used Kalman Filtering for updating were proposed
in [KBG9Q] and [KWH94]. A robust detection algorithm was also proposedHitiP00]. While

these methods were among the first to principally model the uncertainty of each pixel color, it
was quickly found that the single Gaussipdf was ill-suited to most outdoor situations, since
repetitive object motion, shadows or reflectance often caused multiple pixel colors to belong to the
background at each pixel. To address some of these issues, Friedman and Russell, and indepen-
dently Stauffer and Grimsoni-R97, [SGO0Q proposed modeling each pixel intensity asiture

of Gaussians, instead, to account for the multi-modality of the ‘underlying’ likelihood function of

the background color. An incident pixel was compared to every Gaussian density in the pixel's
model and if a match (defined by threshold) was found, the mean and variance of the matched
Gaussian density was updated, or otherwise a new Gaussian density with the mean equal to the
current pixel color and some initial variance was introduced into the mixture. Thus, each pixel
was classified depending on whether the matched distribution represented the background process.
While the use of Gaussian mixture models was tested extensively, it did not explicitly model the
spatial dependencies neighboring pixel colors that may be caused by a variety of real nominal
motion. Since most of these phenomena are ‘periodic’, the presence of multiple models describing

each pixel mitigates this effect somewhat by allowing a mode for each periodically observed pixel
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intensity; however, performance notably deteriorates since dynamic textures usually do not repeat
exactly (see experiments in Secti®d). Another limitation of this approach is the need to specify

the number of Gaussians (models), for the E-M algorithm ondthmeans approximation. Still,

the mixture of Gaussian approach has been widely adopted, becoming something of a standard in

background subtraction, as well as a basis for other approact&sQqg[Har03).

Methods that address the uncertainty of spatial location using local models have also been
proposed. InEHDOZ, EI Gammalet al proposed nonparametric estimation methods for per-
pixel background modeling. Kernel density estimation (KDE) was used to establish membership,
and since KDE is a data-driven process, multiple modes in the intensity of the background were
also handled. They addressed the issue of nominally moving cameras with a local search for the
best match for each incident pixel in neighboring models. Rea too explicitly addressed the
issue of background subtraction in a nonstationary scene by introducing the concept of a spatial
distribution of Gaussians (SDG)RCHO03. After affine motion compensation, a MAP decision
criteria is used to label a pixel based on its intensity and spatial membership probabilities (both
modeled as Gaussigmlfs). There are two primary points of interest RGHO03. First, the
authors modeled the spatial position asirggle Gaussian, negating the possibility of bimodal or
multi-modalspatial probabilities, i.e. that a certain background element model may be expected
to occur in more than one position. Although, not within the scope of their problem definition,
this is, in fact, a definitive feature of a temporal texture. Analogous to the need for a mixture
model to describe intensity distributions, unimodal distributions are limited in their ability to model

spatial uncertainty. ‘Nonstationary’ backgrounds have most recently been addressed st Pless
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al [PLS03 and Mittal et al [MP04]. Plesset al proposed several pixel-wise models based on
the distributions of the image intensities and spatio-temporal derivatives. Elithproposed an
adaptive kernel density estimation scheme with a joint pixel-wise model of color (for a normalized
color space), and optical flow at each pixel. Other notable pixel-wise detection schemes include
[SRPOQ, where topology free HMMs are described and several state splitting criteria are compared
in context of background modeling, anBKJOQ, where a (practically) non-adaptive three-state

HMM is used to model the background.

The second category of methods use region models of the backgroui&KBA9], Toyamaet
al proposed a three tiered algorithm that used region based (spatial) scene information in addition
to per-pixel background model: region and frame level information served to verify pixel-level
inferences. Another global method proposed by Oleteal [ORPO0Q used eigenspace decompo-
sition to detect objects. Fdr input frames of sizeV x M a matrixB of sizek x (NM) was
formed by row-major vectorization of each frame and eigenvalue decomposition was applied to
C=B- ,u)T(B — ). The background was modeled by the eigenvectors corresponding to the
7 largest eigenvalues;, that encompass possible illuminations in the field of view (FOV). Thus,
this approach is less sensitive to illumination. The foreground objects are detected by projecting
the current image in the eigenspace and finding the difference between the reconstructed and ac-
tual images. The most recent region-based approaches are by Marai¢MMMP03], Zhonget
al [ZS03. Monnetet al and Zhonget al simultaneously proposed models of image regions as
an autoregressive moving average (ARMA) process, which is used to incrementally learn (using

PCA) and then predict motion patterns in the scene.
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The foremost assumption made in background modeling is the assumption of a stationary
scene. However, this assumption is violated fairly regularly, through common real world phe-
nomenon like swaying trees, water ripples, fountains, escalators etc. The local search proposed
in [EHDO0Z, the SDG of RCH03, the time series models oMMPO03], [ZS03 and KDEs over
color and optical flow in [MP04] are several formulations proposed for detection non-stationary
backgrounds. While each method demonstrated degrees of success, the issue of spatial depen-
dencies has not been addressed in a principled manner. In context of earlier work (in particular
[MPO04]), our approach falls under the category of methods that employ regional models of the
background. We assert that useful correlation exists in the intensities of spatially proximal pix-
els and this correlation can be used to allow high levels of detection accuracy in the presence of

general non-stationary phenomenon.

2.5 Formulation

In the presented work, objects are to be tracked across several cameras, each mounted on aer-
ial vehicles, without any telemetry or calibration information (see Figure 1). Unlike earlier ap-
proaches involving PTZ cameras, we track objects across cameras while the camera center is al-
lowed to move freely. Such a system finds obvious application in the monitoring of large areas
where several aerial vehicles provide different views of the scene, with alternately overlapping
and non-overlapping fields of view. Since the cameras are moving and are often distant, direct

appearance-based or proximity-based constraints cannot be used. Instead, we exploit constraints
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on the relationship between the motion of each observed object across cameras. The principal as-
sumption that is made in this work is that the altitude of the camera allows the scene to be modeled
closely by a plane. Scene planarity in turn allows geometric constraints to be used for evaluat-
ing the probability that trajectories observed in two different sequences originated from the same

object.

In the context of multiple objects viewed by multiple cameras, global coherency is desired in
object tracking, i.e. multiple assignments are not made to a single object and that transitive closure
is maintained in correspondence across multiple views. We formulate the problem in probabilistic
terms, obtaining the Maximum Likelihood assignment of objects using graph matching. We show
that reassociation of re-entering objects is possible under certain conditions. In addition, while
mosaics provide an excellent means of summarizing aerial video information feomglaview,
trying to simultaneously monitor information from several mosaics is awkward and inconvenient.
Instead, we show that as a consequence of automatically tracking objects across multiple views, a

concurrent mosaican be computed summarizing the information from several aerial videos.

This detection approach has three novel contributions. First, the method presented here pro-
vides a principled means of modeling the spatial dependencies of observed intensities. The model
of image pixels as independent random variables, an assumption almost ubiquitous in background
subtraction methods, is challenged and it is further asserted that there exists useful structure in the
spatial proximity of pixels. This structure is exploited to sustain high levels of detection accuracy
in the presence of nominal camera motion and dynamic textures. By using nonparametric density

estimation methods over a joint domain-range representation, the background data is modeled as
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a single distribution and multi-modal spatial uncertainties can be directly handled. Second, un-
like previous approaches, the foreground is explicitly modeled to augment the detection of objects
without using tracking information. The criterion of temporal persistence is exploited for simul-
taneous use with the conventional criterion of background difference. Third, instead of directly
applying a threshold to membership probabilities, which implicitly assumes independence of la-
bels, we present a MAP-MRF framework that competitively uses the foreground and background

models for object detection, while enforcing spatial context in the process.
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CHAPTER 3

OBJECT DETECTION

Before associating objects across cameras, some degree of local processing much be performed
within each camera. In this chapter we describe an approach to object detection that takes does
not make the pixel-wise independence assumption, and as a result can provide high quality detec-
tion in the presence of many real world phenomena such as dynamic textures (water waves, foliage
swaying in the wind etc) and nominal misalignments. The ability to handle nominal misalignments

is critical because a primary scenario where the planarity assumption is valid is video taken from
aerial vehicles. In these videos motion is compensated using frame-to-frame motion compensation
methods such asv[P97]!. However, due to the presence of outlier motions (from the indepen-
dently moving objects) and parallax, nominal misalignments and residual parallax motion can be
expected and object detection methods that do not account for spatial correlation perform poorly.
To account for these issues we now describe a novel representation of the background, the use of
temporal persistence to pose object detection as a binary classification problem, and the overall

MAP-MRF decision framework. For an image of sixtex N, letS discretely and regularly index

1Since independently moving objects are expected robust estimation methods must be used when compensating
motion.
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the image latticeS = {(¢,7)| 1 <i < N,1 < j < M}. The objective is to assign a binary label

from the setC = {background, foreground} to each of the sites if§.

3.1 Joint Domain-Range Background Model

If the primary source of spatial uncertainty of a pixel is image misalignment, a Gaussian density
would be an adequate model since the corresponding point in the subsequent frame is equally likely
to lie in any direction. However, in the presence of dynamic textures, cyclic motion, and non-
stationary backgrounds in general, the ‘correct’ model of spatial uncertainty often has an arbitrary
shape and may be bi-modal or multi-modal, but structure exists because by definition, the motion
follows a certain repetitive pattern. Such arbitrarily structured data can be best analyzed using
nonparametric methods since these methods make no underlying assumptions on the shape of the
density. Non-parametric estimation methods operate on the principle that dense regions in a given
feature space, populated by feature points from a class, correspond to the modes of the ‘true’
pdf. In this work, analysis is performed on a feature space where thigels are represented

byx; € R% i = 1,2,...p. The feature vector, is a joint domain-range representation, where

the space of the image lattice is tHemain (z,y) and some color space, for instangeg, b),

is therange [CM02]. Using this representation allowssingle model of the entire background,
fre.Bxy(r, g,b,x,y), rather than a collection of pixel-wise models. Pixel-wise models ignore the
dependencies between proximal pixels and it is asserted here that these dependencies are important.

The joint representation provides a direct means to model and exploit this dependency.
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In order to build a background model, consider the situation at tjrhefore which all pixels,
represented in-space, form the set, = {yi,y2...y.} of the background. Given this sample
set, at the observation of the frame at timéhe probability of each pixel-vector belonging to the
background can be computed using the kernel density estim&ar6d, [Ros564). The kernel
density estimator is a nonparametric estimator and under appropriate conditions the estimate it
produces is a valid probability itself. Thus, to find the probability that a candidate goioejongs

to the backgroundy,, an estimate can be computed,
P(x|y) =n™' Y om (X - yz-) : (3.1)
=1
whereH is a symmetric positive definité x d bandwidth matrix, and

pr(x) = [H|/2p(H %), (3.2)

wherey is ad-variate kernel function usually satisfyifge(x)dx = 1, p(x) = p(—x), [ xp(x)dx =
0, [ xxTp(x)dx = I, and is also usually compactly supported. Theariate Gaussian density is

a common choice as the kernel
W) _ —-1/2 —d/2 _l Tyy-1
o (x) = [H|7/2(2m) "% exp 5X H 'x). (3.3)

It is stressed here, that using a Gaussian kernel does not make any assumption on the scatter of data
in the feature space. The kernel function only defines the effective region of influence of each data
point while computing the final probability estimate. Any function that satisfies the constraints
specified after Equation 2, i.e. a valid pdf, symmetric, zero-mean, with identity covariance, can be

used as a kernel. There are other functions that are commonly used, some popular alternatives to

25



the Gaussian kernel are the Epanechnikov kernel, the Triangular kernel, the Bi-weight kernel and

the Uniform kernel, each with their merits and demerits (¥%893 for more details).

Within the joint domain-range feature space, the kernel density estimator explicitly models
spatial dependencies, without running into difficulties of parametric modeling. Furthermore, since
it is well known that the-gb axes are correlated, it is worth noting that kernel density estimation

also accounts for this correlation. The result is a single model of the background.

Lastly, in order to ensure that the algorithm remains adaptive to slower changes (such as illu-
mination change or relocation) a sliding window of lengglirames is maintained. This parameter

corresponds to the learning rate of the system.

3.1.1 Bandwidth Estimation

Asymptotically, the selected bandwidithdoes not affect the kernel density estimate but in practice
sample sizes are limited. Too small a choic&lodnd the estimate begins to show spurious features,
too large a choice dfl leads to an over-smoothed estimate, losing important structural features like
multi-modality. In general, rules for choosing bandwidths are based on balancing bias and variance

globally. Theoretically, the ideal or optimBl can be found by minimizing the mean-squared error,
MSE{fu(x)} = E{[fu(x) — fu(x)]*}, (3.4)

where f is the estimated density andis the true density. Evidently, the optimal valueHfis

data dependent since the MSE value depends d¢towever, in practice, one does not have access
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to the true density function which is required to estimate the optimal bandwidth. Instead, a fairly
large number of heuristic approaches have been proposed for fiRdi#gsurvey is provided in

[Tur9g3.

Adaptive estimators have been shown to considerably outperform (in terms of the mean squared
error) the fixed bandwidth estimator, particularly in higher dimensional spe&a®4d. In general
two formulations of adaptive or variable bandwidth estimators have been consider®&d] The
first varies the bandwidth with the estimation point and is called the balloon estimator, given by,
1 n

fla)=— > enp(x —xi)), (3.5)

=1

whereH (x) is the bandwidth matrix at. The second approach, called the sample-point estimator,

varies the bandwidth matrix depending on the sample point,

J@) = =3 eme(x = X)), (36)

whereH(x;) is the bandwidth matrix at;. However, developing variable bandwidth schemes for
kernel density estimation is still research in progress, both in terms of theoretical understanding

and in terms of practical algorithms5§i03.

In the given application, the sample size is large, and although it populdtesnaensional
feature space, the estimate was found to be reasonably robust to the selection of bandwidth. Fur-
thermore, choosing an optimal bandwidth in the MSE sense is usually highly computationally

expensive. Thus, the balance between accuracy required (for matting, object recognition or action

27



recognition) and computational speed (for real-time surveillance systems) is application specific.
To reduce the computational load, the Binned kernel density estimator provides a practical means
of dramatically increasing computational speeds while closely approximating the kernel density es-
timate of Equatior8.1, ([WJ95, Appendix D). With appropriate binning rules and kernel functions

the accuracy of the Binned KDE is shown to approximate the kernel density estimat&/Bo.

Binned versions of the adaptive kernel density estimate have also been provi&=al(§.[ To

further reduce computation, the bandwidth malfixs usually either assumed to be of the form

H = h’TorH = diag(h3, h3, ... h%). Thus, rather than selecting a fully parameterized bandwidth
matrix, only two parameters need be defined, one for the variance in the spatial dime¢nsjgns

and and one for the color channels, reducing computational load.

3.2 Modeling the Foreground

The intensity difference of interesting objects from the background has been, by far, the most
widely used criterion for object detection. In this chaptemporal persistencis presented as a
property of real foreground objects, iiateresting objects tend to remain in the same spatial vicin-

ity and tend to maintain consistent colors from frame to fraifige joint representation used here
allows competitive classification between the foreground and background. To that end, models for
both the background and the foreground are maintained. An appealing feature of this representa-
tion is that the foreground model can be constructed in a consistent fashion with the background

model: a joint domain-range non-parametric density= {z;,z....z,}. Just as there was a
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Figure 3.1:Foreground Modeling. Using kernel density estimates on a model built from recent frames,
the foreground can be detected in subsequent frames using the property of temporal persistence, (a) Cur-
rent Frame (b) theX, Y-marginal, fx y (x,y). High membership probabilities are seen in regions where
foreground in the current frame matches the recently detected foreground. The non-parametric nature of
the model allows the arbitrary shape of the foreground to be captured accurately {¢)@hmarginal,

fB.c(b, g) (d) theB, R-marginal,fg r(b,r) (e) theG, R-marginal,fc r(g,7).
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Figure 3.2:Foreground likelihood function. The foreground likelihood estimate is a mixture of the kernel
density estimate and a uniform likelihood across the 5-space of features. This figure shows a conceptualiza-
tion as a 1-D function.

learning rate parametey, for the background model, a paramegeris defined for the foreground
frames. However, since the foreground changes far more rapidly than the background, the learning

rate of the foreground is typically much higher than that of the background.

At any time instant the probability of observing a foreground pixel at any locétign of any
color is uniform. Then, once a foreground region is been detected at tithere is an increased
probability of observing a foreground region at time- 1 in the same proximity with a similar
color distribution. Thus, foreground probability is expressed as a mixture of a uniform function

and the kernel density function,

P(x|¢y) =ay+ (1 — a)ym™! Z OH (X — zi>, (3.7)

wherea < 1 is the mixture weight, and is a random variable with uniform probability, that is

YrG, Xy (1,9,0,2,Y) = mamanw Where0 < r <R, 0< g <G, 0<b< B 0<z<
M, 0 <y < N. This mixture is illustrated in Figur8.2 If an object is detected in the preced-

ing frame, the probability of observing the colors of that object in the same proximity increases
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according to the second term in Equati®. Therefore, as objects of interest are detected (the
detection method will be explained presently), all pixels that are classified as ‘interesting’ are used
to update the foreground modg}. In this way, simultaneous models are maintained of both the
background and the foreground, which are then used competitively to estimate interesting regions.
Finally, to allow objects to become part of the background (e.g. a car having been parked or new
construction in an environment), all pixels are used to upgat&igures3.1shows plots of some

marginals of the foreground model.

At this point, whether a pixel vectox is ‘interesting’ or not can be competitively estimated
using a simpldikelihood ratio classifier(or a Parzen Classifier since likelihoods are computed
using Parzen density estimatesuk9Q),

P(x|iy) n 3 ou (X - yi)

T=—-In——F=—1In (3.8)
Pxlyy) ay+ (1 —a)m™ 370, on (X - Zz‘)
Thus the classifief is,
1 if —n D) S
5(X) _ P(XW}f)
1 otherwise

wherek is a threshold which balances the trade-off between sensitivity to change and robustness
to noise. The utility in using the foreground model for detection can be clearly seen in Figure
3.3 Figure3.3(e) shows the likelihood values based only on the background model and Figure
3.3(f) shows the likelihood ratio based on both the foreground and the background models. In both
histograms, two processes can be roughly discerned, a major one corresponding to the background
pixels and a minor one corresponding to the foreground pixels. The vatieteeerthe clusters

increases with the use of the foreground model. Visually, the areas corresponding to the tires of
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the cars are positively affected, in particular. The final detection for this frame is shown in Figure
3.7(c). Evidently, the higher the likelihood of belonging to the foreground, the lower the overall
likelihood ratio. However, as is described next, instead of using only likelihoods, prior information
of neighborhood spatial context is enforced in a MAP-MRF framework. This removes the need to

specify the arbitrary parameter

3.3 Spatial Context: Estimation using a MAP-MRF Framework

The inherent spatial coherency of objects in the real world is often applied in a post-processing
step, in the form of morphological operators like erosion and dilation, by using a median filter or
by neglecting connected components containing only a few pix@G0(]. Furthermore, directly
applying a threshold to membership probabilities implies conditional independence of labels, i.e.
P(t;)¢;) = P(¢;), where i # j, and/; is the label of pixeli. We assert that such conditional
independence rarely exists between proximal sites. Instead of applying such ad-hoc heuristics,
Markov Random Fields provide a mathematical foundation to make a global inference using local
information. While in some instances the morphological operators may do as well as the MRF for
removing residual mis-detections at a reduced computational cost, there are two central reasons

for using the MRF:

1. By selecting an edge-preserving MRF, the resulting smoothing will respect the object bound-

aries.
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Figure 3.3:Improvement in discrimination using temporal persistence. Whiter values correspond to higher
likelihoods of foreground membership. (a) Video Frame 410 of the Nominal Motion Sequence (b) Log-Like-
lihood Ratio values obtained using Equat®8. (c) Foreground likelihood map. (d) Background negative
log-likelihood map. (e) Histogrammed negative log-likelihood values for background membership. The
dotted line represents the ‘natural’ threshold for the background likelihood, i.ey)lo(d) Histogrammed
log-likelihood ratio values. Clearly the varianbetweerclusters is decidedly enhanced. The dotted line

represents the ‘natural’ threshold for the log-likelihood ratio, i.e. zero.
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Figure 3.4:Three possible detection strategies. (a) Detection by thresholding using only the background
model of Equatior3.1L Noise can cause several spurious detections. (b) Detection by thresholding the
Likelihood Ratio of EquatiorB.8. Since some spurious detections do not persist in time, false positives
are reduced using the foreground model. (c) Detection using MAP-MRF estimatid®, All spurious
detections are removed and false negative within the detected object are also removed as a result of their
spatial context.

2. As will be seen, the formulation of the problem using the MRF introduces regularity into the

final energy function that allows for the optimal partition of the frame (through computation

of the minimum cut), without the need to pre-specify the parameter

3. The MREF prior is precisely the constraint of spatial context we wish to impos& on

For the MRF, the set of neighbot4/, is defined as the set of sites within a radius R from site

i= (i),

N; = {u € S| distancéi,u) <r,i # u}, (3.9)
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wheredistance(a,b) denotes the Euclidean distance between the pixel locatiaasdb. The
4-neighborhood (used in this chapter) and 8-neighborhood cliques are two commonly used neigh-
borhoods. The pixel& = {x;, x3,...x,} are conditionally independent gived) with conditional
density functionsf (x;|¢;). Thus, since eack; is dependant oif only through/;, the likelihood

function may be written as,

p p

IRIC) = [ Fexalts) = T el f (il )= (3.10)

i=1 i=1

Spatial context is enforced in the decision through a pairwise interaction MRF prior. We use the

Ising Model for its discontinuity preserving properties,

p(L) o exp (XP:ZP:A(% (1= )1 ej))), (3.11)

i=1 j=1

where\ is a positive constant and# j are neighbors. By Bayes Law, the posterjdiZ|%x), is

then equivalent to

o _ PEOPL)
p(L[R) = ey
(T2 Sl ) FOxilin) = ) pl£)

P(R¢y) + p(Xlthn)

(3.12)

Ignoring constant terms, the log-posteriorp(£|x), is then equivalent to,

A\ ¢ n J(xilvy) ,
Le® =2 1 (f(xi!w)g’*

i i A(% +(1=6)(1 - @))- (3.13)

i=1 j=1

The MAP estimate is the binary image that maximiZeand since there ar2"" possible

configurations ofZ an exhaustive search is usually infeasible. In fact, it is known that minimizing
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Figure 3.5:A 4-neighborhood system. Each pixel location corresponds to a node in the graph, connected
by a directed edge to the source and the sink, and by an undirected edge to it's four neighbors. For purposes

of clarity the edges between node 3 and nodes 5 and 1 have been omitted in (b).

discontinuity-preserving energy functions in general is NP-HaBd,Z401]. Although, various
strategies have been proposed to minimize such functions, e.g. Iterated Condition Bles$ [

or Simulated Annealing$G84, the solutions are usually computationally expensive to obtain and
of poor quality. Fortunately, since belongs to ther? class of energy functions, defined KZ04]

as a sum of function of up to two binary variables at a time,

E(ry,...x) = Y _E'(z;)+ Y B (x;,), (3.14)
i i.j

and since it satisfies the regularity condition of the so-cafiédheorem, efficient algorithms exist
for the optimization ofZ. by finding the minimum cut of a capacitated grap8P[S89 KZ04],

described next.

To maximize the energy function (Equati@il3, we construct a grapf = (V, ) with a
4-neighborhood systet” as shown in Figur&.5. In the graph, there are two distinct terminals

s andt, the sink and the source, amdnodes corresponding to each image pixel location, thus
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Algorithm
Initialize v, using1%! frame, )y = (. At framet, for each pixel,

Detection Step
1. FindP(x;]¢¢) (Eq. 3.7) and P(x;|vs) (EQ. 3.1) and compute the Likelihood Ratio(Eq. 3.8).
2. Construct the graph to minimize Equati®ni3
Model Update Step
1. Append all pixels detected as foreground to the foreground model
2. Remove all pixels iny; from p frames ago.
3. Append all pixels of the image to the background magel

4. Remove all pixels iny, from p;, frames ago.

Figure 3.6:0bject Detection Algorithm

V = {v1,v9, -+ ,vn,s,t}. A solution is a two-separtition, i = {s} U {i|¢; = 1} and W =
{t} U {i|¢; = 0}. The graph construction is as described@P589, with a directed edgés, i)
from s to node:; with a weightw,, ;) = 7; (the log-likelihood ratio), ifr; > 0, otherwise a directed
edge(7, ) is added between nodeand the sinkt with a weightw;,, = —7,. For the second
term in Equatior8.13 undirected edges of weight; ;) = ) are added if the corresponding pixels
are neighbors as defined jx (in our case if;j is within the 4-neighborhood clique @f . The

capacity of the graph i€'(£) = ), Zj w( j), and a cut defined as the set of edges with a vertex
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in U and a vertex inV. As shown in FF63, the minimum cut corresponds to the maximum flow,

thus maximizingL(L£|%) is equivalent to finding the minimum cut. The minimum cut of the graph
can be computed through a variety of approaches, the Ford-Fulkerson algorithm or a faster version
proposed in(GPS89. The configuration found thus corresponds to an optimal estimafe dhe

complete algorithm is described in Figutel.

3.4 Results and Discussion

The algorithm was tested on a variety of sequences in the presence of nominal camera motion,
dynamic textures, and cyclic motion. The sequences were all taken with a COTS camera (the Sony
DCR-TRV 740). Comparative results for the mixture of Gaussians method have also been shown.
For all the results the bandwidth matiikwas parameterized as a diagonal matrix with three equal
variances pertaining to the range (color), representeld.land two equal variances pertaining to

the domain, represented by. The values used in all experiments wéke, h,;) = (16, 25).

3.4.1 Qualitative Analysis

Qualitative results on seven sequences of dynamic scenes are presented in this section. The first
sequence that was tested involved a camera mounted on a tall tripod. The wind caused the tripod

to sway back and forth causing nominal motion of the camera. Figurshows the results ob-
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Figure 3.7:Background Subtraction in a nominally moving camera (motion is an average of 12 pixels). The
top row are the original images, the second row are the results obtained by using a 5-component, Mixture of
Gaussians method, and the third row results obtained by our method. The fourth row is the masked original

image. The fifth row is the manual segmentation. Morphological operators were not used in the results.
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(a) (b) () (d)

Figure 3.8:Poolside sequence. The water in this sequence shimmers and ripples causing false positive
in conventional detection algorithms, as a remote controlled car passes on the side. The top row are the
original images, the second row are the results obtained by using a 5-component, Mixture of Gaussians
method, and the third row are the results obtained by our method. The fourth row is the masked original

image. Morphological operators were not used in the results.
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(a) (b) () (d)

Figure 3.9:Fountain Sequence. Background Subtraction in the presence of dynamic textures. There are
three sources of nonstationarity: (1) The tree branches oscillate (2) The fountains (3) The shadow of the tree
on the grass below. The top row are the original images, the second row are the results obtained by using a
5-component, Mixture of Gaussians method, and the third row results obtained by our method. The fourth

row is the masked original image. Morphological operators were not used in the results.
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Figure 3.10:Three more examples of detection in the presence of dynamic backgrounds. (a) The lake-side
water is the source of dynamism in the background. The contour outlines the detected foreground region.
(b) The periodic motion of the ceiling fans is ignored during detection. (c) A bottle floats on the oscillating

sea, in the presence of rain.

tained by our algorithm. The first row contains the recorded images and the second row shows the
detected foreground as proposed $G0(Q. It is evident that the nominal motion of the camera
causes substantial degradation in performance, despimaponent mixture model and a rela-
tively high learning rate of.05. The third row shows the foreground detected using our approach.

It is stressed thato morphological operators like erosion / dilation or median filters were used in
the presentation of these results. Manually segmented foreground regions are shown in the bottom
row. This sequence exemplifies a set of phenomena, including global motion caused by vibra-
tions, global motion in static hand-held cameras, and misalignment in the registration of mosaics.

Quantitative experimentation has been performed on this sequence and is reported subsequently.
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Figure 3.11:Swaying trees sequence. A weeping willow sways in the presence of a strong breeze. The top
row shows the original images, the second row are the results obtained by using the mixture of Gaussians
method, and the third row are the results obtained by our method. The fourth row is the masked original

image. Morphological operators were not used in the results.
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Figures3.8, 3.9, and3.11show results on scenes with dynamic textures. In Fi@uéea red
remote controlled car moves in a scene with a backdrop of a shimmering and rippling pool. Since
dynamic textures like the water do not repeat exactly, pixel-wise methods, like the mixture of
Gaussians approach, handle the dynamic texture of the pool poorly, regularly producing false pos-
itives. On the other hand, our approach handled this dynamic texture immediately, while detecting
the moving car accurately as well. FigB&® shows results on a particularly challenging outdoor
sequence, with three sources of dynamic motion: (1) The fountain, (2) the tree branches above,
and (3) the shadow of the trees branches on the grass below. Our approach disregarded each of the
dynamic phenomena and instead detected the objects of interest. In Eigjljreesults are shown
on sequence where a weeping willow is swaying in a strong breeze. There were two typical paths
in this sequence, one closer to the camera, and another one farther back, behind the tree. Including
invariance to the dynamic behavior of the background, both the larger objects closer by and the

smaller foreground objects farther back were detected as shown in Bigu(e) and (d).

Figure3.1(Qa) shows detection in the presence of period motion, due to a number of ceiling
fans. Despite a high degree of motion, the individual is detected accurately. Bigafie) shows
detection with the backdrop of a lake, and @hdQc) shows detection in the presence of sub-
stantial wave motion and rain. In each of the result8.dfQ the contour outlines the detected
region, demonstrating accurate detection. Finally, we applied the algorithm to motion stabilized
video data collected from aerial videos, and despite nominal misalignment and residual parallax

motion, objects were reliably detected. Fig@r&3and Figure3.12show background membership
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Figure 3.12:Aerial Video - Example 1. (a) Frame 1 of 80, (b) Background likelihood map, (c) Masked
image frame based on foreground decision. Reliable object detection is obtained despite residual parallax
motion of the tree and light poles. The small object detected in the bottom left of the frame is the shadow of

an object entering the field of view.

likelihoods. There is significant residual parallax due to the trees and the light poles in the scene.

Despite these, the end detection is highly accurate.

3.4.2 Quantitative Analysis

We performed quantitative analysis at both the pixel-level and object-level. For the first experi-
ment, we manually segmented a 500-frame sequence (as seen inFiguneo foreground and
background regions. In the sequence, the scene is empty for the first 276 frames, after which two
objects (first a person and then a car) move across the field of view. The sequence contained an

average nominal motion of approximately 14.66 pixels. Figui€(a) shows the number of pixels
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Figure 3.13:Aerial Video - Example 2. (a) Frame 1 of 80, (b) Background likelihood map, (c) Masked

image frame based on foreground decision.

detected in selected frames by the mixture of Gaussians method at various values of the learning pa-
rameter and the ground truth. The periodicity apparent in the detection by the mixture of Gaussians
method is caused by the periodicity of the camera motion. The initial periodicity in the ground truth

is caused by the periodic self-occlusion of the walking person and the subsequent peak is caused by
the later entry and then exit of the car. In Fig@r&4(b) the corresponding plot at each level of our
approach is shown. The threshold for the detection using only the background model was chosen
as logfy) (see Equatior8.7), which was equal to -27.9905. In addition to illustrating the contri-
bution of background model to the over-all result, the performance at this level is also relevant
because, in the absence of any previously detected foreground, the system essentially uses only the
background model for detection. For the log-likelihood ratio, the obvious value {see Equa-

tion 3.8) is zero, since this means the background is less likely than the foreground. Clearly, the

results reflect the invariance at each level of the approach to mis-detections caused by the nominal
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camera motion. The per-frame detection rates are shown in Fsgland Figure3.16in terms of

precision and recall, wherrecision— Z I bosiesceetetand Recall = £3 e iee C2ete?The
detection accuracy both in terms of recall and precision is consistently higher than the mixture
of Gaussians approach. Several different parameter configurations were tested for the mixture of
Gaussians approach and the results are shown for three different learning parameters. The few

false positives and false negatives that were detected by the approach were invariably at the edges

of true objects, where factors such as pixel sampling affected the results.

Next, to evaluate detection at the object level (detecting whether an object is present or not),
we evaluated five sequences, each (approximately) an hour long. The sequences tested included
an extended sequence of Fig®.&, a sequence containing trees swaying in the wind, a sequence
of ducks swimming on a pond, and two surveillance videos. If a contiguous region of pixels was
consistently detected corresponding to an object during its period within the field of view, a correct
‘object’ detection was recorded. If two separate regions were assigned to an object, if an object was
not detected or if a region was spuriously detected, a mis-detection was recorded. Results, shown
in Table 1, demonstrate that our approach had an overall average detection 9ate8¥; and
an overall mis-detection rate 6f41%. The mis-detections were primarily caused by break-ups in

regions, an example of which can be seen in Figué).
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Figure 3.14:Numbers of detected pixels for the sequence with nominal motion (FRydye(a) This plot

shows the number of pixels detected across each of 500 frames by the Mixture of Gaussians method at
various learning rates. Because of the approximate periodicity of the nominal motion, the number of pixels
detected by the Mixture of Gaussians method shows periodicity. (b) This plot shows the number of pixels
detected at each stage of our approach, (1) using the background model, (2) using the likelihood ratio and

(3) using the MAP-MRF estimate.
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Figure 3.15:Pixel-level detection recall and precision at each level of our approach. (a) Precision and (b)

Recall.

49



T T
—— Mixture of Gaussians: 0.005
— Mixture of Gaussians: 0.05
0.9 H — Mixture of Gaussians: 0.5 B

0.8 4

0.7 —

05 : : : -

Precision

0.4 -

0.3 -

0.2 4

0.1 -

0 I I I I I I
200 250 300 350 400 450 500
Frame Number

(@)

T T
—— Mixture of Gaussians: 0.005
— Mixture of Gaussians: 0.05
0.9 — Mixture of Gaussians: 0.5

0.8r-

0.7

0.6

Recall
o
3

T

0.4 1

03 -

01 : : 8

Il Il Il Il Il Il
200 250 300 350 400 450 500
Frame Number

(b)

Figure 3.16:Pixel-level detection recall and precision using the Mixture of Gaussians approach at three

different learning parameters: 0.005, 0.05 and 0.5. (a) Precision and (b) Recall.
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Table 3.1:0bject level detection rates. Object detection and mis-detection rates for 5 sequences (each 1

hour long).

Objects | Det. | Mis-Det. | Det. % | Mis-Det. %

Seq.1| 84 84 0 100.00%| 0.00%
Seq.2| 115 | 114 1 99.13% 0.87%
Seq. 3| 161 | 161 0 100.00%| 0.00%
Seq. 4| 94 94 0 100.00%| 0.00%

Seq. 5| 170 | 169 2 99.41% 1.18%

3.5 Conclusion

There are a number of innovations in this work. From an intuitive point of view, using the joint
representation of image pixels allows local spatial structure of a sequence to be represented ex-
plicitly in the modeling process. The entire background is representediogkedistribution and

a kernel density estimator is used to find membership probabilities. The joint feature space pro-
vides the ability to incorporate the spatial distribution of intensities into the decision process, and
such feature spaces have been previously used for image segmentation, sm@aMoh 4nd
tracking EDDO3J. A second novel constraint in this work is temporal persistence as a criterion
for detection without feedback from higher-level modules (agdarDd). The idea of using both
background and foreground color models to compete for ownership of a pixel using the log like-
lihood ratio has been used before for improving trackingGh(Q3]. However, in the context of

object detection, making coherent models of both the background and the foreground, changes the
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paradigm of object detection from identifying outliers with respect to a background model to ex-
plicitly classifying between the foreground and background models. The likelihoods obtained are
utilized in a MAP-MRF framework that allows an optimal global inference of the solution based

on local information. The resulting algorithm performed suitably in several challenging settings.
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CHAPTER 4

OBJECT ASSOCIATION ACROSS MULTIPLE

OVERLAPPING CAMERAS

In this chapter, we present an algorithm that requires at least limited spatiotemporal overlap be-
tween the fields of view of the cameras (Case 3 of the introduction). Thismsithmalassumption

that is required to discern the relationship of observations in the uncalibrated moving cameras. The
underlying concept of cooperative sensing is to use these relationships to give global context to ‘lo-
cally’ obtained information at each camera. Itis desirable, therefore, that the data collected at each
camera and the inter-camera relationship discerned by the system be presented in a coherent vi-
sualization. For moving cameras, particularly airborne ones where large swaths of areas may be
traversed in a short period of time, coherent visualization is indispensable for applications like sur-
veillance and reconnaissance. Thus, in addition to presenting an algorithm to track objects across
multiple moving cameras with spatiotemporal overlap of fields of view, we provide a means to

simultaneously visualize the collective field of view of all the airborne cameras.
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Camera 1 Foy c® Camera 3
(a) (b)

Figure 4.1: Graphical representation. (a) Three trajectories observed in three cameras. (b) The

graph associated with the scenario in (a).

Notation The scene is modeled as a plane in 3-spatewith K moving objects, observed by
N cameras. Thé-th object moves along a trajectory ofl, represented by a time-ordered set
of points. A particular objeck, present in the field of view of camera is denoted a®); and
the imaged location 0D; at timet is X;'(t) = (x},.yi,, Ap,)"T € P2, the homogenous co-
ordinates of the point in sequenee The imaged trajectory of)} is the sequence of points
AP = {X00), X0t + 1),...X"()}. When referring to inhomogeneous coordinates, we will
refer to a point ascj (t) = (z3,/A\¢,, yr,/Me,)T € R?. For two cameras, an association or cor-
respondenceZ:lm is an ordered paifOy, O;") that represents the hypothesis thitandO;" are

images of the same object. Formally, it defines the event,
¢ = {OpandOj"arise from the same objectin the woyld = 1, - - - , z(m),

cro = {Opwas not viewed in camera },

'The abstraction of each object is as a point.
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wherez(m) is the number objects observed in cameraSince these events are mutually exclusive
and exhaustive,

z(m)

> (e lA A = 1.

=0

yese

or, 0%, ... OF). Note thatO] does not necessarily correspond$, the numbering of objects

in each sequence is in the order of detection. Thus, the problem is to find the set of associations
C'such that","** € Cifand only if Of*, O7, ... O] are images of the same object in the world.
Graphical illustration allows us to more clearly represent these different relationships (Figjure

We abstract the problem of tracking objects across cameras as follows. Each observed trajectory is
modeled as a node and the graph is partitioned Mtpartitions, one for each of th& cameras.

A hypothesized association, between two observed objects (nodes), is represented as an edge
between the two nodes. Thig-partite representation is illustrated in Figyrd. Clearly, in this
instance, Object 1 is visible in all cameras, and the association across the cameras is represented by
c3#3. Object 2 is visible only in Camera 1 and Camera 3 and therefore an edge exists only between

Camera 1 and 3. Object 3 is visible only in the field of view of Camera 2, therefore there is a

unconnected node in the partition corresponding to Camera 2.
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4.1 Estimating Inter-Camera Relationships

In this section, an unsupervised approach is presented to estimating the inter-camera relationships
in terms of the inter-frame homography. We describe how the likelihood that trajectories, observed
in different cameras, originating from the same world object, is estimated. The use of this, in turn,
for multiple objects assignment across multiple cameras is then described next. Thus, at a certain
instant of time, we have(n) trajectories for the:-th camera corresponding to the objects visible

in that camera. The measured image positions of objegts; {x}(¢),x} (i + 1),...x}(j)} are
described in terms of the true image positictis = {X} (i), X} (i+1),...X}(7) }, with independent

normally distributed measurement noige= 0 and covariance matriR} (i), that is
xp (1) = X2 (i) + €, ~ N(0, R} (17)). (4.1)

It is assumed in this work that the trajectories are compensated for global egomotion of the camera,
through the estimation of frame-to-frame homographies, and are therefore in a single coordinate
system for each camera. The covariance matrix captures the uncertainty in detection at each frame,
uncertainty that is propagated by the sequential estimation of inter-frame homographies, separately

for each camera.

The principal assumption upon which the similarity between two trajectories is evaluated is
that due to the altitude of the aerial camera, the scene can be well approximated by a plane in
3-space and as a result a homography exists between any two frames of any sedtigd@. ([

This assumption of planarity dictates that a homograif]]fg)’?1 must exist between any two trajec-

tories that correspond, i.e. for any association hypothg‘;sﬁs This constraint can be exploited
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to compute the likelihood that 2D trajectories observed by two different cameras originate from

the same 3D trajectory in the world - in other words, to estinpétg;"| A}, &™) (which we de-

scribe presently). Furthermore, we show how this can be extended to multiple views to evaluate
n,m,...0

pleg o A, &, .. Xl}). By assuming conditional independence between each association

the probability of a candidate soluti@r given the trajectories in multiple cameras is,

pCixy)y = [ o' Karxm, . x). (4.2)

nm,...l
S cC

PR

We are interested in the Maximum Likelihood solution,
C" = argmax p(C[{X}), (4.3)

whereC is the space of solutions. We now describe how to compute the likelihood that two trajec-
tories observed in two or more cameras originated from the same real world object. Using these

likelihoods, we describe how to maximize Equatfin Section4.1.2

4.1.1 Evaluating an Association Hypothesis

In this sub-section we discuss how to evaluate the likelihood of association between tracks in
two cameras, i.e. we describe how to compgt€;"| X}, A/"), and its extension for multiple
cameras. The evaluation of this likelihood is complicated by the imaging process, so despite the
fact that trajectories in correspondence can be viewed as samples from a single trajectory on the
planell, the coordinates of the ‘samples’ are not registered. We can com@ﬁ;ﬁé\fg, ™) by

computing the maximum likelihood estimate of the homograﬂ{]&,m and two new trajectories
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X andX™, relatedexactlyby H;", as described irHZ00], by minimizing the reprojection error.
The re-projection error is a cost function that explicitly minimizestta@sfererror between the
trajectories and was proposed by Sturm $t497, with further work with Chum and Pajdla in

[CPS05. Using this estimate of the homography and the ‘true’ trajectories,

e 1, &™) oc L(AG, A" ey A Hiy') = LA ey X, H ) LA™ ey A H).
(4.4)
The proportionality follows from Bayes Theorem assuming a uniform prior on all associations
and ignoring the constant evidence term. Since the errors at each point are assumed independent,
the conditional probability of the association given the trajectories in the pair of sequences can be

estimated,

_ 1 — 2 (A (@), () rn () A (). B () 1))
LD, X ey Hy ™ X0™) = e 2\TR TR TR QT TR VRO,
(6 A el B> 47) H27THRZ(Z')II5HRF(@')|I5

(4.5)

whered(-)r;) is the Mahalanobis distance aR (i) is the error covariance matrix,

"o N A D - - s N\NT 11 N—1 [ - -
(Xk (1) — Xk(l)) R (4) I(Xk(l) - Xg (Z)) + (Xz (1) — % (Z)) R (i) I(Xz (1) — % (10‘}6)
Thus, to estimate the data likelihood, we compute the optimal estimates of the homography and
exact trajectories and use them to evaluate Equdtian

For situations where there are more than two cameras, this analysis extends directly. To evalu-
ate, for instancep(cy 71V | AL, A2, ..., &), we proceed by computing the maximum likelihood

estimate of the set aV — 1 homographies, and one ‘canonical’ trajectory related to each view by
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the set of homographies. Using these estimates, we have,
pler T XL &2 LAY o LA AT ANY{HYL Y HY YL A, (4)

where thepdfof L({x}, X2,..., AN H{Hy T HYG, .. 0HY, WYL AL, is?,

1

Ll 22, XN HY L HY Y ) = [[————e " (4.8)
i (27THRH) 2
where
dy = 3 (A @), B + Y A (), B2 () ) (4.9)
J j=2

The Direct Linear Transform algorithm or RANSAC can be used as an initial estimate, followed
by a Levenberg-Marquardt minimization oV — 1) + 2A¢ variables:9(N — 1) unknowns for

the set of homographies agdv¢t unknowns for the canonical¢ 2D points. Equatiod.8is used

to compute the maximum likelihood estimates of the homography and the canonical trajectory and

then used to evaluate the probability of the association hypothesis.

4.1.2 Maximum Likelihood Assignment of Global Correspondence

In the previous section, we developed a model to evaluate the probability of association be-
tween several imaged trajectories for a single object. Generally, however, when several objects
are observed simultaneously by multiple cameras we require an opjiotzdl assignment of

object correspondences. We show that within this formulation, this global optimality too can

2For notational convenience we assume the covariance matrices are all equal.
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be described in a maximum likelihood sense. As mentioned earlier, the problem of establish-
ing association between trajectories can be posed within a graph theoretic framework. Consider
first, the straightforward case of several objects observetvbyairborne cameras. This can be
modeled by constructing a complete bi-partite gréph= (U, V, E) in which the verticed/ =

{u(A7), u(X7) ... u(X])} represent the trajectories in SequepgcandV = {v(X]), v(XY) ... v(X])}
represent the trajectories in SequencandF represents the set of edges between any pair of tra-
jectories from{U andV'. The bi-partite graph is complete because any two trajectories may match
hypothetically. The weight of each edge is the probability of correspondence of Trajégtanyd
Trajectory X7, as defined in EquatioA.7. By finding the maximum matching af, we find a
unigue set of corresponden€kg, according to thenaximum likelihoodolution,

C' =argmax »  logp(cf X7, A7), (4.10)

p.q
'l eC

where( is the solution space. Several algorithms exist for the efficient maximum matching of

a bi-partite graph, for instanc&{ih55 or [HK73] which areO(n?) andO(n*5) respectively. It

should be noted that during the construction of the graph we need to ensure that ‘left-over’ objects
are not assigned association. For instance, consider the case when all but one object in each of
two cameras have been assigned association. Although the ‘left-over’ objects in each camera
correspond to the two different objects in the real world (each that did not appear in one of the
camera FOVs), they would be assigned association. In order to avoid this we prune all edges

whose edge weights are below a certain likelihood. This is equivalent to ignoring measurements
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Pair-wise Matching

Coherent Matching

(@) (b) (©)

Figure 4.2:Tracking across 3 moving cameras. (a) A possible association between objects in three cameras.
(b) The digraph associated with correspondence in (a). Correspondence in 3 or more moving cameras. (a)
An impossible matching. Transitive closure in matching is an issue for matching in three of more cameras.
The dotted line shows the desirable edge whereas the solid line shows a possible solution from pairwise
matching. (b) Missing observations. This matching shows the case of missing observations, with three

objects in the scene, each visible in two cameras at a time. (c) The digraph associated with (b).

outside a ‘validation’ region, as described EdP(, ensuring that association hypotheses with low

likelihoods are ignored.

This formulation generalizes tmultiple airborne cameras by consideriigpartite hyper-
graphs instead of the bipartite graphs considered previously, shown in Hdur®nce again,

we wish to find the set of associatiofi,

’ .q...T D q r
C' = Arg max Z log p(ci i 140, &1 &) (4.11)

D,q...T
1 m€C

Each hyper-edge represents the hypothesized associgfiof) between(O;, O ... O}). How-
ever, it is known that thé-dimensional matching problem is NP-Hard for> 3 ([Pap94). A

possible approximation that is sometimes used is pairwise, bipartite matching, however such an
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approximation is unacceptable in the current context since it is vital that transitive closure is main-
tained while tracking. The requirements of consistency in the tracking of objects across cameras
is illustrated in Figuret.2 Instead, to address the complexity involved while accounting for con-
sistent tracking, we construct a weighted digrdphk= (V, F) such thatf{V;, V4, ...V} } partitions

V', where each partition corresponds to a moving camera. Direction is obtained by assigning an
arbitrary order to the cameras (for instance by enumerating them), and directed edges exist be-
tween every node in partitio’; and every node in partitioW; wherei > j (due to the ordering).

By forbidding the existence of edges against the ordering of the camnas;onstructed as an
acyclic digraph. This can be expressedfas= {v(X])v(X!)|v(X)) € V,,v(X?) € V,}, where

e = v(AXY)v(X) represents an edge and> p. The solution to the original association problem

is then equivalent to finding the edges of maximum matching of the &pliof the digraphD

(for a proof see$S09). It should be noted that with this approach we need only define pairwise

edge-weights. Figuré.2shows a possible solution and its corresponding digraph.

Once this solution, using an approximation, is provided, we evap(@igeYt’) as follows. We
observe that all homographies mapping pairs of corresponding tracks in Sequearueg are
equal (up to a scale factor), and are, in turn, the same homography that maps the reference co-
ordinate of Sequence to that of Sequence. Since all the objects lie on the same plane, the
homography relating the image of the trajectory of any ob}é@:f in Sequence to the image of
the trajectory of that object in Sequengés the same as the homograp]clﬁ’]‘.’ relating any other
object’s trajectories in the two sequences (i.e£ p andj # ¢). Since these trajectories lie on

the scene plane, these homography are equBPtg the homography that related the images of
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Figure 4.3:Corresponding frames from two sequences. Both rows show frames recorded from different
cameras.

Sequence to the images of SequengeThis allows us to expresgC|X) as,

p(01) = [[ e (4.12)
i (27||R|)?
where
N
o= > (d(Xkl (i), (i) m + > (X (0), Hj—lvffk(i))R). (4.13)
Jj ok j=2

By using all trajectories between cameras simultaneously to estimate the inter-camera homogra-
phy, the spatial separation of different trajectories enforces a strong non-collinear constraint on
association despite the near collinear motion of individual objects. In this way, even with rela-
tively small durations of observation the correct correspondence of objects can be discerned. Once
again the optimal value of the set of homographies and the canonical trajectories are estimated
using Levenberg-Marquardt minimization, and measure the ‘goodness of fit'. The final algorithm

is summarized in Figuré.4.
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Objective
Given object trajectories from all cameras tht > 5, estimate the inter-camera spatial transf
mations.

Algorithm

=

. Number cameras arbitrarily

2. For all pairwise ¢, computep(c;,"

A, &)

or-

3. Construct Split Graph G*: Find the maximum matching of the split of the acyclic directed

graph described in Sectighl.2

4. Evaluate Global Likelihood Function: Using the estimated maximum matching, compute

the canonical trajectories and the maximum likelihood estimate of the inter-frame homogra-

phies.

5. Repair Trajectories For each unassociated trajectory, evaluate association likelihood

respect to all canonical trajectories, and re-associate broken trajectories.

6. Concurrent Visualization: Use the inter-frame homographies to construct a concu

mosaic using all videos simultaneously.

Figure 4.4:Algorithm for object association across moving cameras

with

rent
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(@) (b)

Figure 4.5: Trajectory Interruption. (a) Complete trajectories observed in Camera 1. (b) The second
trajectory (black) is interrupted as the object exits and then re-enters the field of view. The re-entering

trajectory is recorded as a new trajectory (red).

4.1.3 Repairing Trajectories

During single camera tracking, object trajectories can sometimes be interrupted because of missing
detections, noise, specularities, or feature similarity to the background. Trajectory interruption can
also occur due to scene events like occlusion of the object by some other object, such as clouds,
bridges or tree cover, or due to the exiting and re-entering of an object from the field of view.
This causes the object’s motion to be recorded by two different trajectories. Fdushows
trajectories in two cameras, plotted in space and time. In the second camera the second trajectory
is interrupted as the object exited and re-entered the scene. Several methods have been proposed
to account for this problem at the single camera level using predictive methods. However, we

show that the canonical tracks and the estimated inter-camera homographies can be used to repair
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broken trajectories in a straightforward way. Since matching ensures a one-to-one correspondence,
all such broken trajectories should be unassociated after matching. For each free trajgcioey

evaluate with respect to each canonical trajecttry
§* = arg max p(X'|X; H"). (4.14)
jel..N

(X" X;-, H") is evaluated asymmetrically,

p(XZ-"PEj*, H" 6*% (d(Xin(k)v/?i(k))R?(k)) . (4.15)

1
eI
If this is greater than an empirical threshojdk) and if there is no temporal overlap between
X" and X} (the trajectory in Camera currently associated with;) then 7" and X" are re-
connected and both associatedtp- the trajectory is repaired. It is noteworthy, here, that unlike
single camera methods, the duration of occlusion is irrelevant as long as the object is continuously

viewed in any other camera.

4.2 Concurrent Mosaic

The purpose of aerial surveillance is to obtain an understanding of what occurs in an area of
interest. While it is well known that video mosaics can be used to compactly represent a single
aerial video sequence, they cannot compactly represent several such segirenltaseouslylf,

on the other hand, the homographies between each of the mosaics (corresponding to each aerial
sequence) are known, @ncurrentmosaic can be created of all the sequences simultaneously.

Since each sequence is aligned to a single coordinate frame during the construction of individual
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mosaics, we can register mosaics from multiple sequences onto one concurrent mosaic. To this
end, the known point-wise correspondences (see Fiyddc)) from object tracking can be used

to compute the inter-camera homography. The alignment is then refined using direct registration.

Although the moving cameras observe the same scene, the color values of corresponding points
in the scene differ across the cameras. Figufga) shows a concurrent mosaic generated from
two different sequences. Clearly, directly using these mosaics to create a concurrent mosaic causes
noticeable artifacts, as shown in Figuteés. Assuming a Lambertian scene with a distant light
source (the sun), the scene radiant€X) depends only on material properties and the surface
normal, i.eL(X) = p(X) I - n, wherep(X) is the surface albedo at the world pol¥t I is the
scene irradiance, ana is the surface normal. Clearly, under the Lambertian model, the scene
radiance does not vary with respect to the viewing direction. The image irradiéxgéen turn is
linear in the scene radiance,

L,(x) = Pe;L(X), (4.16)
whereP; is an optical factor of cameriaande; is the exposure. Finally, le¥/;(x) be the intensity
measurements at the world poXtavailable from the images obtained from cameréhese val-
ues are related to the image irradiance by the radiometric response fufictidyix) = f;(1;(x)).

Sincef is a monotonically increasing function it is also invertible and we can defiref, . We
have

Ii(x) = gi(M;i(x)). (4.17)

The source of intensity variation across images captured by different cameras can then only

arise from the different radiometric response functions of the camera&NBA3], the measured
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intensities in image captured by two camer®s(x) and M, (x) are related by antensity mapping

function M, (x) = G(M,(x)). Since the scene radiandg,does not vary with the viewpoint, from

Equatior4.16
L(x) _ ()
Pye, Pe,
Using Equatiort.17we then have,
[ Pee _
My(x) = g," (ﬁ%(%(x») = g, (kgq(My(x))) = G(M,(x)). (4.18)
q-q

This discussion can be extended to color (spectral reflectance) as well. The respongéhof the

sensor (red, green or blue) of camera expressed as,

M9 (x) = f;@( / o (NI(X, >\)d/\>, (4.19)
A

where )\ is the wavelengthA is the range of visible wavelengths,is the spectral sensitivity of
theith sensor/ is the image irradiance. This approach of using three response functions for each
color channel separately has been use@&iN(Q4], [SS04 and [CR9]. The three spectral response
functions produce three correspondicglor transference functiongs,, G, andG,,. color trans-
ference functions for color images are the analogue of intensity mapping function for grayscale
images. However, the analogue is not direct since it was showBG8§ that for any spectrally
broadband color signal, each channel sensor produces outputs that are cérr€hisecbrrelation

stems mainly (but not exclusively) from the spectral overlap®f o9 ands®. Thus, in order to
model the color transference functions between the two views, it is important that the correlations

between the channels be considered. Principally, a color transference functions matrix ought to be

3Similar conclusions based instead on analysis of natural images directly, have also been repR@&zdig. [
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defined, however, by ignoring dispersion effects, we model the system as a multiple input single
output system using multiple regression. We approximate each color transference functions by a

cubic trivariate polynomial,

r'=G,(r,g,b Z al” N ) rigipt — a[(f()m + €, (4.20)
i+j+k<3

V = Gy(r,g,b Z a”kr LglbF — a[(f())yo + €, (4.21)
i+7+k<3

g =Gy(r,g,b Z a LIk — %())o + €. (4.22)
i+j+k<3

wherea, ; ;, are the coefficients of the polynomidt;, g, b} and{r’, ¢’,b'} are the color values the

two images, and ~ N(0,0) is the i.i.d. random error. The property th@(0,0,0) = 0 is
ensured by ignoringé%o. The error term exists because the available measurements are expected
to contain noise. Notably, the cross-product terms in this formulation take the correlation of the
rgb axes into account. The coefficient of the polynomial can be solved through an over-constrained
linear system of equations, since the homography is known between each pair of mosaics, where

every point-to-point correspondence providesranb] " « [’ ¢’ ¥']" constraint.

Figure4.6(b) shows a concurrent mosaic blended using the computed color transference func-
tions. It should be noted that although there are a number of phenomenon that are not modeled in
this model of the color transference functions, e.g. specular objects, saturation, or quantization in
space and color, nominal misalignment, this approach provides satisfactory approximations. In ad-
dition, while accurate results have been obtained using the ordinary least squares (OLS) approach,
since outliers can be expected due to the phenomenon mentioned, a robust approach can be used

to solve the linear system, such as the least median square approach or iteratively reweighted least
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Figure 4.6:Concurrent visualization of two sequences. (a) Concurrent mosaic before blending, (b) Con-
current mosaic after blending.

squares (used for the results in this chapter). Of course, various further simplifications can be
made to the multiple regression, such as assuming lower order models, or reducing the degree of

the polynomial.

4.3 Results

In this section, we report the experimental performance of our object association approach qual-
itatively for data from airborne cameras and also in a more controlled setting. We also perform
simulations and report the quantitative performance of the algorithm. In each experiment, we
demonstrate that the approach is able to accurately associate moving objects across multiple mov-

ing cameras despite short durations of observations, nearly linear motion and noisy detections.
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The detection and trackingithin each sequence were done automatically for some sequences and
manually for others. For automatic detection and tracking, we used the COCOA sys$.[
It is recommended that the subsequent results be viewed in color. Additional results and videos

associated with these results have been included in the supplementary folder.

4.3.1 Data Generation

In order to run simulations, a generator was designed to randomly synthesize data for quantita-
tive experimentation. The camera parameters included the number of cameras and the number of
frames of observation, and the object parameters included the number of objects and the mean
and variance of the object motidgp, 0,). For each object an initial positioX' (0) andY (0), was
determined by sampling from a uniform distribution over a spatial support region, assuming the
world planell was the plan&Z = 0. To closely imitate the smooth motion of real world objects,

The object motiorip, A¢) was sampled from the Normal distributiafg p, o) and (0, o), and

initial & was a (single) sample from a uniform distribution over the intejval, 7]. Thus,

X(t)=X(t—1)+ pcos(d + A0), (4.23)

Y(t) = Y(t— 1)+ psin(6 + AB). (4.24)

For each camera, a reference to frame homogr&plvgs randomly generated, by sampling from

a uniform distribution over the support of the camera extrinsic and intrinsic parameters, and the
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imaged trajectories of each object in each camera are generated as,

X(t)=P[X(t) Y(t) 1]" 4+, (4.25)

wheree is the zero-mean measurement noise, that is specified by a noise variance pasameter
The ratiop/o. is referred to as the motion-to-noise ratio, measuring the expected strength of noise.

Randomly generated trajectories of five objects observed by 5 cameras are shown idFigure

4.3.2 Simulations

We conducted simulations on thousands of problem instances, to test the approach. In order to
analyze the accuracy of the estimated inter-camera homography as the ratio of mean motion to
noise variance we recorded the mean squared error of difference between the maximum likelihood
estimate of the homography and the true homography over 100 runs. At each run a new set of
trajectories and homographies were generated. As expected, the estimation error decreased as the
number of frames increase and the objects began to show more non-collinear motion, shown in
Figure4.8 We then analyzed the quality of the estimate of the canonical tracks with respect to
the ground truth, by computing the average log-likelihood of the canonical frame given the ground

truth. Here too, the average of 100 runs were taken.

We then analyzed the association accuracy with respect to larger increase in noise as the number
of cameras and objects increased. In Figlu®a) reports the association accuracy 10 objects

viewed across 10 cameras as the number of frames increase. The motion-to-noise ratio was varied
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from infinity (divide-by-zero) td x 10~° while the number of frames were tested for 5, 50, 100 and

200 frames. Clearly, as the number of frames increased the accuracy increased too. A hundred runs
were executed (with randomly generated trajectories) per noise strength and the average accuracy
was reported. The accuracy is shown in Figdr&b) as it varies with respect to the number of
cameras/objects. As expected, as the number of cameras and objects decrease the accuracy of the
approach reduces too. The trajectory length was 60 frames (2 seconds at 30fps). Please note that

the motion-to-noise ratio in both experimentsic linearly increasing.

4.3.3 Experiments on Controlled Sequences

Two controlled experiments were carried out, where remote controlled cars were observed by
moving camcorders (Sony DCR-TRV 740). In the first experiment, two cameras were used, along
with two remote controlled cars. The cars were operated on a tiled (planar) floor with the two
moving cameras viewing their motion from the height of about 12 feet. The mosaic is shown in
Figure4.10along with the trajectories of the car on the registered coordinate frame of Sequence 1.

The variation of the first two hypotheses with respect to time is shown in FiguBa).

The second controlled experiment was carried out to test the performance of the system for
more than two cameras. Three moving cameras at various zooms observed a scene with two
remote controlled cars. Figu#ll (c) shows the final, correct assignment of correspondence

established by our approach. Figutdll (d) shows the associated directed graph. The inter-
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sequence homographies were estimated and all three mosaics were registered together to create
the concurrent mosaic, as shown in Figdré1 (a). Figure4.11 (b) shows the tracks of both
objects, overlaid after blending each mosaic. Figud shows the correspondence of the three

sequence trajectories.

4.3.4 Experiments on UAV Sequences

In these experiments, two unmanned aerial vehicles (UAVS) mounted with cameras viewed real
scenes with moving cars, typically with a smaller duration of overlap than the controlled sequence.
Two sequences were recorded with three objects in the scene. Since the motion of aerial vehicles is
far less controlled than that of controlled sequences, the duration of time in which a certain object
is seen in both cameras is smaller. We show that despite the challenge of smaller overlap, object

can be successfully tracked across the moving cameras.

In first experiment, a small number of frames were used, observing the motion of three moving
cars. All three objects were simultaneously visible in the field of view for the entire duration of
observation. The individual tracks of each sequence, on a single registered coordinate are shown
in Figure4.14(a) and (b). The result of correspondence is shown in Figuré(c). The correct
correspondence, (Hypothesis: 1 2 3), is clearly higher as the process reaches an equilibrium. Using

this correspondence, the concurrent mosaic of the scene was generated, shown ih.&igure
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In the second experiment, a longer sequence was used. This time, object exited and entered
the field of view, and all three objects were only briefly visible together in the field of view. The
individual tracks of each sequence, on a single registered coordinate are shown irEIGeg
and (b). The result of correspondence is shown in Figuté(c). The variation of the ‘goodness’
of each hypothesis is shown in Figutel3b). The correct correspondence, (Hypothesis: 1 2 3),
is clearly higher as the process reach an equilibrium. Using this correspondence, the concurrent

mosaic of the scene was generated, shown in Figur&c).

The final experiment involved association across IR and EO cameras. Since only motion in-
formation is used in discerning association, the modality of the cameras do not affect the viability
of the algorithm. In the first set, six objects were recorded by one EO and one IR camera. Al-
though the relative positions of the cameras were fixed in this sequence, no additional constraints
were used during experimentation. The vehicles in the field of view moved in a line, and one after
another performed a u-turn and the durations of observation of each object varied in both cameras.
Since only motion information is used, the different modalities did not pose a problem to this al-
gorithm. Figure4.15shows all six trajectories color coded in their correspondence. Despite the
fact that the sixth trajectory (color coded yellow in Fig4rd5 was viewed only briefly in both
sequences and underwent mainly collinear motion in this duration, due to the matching correct
global correspondence was obtained. In the second set, two objects were observed by an EO and
IR camera as shown in Figudel7. Both objects were continuously viewed in the EO camera, but
one object repeatedly exited and re-entered the field of view of the IR camera. Using the trajectory

repairing algorithm the object was successfully re-associated.
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4.4 Discussion and Conclusion

Using multiple UAVs for aerial reconnaissance is an idea of wide applicability. While several al-
gorithms have been proposed for rearranging the positions of the UAVs based on some sensors like
GPS or INS for optimal coverage, object association across multiple UAVs presents an interesting
option once the ‘control loop’ is closed, namely that of rearranging multiple sensors using image
information and knowledge of object associations. Instead of a cost function of maximum cover-
age, or maximum overlap between UAVs, more intelligent cost functions based on object positions,
proximity or object importance can be autonomously used. In this chapter, a method to associate
objects across multiple airborne cameras was presented. We make two fundamental assumptions
about the data: (1) That the altitude of the aerial vehicle upon which the camera is mounted is
significantly high with respect to the ground, that a planar assumption is viable, and (2) that at
least one object is seen simultaneously between every pair of cameras for at least 5 frames (1/6th
of a second). Given these assumptions, and taking as input the time-stamped trajectories of objects
observed in each camera, we estimate the inter-camera transformations, the association of each
object across the views, and 'canonical’ trajectories, which are the best estimate (in a maximum
likelihood sense) of the original object trajectories up to a 2D projective transformation. To that
end, we describe an extension to the re-projection error for multiple views, providing a geomet-
rically and statistically sound means of evaluating the likelihood of a candidate correspondence
set. We formulate the problem of maximizing this joint likelihood function a@sdimensional

matching problem and use an approximation that maintains transitive closure. The estimated so-
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lution is verified using a strong global constraint for the complete set of correspondences across
all cameras. In addition, we show that all the available data can be conveniently viewed in a con-
current mosaic. We evaluated our approach with both simulated and real data. In the simulations
we tested the sensitivity of the approach to noise strength (in terms of the motion-to-noise ratio),
the number of cameras, the number of frames viewed, and the ‘collinearity’ of the trajectories. We
demonstrated qualitative results on several real sequences, including the standard VIVID data set
and the ARDA VACE data, for multiple cameras and between IR and EO video. There are several
future directions and applications that can be explored, such as resolving occlusions and re-entries,

relaxing the planar constraint and relaxing the constraint of spatiotemporal overlap.

77



Object 1

Object 2

Object 3

Object 5

— Object 1
Object 2
— Object 3
Object 4
— Object 5

-
J
f

/\

Camera 2

Camera 3

i
—
—
— >
— =~

(@)
==
(b)

Camera 4

SRVEVEE D

e

Camera 4

Camera 5

[ VAN

Camera 5

Figure 4.7:Data generation. The randomly generated data captures the smoothness of real trajectories.

There are 5 cameras observing 5 objects, for 100 frames. The mean of motion magnitadeset to 50,

the noise variancer. was 2. (a) 5 objects viewed in 5 cameras. Each row corresponds to the image of

the trajectory in that camera. (b) The image of all objects in each camera, with trajectories color-coded for

association.
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Figure 4.8: Accuracy of the Estimated Parameters. (a) The log-likelihood of the canonical tracks, as

the motion-to-noise ratio was increased, across 3 cameras observing 3 objects. (b) The error norm of the

estimated to the true homography. A hundred iterations were run for each noise level which are plotted

(dots) along with the median value (line).
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Figure 4.9: Association accuracy w.r.t number of cameras, number of objects, number of frames and
motion-to-noise ratio. Note: the horizontal axis is not progressing linearly. (a) For ten cameras with ten
objects the percentage of correct associations to the total number of associations. (b) As the number of
cameras and objects increase linearly, for a fixed 60 frames, the association accuracy decreases. The results

are the average of 100 runs.
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Figure 4.10: Controlled Experiment 1. Two remote controlled cars move around on a tiled floor. The
trajectory of the first car is shown by the red curve and the trajectory of the second car is shown by the blue
curve for the first camera in (a) and for the second camera in (b). Registered Tracks. The trajectories of
each object in Sequence 1 (red) and Sequence 2 (blue) are shown, along with the trajectory of Sequence 2
registered to Sequence 1 (dashed black) using the inter-camera homography for the first and second camera

in (c) and (d) respectively.

(@) (b) (©) (d)

Figure 4.11: Concurrent visualization of three sequences. (a) Concurrent mosaic before blending, (b)
Blended concurrent mosaic with the track overlayed. Matching in three sequences. (c) Matching of the

tripartite graph, (d) The corresponding directed graph.
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Figure 4.12: Correspondence across the 3 moving cameras. For each sequence, each pair of tracks is

plotted at a level. The point-wise correspondence is show by the dotted black line.
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Figure 4.13:Variation of some global correspondence hypotheses. (a) Variation for Controlled
Experiment 1. (b) Variation for UAV Experiment 2. Due to colinear motion of the object, ambi-

guity in correspondence exists initially which is quickly resolved as the object begin to show more

non-colinear behavior.
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Figure 4.14:0Object association across two real sequences. (a) The red points show tracks of three objects
detected and tracked in the first sequence (b) The blue points show the tracks of the same three objects
detected and tracked in the second sequence and (c) Correspondences between the points are shown in a

single plot by the yellow lines.
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Figure 4.15:First UAV Experiment - two cameras, six objects. (a) The EO video, (b) The IR video. Since

we are using only motion information, association can be performed across different modalities.

84



Mosaic - Sequence 1 Mosaic - Sequence 2 Concurrent Mosaic - Blended

(@) (b) (€)

Figure 4.16:Second UAV experiment - Short temporal overlap. Despite a very short duration of overlap,
correct correspondence was estimated. (a) Mosaic of Sequence 1 (b) Mosaic of Sequence 2 (c) Concurrent
visualization of two sequences. The two mosaics were blended using a quadratic color transfer function.

Information about the objects and their motion is compactly summarized in the concurrent mosaic.
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Figure 4.17 Repairing broken trajectories. (a) Due to rapid motion of the camera, the object corresponding
to the blue trajectory exited and re-entered the field of view of the IR camera several times. On the other
hand the same object in the EO camera remained continuously visible. The trajectories were successfully

re-associated. (b) The aligned mosaics.
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CHAPTER 5

OBJECT ASSOCIATION ACROSS MULTIPLE CAMERAS

In this chapter we present a unified framework for the association of multiple objects across multi-
ple cameras in planar scenes. This approach makes additional assumptions on the object kinematics
but is able to recover object associations, inter-camera transformations and canonical trajectories
across cameras irrespective of whether the cameras are stationary or moving, or whether the fields
of view are overlapping or not as long as the kinematic model is valid. The intuition used to
solve this problem is that association across cameras with spatiotemporally non-overlapping fields
of view can be achieved by explicitly modeling the motion of objects, thus providing constraints
for the estimation of inter-camera homographies, as shown in FigdreWe use polynomial
kinematic models for the motion of objects and under this model an Expectation Maximization

algorithm is formulated to estimate the inter-camera homographies and motion parameters.

There are two principal applications where the algorithms in this chapter can be used. First,
where multiple aerial cameras at high altitudes, observing objects such as vehicles or people move
along the ground, and the problem is to recover the association of the objects across cameras and

estimate the inter-camera transformations. Second, for a single camera in this setting if, due to
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Figure 5.1:A unified framework for estimating inter-camera transformations. Overlapping and non-over-
lapping views are handled identically, since we look at global object motion models rather than pairwise

correspondences.

the motion of the camera, an object exits and then re-enters the field of view of one camera, the

problem of reassociation can also be solved in this context.

Most existing approaches to estimating inter-camera homographies from curves, such as con-
ics, perform the matching given the parameters of the curves. The general theory is covered in
[KSO4. A separate portion of literature cover the problem of fitting curves to points - a survey
for conics can be found irFF95. In this chapter, we fuse the two problems, of estimating curve
parameters and the homographies simultaneously. The benefit of this approach is two-fold. First, it
is difficult to characterize an error model for curve coefficients, since they are not usually directly
measurable. On the other hand, it is reasonable to assume an error model for point detection, and
then develop statistically meaningful estimation algorithms for estimating homographies between

views. Second, since only a portion of the curve is observed in each view, it is likely that the curve
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may be erroneously fit. This is due to the fact that samples from the curve are localized in small
intervals for each view (partial occlusion). By estimating curve parameters and homographies

simultaneously, recovery is possible from local (in each camera) over-fitting.

5.1 Data Model

The scene is modeled as a plane in 3-spBEeyith K objects moving at constant velocity. The

k-th object, O,, moves along a trajectory oH, represented by a time-ordered set of points,
xi(t) = (zk(t),y(t)) € R?, wherex,(t) andyy(t) evolve according to some spatial algebraic
curve such as a line, a quadratic or a cubic. The finite temporal support is denadiedtye scene

is observed byV perspective cameras, each observing some subset of the entire scene motion,
due to a spatially limited field of view and temporally limited window of observation (due to
camera motion). The imaged trajectory observed by:tiie camera foO, is x}(¢). As we did in

the last chapter, we assume that within each sequence frame-to-frame motion within camera has
been compensated ¢ (¢) is in a single reference coordinate. The measured image positions of
objects x} are described in terms of the canonical image positiwfiswith independent normally

distributed measurement noige= 0 and covariance matriR}, that is

Xy, (1) = x3 (1) + €, ~ N(0,R}). (5.1)

The abstraction of each object is as a point, such as the centroid. It should be noted, however, that since the
centroid is not preserved under general perspective transformations using the centroid will introduce bias.
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The imaged trajectory is relatedxq(¢) by a projective transformation denoted by an invertible
3 x 3 matrix, H* € PGL(3). The homogeneous representation of a paihtt) is X' (t) =

(Az2(t), Ay (t), ) € P2. Thus, we have,
X(t) = H' X, (t).

Finally, we introduce the association or correspondence variables {c; }}{, wherec; =
m that represents the hypothesis th}it is the image of0,,,, wherep(c) is the probability of
associatiore. Since the association of an imaged trajectory with different scene trajectories are

mutually exclusive and exhaustive,

> plgr=0=1 (5.2)

Atermp(cp = 0) may be included to model the probability of spurious trajectories but we do not

consider this in the remainder of this work (i.e. we asspifag¢ = 0) = 0).

5.1.1 Kinematic Polynomial Models

The positionx;(¢) of an ObjectD; is modeled as ad — ¢th order polynomial in time,

d
x;(t) =Y pit" (5.3)
=0
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wherep; are the coefficients of the polynomial. In matrix form,

1
(d) Pz0 Pz1 --- DPzd t
Xj = PJt =
py,O py,l s py,d
td

Selecting the appropriate order of polynomials is an important consideration. If the order is too
low, the polynomial may not correctly reflect the kinematics of the object. On the other hand, if
the order is too high, some of the estimated coefficients may not be statistically signitgd, |

This problem is even more important in the situation under study since oftentimes only a segment
of the polynomial is observed and over or under-fitting is likely. Thus, numerical considerations
while estimating the coefficients of the curve are of paramount important, especially during the
optimization routine. Readers are advised to refetHa(0] for information on numerical con-
ditioning during estimation. The monograph by Fitzgibbon and Fisdfile®y on conic fitting is

also informative.

5.1.1.1 Linear (Constant Velocity) Model

For first order polynomials, the number of parameters reducgstd + 9 x N. The number of
parameters that need to be estimated when a parametric quadratic curve is to be fit to the trajectories
isatmosH x K +9 x N, since there ar& curves which are described Byarameters each, with

N homographies, each with 9 unknowns. At least two points per object must be observed and four
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Figure 5.2:Space-time plots of different models. Synthetic (left) and real (right) trajectories following (a)

a Linear Model (b) a Quadratic Model and (c) a Cubic Model.
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lines must be observed between a pair of views. We can then use the parametric representation of

aline as,

x(t) = pit + po, (5.4)

wherepy = [p..0 pyo]’ andps = [p..1 p,1]* and therefore in this case

px,O px,l

DPyo Dy

5.1.1.2 Quadratic (Constant Acceleration) Model

The number of parameters that need to be estimated when a parametric quadratic curve is to be fit
to the trajectories is at moétx K + 9 x N, since there aré&” curves which are described By
parameters each, witN homographies, each with 9 unknowns. At least three points per object

must be observed. The parametrization for a quadratic curve is,
x(t) = pat® + pit + Po, (5.5)

In this case

px,O pa:,l px,Q
P = Dyo DPy1 Py2

1 1 1
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5.1.1.3 Cubic Model

The number of parameters that need to be estimated when a parametric cubic curve is to be fit
to the trajectories is at mostx K + 9 x N, since there aré&” curves which are described By
parameters each, withi homographies, each with 9 unknowns. At least four points per object must

be observed and just one curve must be observed between a pair of views. The parametrization for

a cubic curve is,
x(t) = pot® + pit® + pat + ps. (5.6)

In this case

px,O px,l px,2 pz,3

P: py,O py,l py,2 py73

1 1 1 1

5.1.2 Imaging and the Error Model

Since the scene is modeled as a plane, a poidilos related to its image in the-th camera by

H. Thus a measured poim‘; at timet under the modeP,,, is,

X! =HPit@ +¢ (5.7)
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or more explicitly,

- 1T . 1
A (1) B s hg | |
R 5 S A I Ae
Ay(t) | = R p@ g @) + . (5.8)
Y 4 5 6 ) . .
(4) (4) () : 0
@ 0 g | L0 Pul Py
A I O
L _ L _ td

5.1.3 Problem Statement

Given the trajectory measurements for each canferg ¥, find association€C of each object
across cameras and the Maximum Likelihood Estimat®ocf ({P;}x, {H,}"), where{P;}x

are the motion parameters of theobjects, and H, } y are the set of homographieskh For the

remainder of this chaptef} represent$P,, H").

5.2 Maximum Likelihood Estimation

We wish to find the Maximum Likelihood Estimate of the scene parame&rand recover the
correct associations of objects,from the observed trajectoriéé = {x7}¥. For each individual
observed trajector¥} we have,

)

Pl 0) = pE|0:) = [ plx (t)), (5.9)

t=0a(i,5)

95



whered, (i, j) andd, (i, j) are the start-time and end-time ©f respectively. Computingx}, (t)
requires description of the object kinematic model, which we described in SéctidnApplying
Bayes Theorem to Equatidnlland assuming conditional independence between trajectories we

then have,

N
p(X,ClO) = HHp on(e)) = [TT] wr(=1,) (5.10)

i=1 j=1 i=1 j=1

Thus, the complete data log-likelihopdX, C|@®) is,

=

z(%)
log p(X, C|®) = ZZlog |el (5.11)

=1 j=1
The problem, of course, is that we do not have measuremefiis ©herefore, the best we can do

is to find the Maximum Likelihood Estimate @ givenX, i.e.
O = arg mgxp()_ﬂ@). (5.12)

To evaluate the MLE we need to (i) describe how to evalpé®|®) and (ii) describe a maxi-
mization routine. By marginalizing out the association in Equali@p(x}'|®) can be expressed

as a mixture model,
Z p(X}|6L,). (5.13)

Then, the incomplete data log-likelihood from the data is given by,

N z(9) N z(3) K
_ . 1 L
log £(0]X) =log [[ [ [p(x}1©)) =D > log = > _ p(x}16},). (5.14)
i=1j i= m=1

2Evaluatlngp( “(t)|x (t)) requires a measurement error model to be defined, e.g. normally distributed in which
t

casep(x! ()\x())= ( LX), RY).
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This function is difficult to maximize since it involves the logarithm of a large summation. The
Expectation-Maximization Algorithm provides a means to maximi@2€|®), by iteratively max-

imizing a lower bound,

Of =arg max Q(0,07)) =arg m@E)lXZp(C|X, 07 )logp(X, C|O®), (5.15)
CecC

where®~ and®™ are the current and the new estimate®ofrespectively, and is the space of

configurations tha€ can assume. To evaluate this expression we have,

p(CIX,©7) HHP ¢|%;. ©7), (5.16)
=1 j=1
where
w - 1 (i | gi—
flei ey DX, ©7)p(c;) —p(x.\e,)
p(Cj|Xj7@ )I ! J,i o- 7 = 7 — (517)
r5107) T kp(=ile)

After manipulation (seeHil97]), we get an expression f@,

Z Z 1 .
Q(0,07) =) p(C|X, 0 )logp(X,C|O) = ZZZP ¢ =mlx;, 0,) log —=p(X[0;,)-
CecC m=1 i=1 j=1
(5.18)
In order to derive the update terms frandP, we need to make explicit the algebraic curve we

are using to model the object trajectory and the measurement noise model.

If noise is normally distributed,

dw(n,k)
Sn|on 1 —Laxr(t),xm,(t)
p(Xp|00) = —e 2 (3% (8) x5 () (5.19)
H o 7R
whered,(i,j) andd, (i, j) are the start-time and end-time 6 respectively. The probability

p(X|C, ©) can be evaluated as follows,

N z(n) du(nk)

L (6) X (1))
XC@ (& 5.20
c.o =TT T G ™" -

n=1 k=1 t=64(n,k)
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where
d(x(t), X0 () = (X (1) — X0 (8)) TR (KR (1) — X2 (1)),

andx.r(t) is the corresponding point that liexactlyon the curve described 1y, and is com-

puted using. It is transformed to the coordinate system of CameusingH,,. Explicitly,
2 (8) My (AT = B (1) g (8) 1] (5.21)
Taking the logarithm,

log p(X|C, ©) ZZ Z ——d Xen (t)) + constant. (5.22)

It is instructive to note that unlike the Maximum Likelihood term for independent point detec-
tions defined in terms of the reprojection error 8ty97, where the parameters of re-projection
error function include ‘error free’ data points, the curve model fit on the points allows the error
function to be written compactly in terms of the parameters of the curve and a scalar value denot-
ing the position along the curve (taken here to be the time infleXhis drastically reduces the

number of parameters that need to be estimated.

We need an analytical expression fog Kp( *16,,), which will then be maximized the so-

called ‘M-step’. We then need to evalua{tgl— . dhz , d‘jfz - %} for each of the cameras
(except the reference camera) and all the world objects, which is straightforward. The Jacobian
can then be created to guide nonlinear minimization algorithms (such as the Levenberg-Marquardt

algorithm).
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5.3 Initialization

Good initialization of® is an important requirement of the EM algorithm. There are several initial-
ization methods that can be used. Ideally, for the inter-frame homographies, telemetry information,
which is usually noisy, can be used for initialization. Alternatively, a rough correspondence can
be computed using appearance values and initial estimates of homographies and curve coefficients
can be estimated using robust methods. For the second application, i.e. reacquisition of objects
in single views, the initialization is simpler: estimate of the initial homography can be computed
using the frame-to-frame homography estimation, and the curve coefficients can be initialized by

estimating them w.r.t to the original trajectories (before exit).

5.4 Experimentation and Results

We performed quantitative analysis through simulations to test the behavior of the proposed ap-
proach to noise. In addition, we show qualitative results on a number of real sequences, recovering
the true underlying scene geometry and object kinematics. For the real sequences the video was
collected by cameras mounted on aerial vehicles. Frame to frame registration was performed using
robust direct registration methods. Object detection and tracking were performed partially using

the COCOA system and partly through manual tracking.
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Figure 5.3:Randomly generated imaged trajectories. Seven object seen from three cameras. (a) Linear
Model (b) Quadratic Model (c) Cubic Model. The top row show the trajectories unlabeled, bottom row

shows them labeled.
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Figure 5.4:Simulations

5.4.1 Simulations

In this set of experiments we generated random trajectories fitting the prescribed model. The
variable scene descriptors included number of objects, number of cameras, number of frames (ob-
servations). For each camera there was a separate probability of observation of an object, and for

each object a duration of observation was randomly selected. In this way, spatio-temporal overlap
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was not guaranteed during data generation. A noise parameter was set for introducing errors into
the true parameter values (camera parameters and curve coefficients), which were then treated as
initial estimates. The homographies subtended by the camera parameters were calculated and used
to project each curve onto the image, depending on its probability of observation and its duration

of observation. Zero mean noise was then added to the projected points.

We tested the sensitivity of the algorithm with respect to corruption of the curve coefficients
by white noise and with respect to measurement error. For these experiments 5 object trajectories
were randomly generated according to linear, quadratic and cubic models, and two homographies
(two cameras) were generated. The probability of observation was set to 1 so that both cameras
were guaranteed to see both object (just not at the same time). Only 10 frames were observed,
and 10 iterations of the EM algorithm were run. Four measurement noise levels were tested: 1,
6, 11 and 21, against five coefficient noise levelg of 107°,1 x 10781 x 107%,1 x 10~* and
1 x 102 and each configuration was repeated 25 times (to generate meaningful statistics). We
performed this for both linear and quadratic curves. This experiment shows that quadratic curves
are less susceptible to noise, which follows intuition since more information on the underlying

homography is placed by a quadratic curve than a line.
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5.4.2 Real Sequences

In this set of experiments, we study the association of objects across multiple sequences in real
videos. We tested the proposed approach on three sequences. In the first sequence, several cars
were moving in succession along a road, shown in FiguseFrom the space-time plot it is clear

that one of the objects is moving quicker than the rest of the objects (indicated by the angle with
the horizontal plane). The linear (constant velocity) model was used for this experiment. Figure
5.6 shows the association probabilities arranged in an adjacency matrix between the model lines
and the observed trajectories. In just six iterations the correct associations are discerned, and as
shown in Figureb.7 the trajectories are correctly aligned. It should be noted that in this case the
lines were parallel they did not strictly constrain the homography. However, the correct association

was still found, and the homography estimate was also reasonable.

In the second experiment, both humans and vehicles were moving for short durations, with
the two views shown in Figurg.8. The initial misalignment is over 100 pixels but our approach
successfully recovers the correct alignment (shown in Figu@e Tables5.4.2and5.4.2show
the Adjacency matrix before and after the application of the approach respectively. The correct
associations have been made, despite the close parallelism and proximity of Objects 4 and 5 (see

legend in Figuré.9). A linear kinematic model was used in this experiment.

In the second experiment a quadratic kinematic model was used during experimentation in two
sequences. Figuie10shows the relative positions of the first set of sequences before (a) and after

(b) running the proposed approach. It can be observed that the initial misalignment was almost

102



Table 5.1:Initial association table for objects in the disconnected segment. The values represent the prob-

ability of thei-th object matching theg-th model.; = j are the ground truth associations.

Object 1 Object 2 Object 3 Object 4 Object 5
Model 1 | 0.99999312 | 0.00948986 0.50000 x 10~® | 0.99813573 0.99181073
Model 2 | 0.6870 x 107° | 0.99028289 0.615 x 10~° | 0.00024566 0.00008245
Model 3 0 0 0.97620477 0 0
Model 4 | 0.680 x 1079 | 0.00009831 0.01515987 | 0.00139656 0.00667508
Model 5 | 0.255 x 107'° | 0.00012892 0.00862918 | 0.00022202 0.00143172

Table 5.2:Final association table for objects in the disconnected segment. The values represent the prob-
ability of thei-th object matching thg-th model.7 = j are the ground truth associations. Despite correct

resolution of association, the ambiguity between Object 4 and Object 5 is due to their spatial proximity (see

Figure5.8).

Object 1 Object 2 Object 3 Object 4 Object 5
Model 1 | 0.99997424 | 0.1304 x 107° 0 0.00001085 | 0.7834 x 1076
Model 2 | 0.1445 x 1075 |  0.99999986 0 0.2 x 10713 0
Model 3 0 0 0.99999997 | 0.1158 x 1071% | 0.16064 x 107°
Model 4 | 0.00002465 | 0.1000 x 1073 | 0.1244 x 107® | 0.58989874 0.47724456
Model 5 | 0.9585 x 107° 0 0.2099 x 10~7 |  0.41009040 0.52275465

103




150

N
=3
S

y-coordinate
y-coordinate

N

a

=)
N
a
=}

w
S
S
W
=3
=}

w
@
o

w

@

=}

N
S
S

IN

o

=}

L L L L L L L L L L L L L L L
100 200 300 400 500 50 100 150 200 250 300 350 400 450 500
x—coordinate x-coordinate

(€) (d)

Figure 5.5:Experiment 1 - Reacquisition of objects. (a) Trajectories overlayed on the first segment mosaic,
(b) Trajectories overlayed on the second segment mosaic (c) Space time plot of trajectories show that object

2 is moving faster than the rest of the objects, (d) Space time plot of trajectories of segment 2.

400-500 pixels. It took 27 iterations of the algorithm to converge. For the second set of videos,
Figure5.11shows the objects (a) before and (b) after running the proposed algorithm. In this case
the initial estimate of the homography was good (within 50 pixels), but the initial estimate of the
curve parameters was poor. The final alignment of the sequences is shown in&iir&dhe

algorithm took only 6 iterations to converge. Finally, in Figbr&3we show association on video
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Figure 5.6:Adjacency matrix across EM lterations containing the probabilities of association. (a) Adja-
cency Matrix at the first iteration between Camera 1 and the model lines, (b) Adjacency Matrix at the after
convergence (6 iterations) (c) Adjacency Matrix at the first iteration between Camera 2 and the model lines,

(d) Adjacency Matrix at the after convergence (6 iterations).

taken from two overhead cameras looking at people walking. The color-code of each trajectory
shows the association across views recovered by the algorithm. Due to the large rotation present

between the views the algorithm took a large number of iterations were executed (39 iterations).
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Figure 5.7: Adjacency matrix across EM lIterations. (a) Adjacency Matrix at the first iteration between
Camera 1 and the model lines, (b) Adjacency Matrix at the after convergence (6 iterations) (c) Adjacency
Matrix at the first iteration between Camera 2 and the model lines, (d) Adjacency Matrix at the after conver-

gence (6 iterations).
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Figure 5.8:Experiment 1b. (a) Trajectories observed in Camera 1. (b) Trajectories observed in Camera 2

warped to coordinate system of Camera 1.
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Figure 5.9:0bject reacquisition. (a) Before running the proposed approach. The blue trajectories are the
trajectories observed in the first camera, and the red trajectories are the trajectories observed in the second
camera warped to the coordinate of the first camera. The initial misalignment can be observed to be over

300 pixels. (b) After running the proposed algorithm. The trajectories are now aligned.
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Figure 5.10:0Object Association across multiple non-overlapping cameras - Quadratic curve. (a) Initializa-

tion, (b) Converged Solution.
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Figure 5.11:0bject Association across multiple non-overlapping cameras - Quadratic curve. (a) Initializa-

tion, (b) Converged Solution.
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Figure 5.12:0bject Association across multiple non-overlapping cameras - Quadratic curve. (a) Initializa-

tion, (b) Converged Solution.
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Figure 5.13:0verhead view of people walking. (a) Shows the color-coded trajectories viewed from the

first camera, (b) shows the same trajectories from the second camera.
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CHAPTER 6

CONCLUSION

The main theme in this dissertation has been the recovery of a coherent reconstruction of the world
(homographies of cameras and canonical trajectories) given imaged data (imaged data at each
camera). To that end, we investigated better models for the scene, both for object detection in
single cameras and for association across multiple cameras. This theme has led us to pose models
that reflect the geometry of the scene and the imaging process, while capturing the uncertainty and

incompleteness of data at each camera.

6.1 Summary of Contributions

1. Object detection

(a) Representation of background as a single 5D distribution for object detection
(b) Proposal of temporal persistence as a criterion for detection.

(c) Formulation of object detection in a MAP-MRF framework - find minimum cut of a

capacitated graph to minimize the functional.
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2. Object Association across multiple spatiotemporally overlapping cameras.

(a) Definition of a joint re-projection error term for multiple cameras.
(b) Formulation to ensure that transitive closure is maintained between cameras.
(c) Algorithm to repair interrupted trajectories.

(d) Description of the concurrent mosaic for visualization of multiple aerial video streams.

3. Unified Framework for the association of objects across multiple cameras

(a) Description of novel scene model to explicitly include a polynomial kinematic model
for object motion.

(b) Definition of a likelihood functional for the scene model

(c) Use of the Expectation Maximization algorithm for parameter and association estima-

tion.

6.2 Future Directions

In this dissertation, in order to render the problem tractable we imposed several assumptions on the
scene. Investigating ideas towards relaxing these assumptions is fertile ground for future research.

We describe some open problems and discuss future directions,
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6.2.1 Global refinement of association and tracking

In this work, we assume tracking within each camera has been performed using any one of the
methods proposed in the vast literature on tracking. One interesting direction to take would be to
use the tracks as initializations to a final optimization where detections are simultaneously refined.
This falls neatly within the proposed approach, where each point can be taken to be the unique
observation in each trajectory, and finding the best associpgometection This would allow

occlusion resolution and the repairing of broken trajectories, as well as an opportunity to correct

inaccuracies in tracking.

6.2.2 Non-planar Scenes

The assumption of planarity is reasonable when the altitude of the sensor is much greater than

the change in depth in the scene. The aerial video data used in this dissertation are examples,
but in general, the question of object association across cameras in non-planar scenes is largely
unanswered, though some work has been reported $0%. In addition to looking at full 3D

scenes, intermediate relaxations such as the use of layers (multiple planes) to model the scene can

also be investigated.
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6.2.3 General Kinematic Models

While it is necessary to use a kinematic model to recover the inter-camera homographies across
non-overlapping cameras, the assumption of polynomial kinematics is reasonable over limited
areas of motion. Instead of using a single polynomial, a spline or piece-wise polynomial could
used to parameterize the trajectory. Another potentially interesting direction would be to learn the
dynamics of objects in a scene. There is good reason to believe that trajectories in a scene are
going to show a lot of redundancy, because of roads, pathways etc. A learning algorithm can be

used to fit likely polynomials or better to act as priors during polynomial coefficients estimation.

6.2.4 Spatiotemporal Alignment

In this work we assume that each sequence is time-stamped according to some global time coordi-

nate. An additional parameter over which to minimize could be a temporal displacements for each

camera, and further a scaling parameter could also be incorporated for varying frame-rates.

6.3 Discussion

As computers become faster, and the interface between cameras and computers improves, most

low level vision tasks have started to show significant maturity in terms of their 'readiness to be
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deployed’. However, since the data received by computer through cameras is always noisy and
often incomplete, there is an expected threshold of reconstructibility with a single sensor. The
larger objective of this line of work is to make cameras conscious of other sensors in a scene and to
accumulate evidence synergistically to perceive a reconstruction of the world. In this dissertation,
we have set foundations for such co-operative sensing through the use of principled scene and data

modeling.

Finally, automated surveillance cannot be discussed without some mention of the Orwellian
overtones of this sort of work. A straightforward argument for justification that is often made
is that it is not technology, ultimately, that is dangerous but how it is used. Unfortunately, the
precedence of misuse of technology makes it important for scientists and researchers to consider
fully the implications of their work. Despite this, it is my view that it is not the place of a scientist
to stop investigating or thinking about honestly interesting problems, no matter what the possible
application and implication. But, at the same time, each scientist is an informed individual with
a voice and sometimes, geography permitting, means to influence policy makers. It becomes the
responsibility of scientists and researchers to make their concerns known as members of society,

vociferously, if the situation demands it.

117



[AP96]

[AS06]

[Bes86]

[BG83]

[Big06]

[Bil97]

[BVZ01]

[CAKO2]

[CGO1]

[CLO3]

[CLFO1]

[CMO2]

LIST OF REFERENCES

A. Azarbayejani and A. Pentland. “Real-Time Self-Calibrating Stereo Person Tracking
Using 3D Shape Estimation from Blob Features.” Rroceedings on International
Conference on Pattern Recognitid996.

S. Ali and S. Shah. “COCOA: Tracking in Aerial Imagery.” 8PIE Airborne Intelli-
gence, Surveillance, Reconnaissance (ISR) Systems and Applicai66s

J. Besag. “On the Statistical Analysis of Dirty Pictures.” Journal of the Royal
Statistical Societyvolume 48 ofB, 1986.

G. Buchsbaum and A. Gottschalk. “Trichromacy, Opponent Colours Coding and Op-
timum Colour Information Transmission in the Retina.” Pnoceedings of the Royal
Society of Londonl983.

J. Bigun. “Vision with Direction.” InSpringer-Verlag2006.

J. Bilmes. “A Gentle Tutorial on the EM Algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models.” Tethnical Report,
University of Berkeleyl997.

Y. Boykov, O. Veksler, and R. Zabih. “Fast Approximate Energy Minimization via
Graph Cuts.” INEEE Transaction on Pattern Analysis and Machine Intellige2091.

R. Collins, O. Amidi, and T. Kanade. “An active camera system for acquiring multi-
view video.” InIEEE International Conference on Image Process@02.

T.-H. Chang and S. Gong. “Tracking Multiple People with a Multi-Camera System.”
In IEEE Workshop on Multi-Object Tracking001.

R. Collins and Y. Liu. “On-Line Selection of Discriminative Tracking Features.” In
IEEE International Conference on Computer Visi@003.

R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade. “Algorithms for Cooperative Mul-
tisensor Surveillance.” IRroceedings of the IEEER001.

D. Comaniciu and P. Meer. “Mean shift: A Robust Approach Toward Feature Space
Analysis.” INIEEE Transactions on Pattern Analysis and Machine Intellige2662.

118



[CPS05] O. Chum, T. Pajdla, and P. Sturm. “The Geometric Error for Homographies.” In
Computer Vision and Image Understandi2@05.

[CR96] Y.-C. Chang and J. Reid. “RGB Calibration for Color Image Analysis in Machine
Vision.” In IEEE Transactions on Image Processii§96.

[CRMOO0] D. Comaniciu, V. Ramesh, and P. Meer. “Real-time Tracking of Non-Rigid Objects
using Mean Shift.” INEEE Conference on Computer Vision and Pattern Recognition
2000.

[DEP95] T.J. Darrell, I.A. Essa, and A.P. Pentland. “Task-specific Gesture Analysis in Real-
Time using Interpolated Views.” IlEEE Trans. PAM] 1995.

[DTO1] S. Dockstader and A. Tekalp. “Multiple Camera Fusion for Multi-Object Tracking.” In
IEEE International Workshop on Multi-Object Trackir2001.

[Ed90] Y. Bar-Shalom (Editor). Multitarget-Multisensor Tracking: Advanced Applications
Artech House, 1990.

[EDDO3] A. Elgammal, R. Duraiswami, and L. Davis. “Probabilistic Tracking in Joint Feature-
Spatial Spaces.” IhEEE Conference on Computer Vision and Pattern Recognition
2003.

[EHDO02] A. Elgammal, D. Harwood, and L. Davis. “Background and Foreground Modeling
Using Non-parametric Kernel Density Estimation for Visual Surveillance.”Pto-
ceedings of the IEER002.

[FF62] L. Ford and D. Fulkerson. “Flows in Networks.” Princeton University Presd962.

[FF95]  A. Fitzgibbon and R. Fischer. “A Buyer’s Guide to Conic Fitting.” Bnitish Machine
Vision Conferencel995.

[FisO2] R. Fisher. “Self-Organization of Randomly Placed Sensors.Proceedings of the
European Conference on Computer Visigf02.

[FR97] N.Friedman and S. Russell. “Image Segmentation in Video Sequences: A Probabilistic
Approach.” InProceedings of the Thirteenth Conference on Uncertainity in Artificial
Intelligence 1997.

[Fuk90] K. Fukunaga. “Introduction to Statistical Pattern Recognition.” Akademic Press
1990.

[GG84] S.Geman and D. Geman. “Stochastic Relaxation, Gibbs Distributions and the Bayesian
Restoration of Images.” ItFEEE Transactions on Pattern Analysis and Machine Intel-
ligence 1984.

119



[GIT79]

[GNO2]

[GNO4]

[GPS89]

[Har02]

[HHDOO]

[HK73]

[HRO7]

[HWO5]

[HZ00]

[1BOS]

[IN79]

[Jon90]

[JRS03]

[JSS02]

M. Garey and D. JohnsonComputers and Intractibility: A Guide to Theory of NP-
Hardness Freeman, 1979.

M. Grossberg and S. Nayar. “What can be Known about the Radiometric Response
from Images?” IrProceedings of the European Conference on Computer Vi2@oe.

M. Grossberg and S. Nayar. “Modeling the Space of Camera Response Functions.” In
IEEE Transactions on Pattern Analysis and Machine Visg0H04.

D. Greig, B. Porteous, and A. Seheult. “Exact Maximum A Posteriori Estimation for
Binary Images.” IndJournal of the Royal Statistical Societyolume 51 ofB, 1989.

M. Harville. “A framework of high-level feedback to adaptive, per-pixel, mixture of
Gaussian background models.” Rroceedings of the European Conference on Com-
puter Vision 2002.

|. Haritaoglu, D. Harwood, and L. Davis. “W4: Real-time of people and their activi-
ties.” In IEEE Transactions on Pattern Analysis and Machine Intellige26€0.

J. Hopcroft and R. Karp. “An%5 Algorithm for Maximum Matching in Bi-Partite
Graph.” InSIAM Journal of Computingl973.

T. Huang and S. Russell. “Object Identification in a Bayesian ContexProceedings
of the International Joint Conferences on Atrtificial Intelligent897.

P. Hall and M. Wand. “On the Accuracy of Binned Kernel Estimators.Jéarnal of
Multivariate Analysis1995.

R.l. Hartley and A. ZissermanMultiple View Geometry in Computer VisiorCam-
bridge University Press, September 2000.

Michael Isard and Andrew Blake. “CONDENSATION — conditional density propaga-
tion for visual tracking.” Inint. J. Computer Visiojvolume 29, pp. 5-28, 1998.

R. Jain and H. Nagel. “On the analysis of accumulative difference pictures from im-
age sequences of real world scenes.”|lHEE Transactions on Pattern Analysis and
Machine Intelligencgl979.

M. Jones. “Variable Kernel Density Estimates.” Austrailian Journal of Statistigs
1990.

0. Javed, Z. Rasheed, K. Shafique, and M. Shah. “Tracking in Multiple Cameras with
Disjoint Views.” In IEEE International Conference on Computer Visi@o03.

0. Javed, K. Shafique, and M. Shah. “A Hierarchical Appraoch to Robust Background
Subtraction Using Color and Gradient Information.”IEEE Workshop on Motion and
Video Computing2002.

120



[JWO5]

[KBGOO]

[KHMOO]

[K196]

[KKK95]

[KS95]

[KS04]

[Kuh55]

[KWH94]

[KZ99]

[KZ04]

[Li95]

[LRS00]

R. Jain and K. Wakimoto. “Multiple Perspective Interactive Video."|lBEE Interna-
tional Conference on Multimedia Computing and Systeifi95.

K.-P. Karmann, A. Brandt, and R. Gerl. “Using adaptive tracking to classify and mon-
itor activities in a site.” InTime Varying Image Processing and Moving Object Recog-
nition. Elsevier Science Publishers, 1990.

J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer. “Multi-camera
Multi-person tracking for Easy Living.” INEEE Workshop on Visual Surveillance
2000.

S.B. Kang and K. lkeuchi. “Toward automatic robot instruction from perception —
Mapping human grasps to manipulator grasps."HEE Trans. on Robotics and Au-
tomation volume 12, Dec. 1996.

P. Kelly, A. Katkere, D. Kuramura, S. Moezzi, S. Chatterjee, and R. Jain. “An Ar-
chitecture for Multiple Perspective Interactive Video.” ACM Proceedings of the
Conference on Multimedjd 995.

S. Khan and M. Shah. “Consistent Labeling of Tracked Objects in Multiple Cameras
with Overlapping Fields of View.” IMPACM Proceedings of the Conference on Multi-
medig 1995.

J. Kaminski and A. Shashua. “Multiple View Geometry of General Algebraic Curves.”
In International Journal of Computer Visiop2004.

H. Kuhn. “The Hungarian Method for Solving the Assignment Problem.”Naval
Reserach Logistics Quarterl§955.

D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, and S. Russell. “To-
wards robust automatic traffic scene analysis in real-timelhternational Conference
of Pattern Recognitionl994.

V. Kettnaker and R. Zabih. “Bayesian Multi-Camera Surveillance IHRE Confer-
ence on Computer Vision and Pattern Recogniti#99.

V. Kolmogorov and R. Zabih. “What Energy Functions can be Minimized via Graph
Cuts?” InlEEE Transactions of Pattern Analysis and Machine Intellige26©4.

S. Li. “Markov Random Field Modeling in Computer Vision.” Bpringer-Verlag
1995.

L. Lee, R. Romano, and G. Stein. “Learning Patterns of Activity Using Real-Time
Tracking.” InIEEE Transactions on Pattern Analysis and Machine Intellige26€0.

121



[MDO3]

[MEBO4]

[MMPO3]

[MP97]

[MPO4]

[MUO2]

[NKI98]

[ORPOO]

[Pap94]
[Par62]

[PDBI0]

[PLS03]

[P0094]

A. Mittal and L. Davis. ‘M, Tracker: A Multi-View Approach to Segmenting and
Tracking People in a Cluttered Scene.” liternational Journal of Computer Vision
2003.

D. Makris, T. Ellis, and J. Black. “Bridging the Gaps between Cameras.lEEE
Conference on Computer Vision and Pattern Recogni2004.

A. Monnet, A. Mittal, N. Paragios, and V. Ramesh. “Background Modeling and Sub-
traction of Dynamic Scenes.” IiEEE Proceedings of the International Conference on
Computer Vision2003.

S. Mann and R. Picard. “Video Orbits of the Projective Group: A Simple Approach
to Featureless Estimation of Parameters.IHEE Transactions on Image Processing
1997.

A. Mittal and N. Paragios. “Motion-Based Background Subtraction using Adaptive
Kernel Density Estimation.” IHEEE Proceedings on Computer Vision and Pattern
Recognition2004.

T. Matsuyama and N. Ukita. “Real-Time Multitarget Tracking by a Cooperative Dis-
tributed Vision System.” IflProceedings of the IEEE2002.

A. Nakazawa, H. Kato, and S. Inokuchi. “Human Tracking Using Distributed Vision
Systems.” InProceedings of the International Conference on Pattern Recoghnition
1998.

N. Oliver, B. Rosario, and A. Pentland. “A Bayesian Computer Vision System for
Modeling Human Interactions.” IhEEE Transactions on Pattern Analysis and Ma-
chine Intelligence2000.

C. PapadimitriouComputational Complexity1994.

E. Parzen. “On Estimation of a Probability Density and Mode.’Almals of Mathe-
matical Statistics1962.

K. Pattiapati, S. Deb, and Y. Bar-Shalom. “Passive Multisensor Data Association using
a New Relaxation Algorithm. In: Y. Bar-Shalom (Ed.), Multisensor-multitarget Track-
ing: Advanced Applications.” Artech House, 1990.

R. Pless, J. Larson, S. Siebers, and B. Westover. “Evaluation of Local models of Dy-
namic Backgrounds.” IlEEE Proceedings on Computer Vision and Pattern Recogni-
tion, 2003.

A. Poore. “Multidimensional assignment fomulation of daa association problem aris-
ing from multitarget and multisensor tracking.” Computational Optimization and Ap-
plications, 1994.

122



[QA99]

[RCBO6]

[RCCO8]

[RCHO3]

[RDDO4]

[RKJOO]

[RKKO2]

[Ros56]

[Sai02]

[SGOO]

[Sit64]

Q.Cai and J.K. Aggarwal. “Tracking Human Motion in Structured Environments using
a Distributed Camera System.” IBEEE Transactions on Pattern Analysis and Machine
Intelligence 1999.

R. Rajan, J. Clement, and U. Bhalla. “Rats smell in stereoS3dience2006.

D. Ruderman, T. Cronin, and C.-C. Chiao. “Statistics of Cone Responses to Natural
Images: Implications for Visual Coding.” Wournal of the Optical Society of America
A, 1998.

Y. Ren, C-S. Chua, and Y-K. Ho. “Motion Detection with Nonstationary Background.”
In Machine Vision and ApplicatiorSpringer-Verlag, 2003.

A. Rahimi, B. Dunagan, and T. Darrell. “Simultaneous Calibration and Tracking with
a Network of Non-Overlapping Sensors.” IBEE Conference on Computer Vision and
Pattern Recognition2004.

J. Rittscher, J. Kato, S. Joga, and A Blake. “A Probabilistic Background Model for
Tracking.” InProceedings of the European Conference on Computer Vi@e0.

G. Rees, G. Kreiman, and C. Koch. “Neural correlates of consciousness in humans.”
In Nature Reviews, Neuroscien@902.

M. Rosenblatt. “Remarks on some nonparametric estimates of a density functions.” In
Annals of Mathematical Statistic$956.

S. Sain. “Multivariate Locally Adaptive Density Estimates.” @omputational Statis-
tics and Data Analysi2002.

C. Stauffer and W. Grimson. “Learning Patterns of Activity using Real-time Tracking.”
In IEEE Transactions on Pattern Analysis and Machine Intellige26€0.

R. Sitler. “An Optimal Data Association Problem in Surveillance Theory.”IHRE
Transactions on Military Electroni¢c4964.

[SKS03a] Y. Sheikh, S. Khan, and M. Shalreature-based Georegistration of Aerial Images

2003.

[SKSO03b] Y. Sheikh, S. Khan, M. Shah, and R. Cannataeodetic Alignment of Aerial Video

[SMK94]

Frame KLUWER Academic Publisher, 2003.

K. Sato, T. Maeda, H. Kato, and S. Inokuchi. “CAD-Based Object Tracking With
Distributed Monocular Camera For Security Monitoring.” Pmoceedings of IEEE
Workshop on CAD-Based Visioh994.

123



[SRPOO]

[SS04]

[SS05]

[Stu97]

[TKB99]

[Tur93]

[VAF92]

[WAD97]

[Whios]
[WJ95]

[WMO6]

[YS05]

[ZS03]

B. Stenger, V. Ramesh, N. Paragios, F Coetzee, and J. Buhmann. “Topology Free
Hidden Markov Models: Application to Background Modeling.” Pnoceedings of the
European Conference on Computer Visiaf00.

K. Shafigue and M. Shah. “A Estimation of the Radiometric Response Functions of
a Color Camera from Differently llluminated Images.” IBEE International Confer-
ence on Image Processing004.

K. Shafigue and M. Shah. *“A Noniterative Greedy Algorithm for Multiframe Point
Correspondence.” IEEEE Transactions on Pattern Analysis and Machine Intelligence
2005.

P. Sturm. “Vision 3D non calil@e - contributions la reconstruction projective etude
des mouvements critiques pour I'auto-calibrage.PhD Thesis1997.

K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. “Wallflower: Principles and Prac-
tice of Background Maintenance.” IlEEE Proceedings of the International Confer-
ence on Computer Visiod999.

B. Turlach. “Bandwidth Selection in Kernel Density Estimation: A Review.Inistitut
fur Statistik undOkonometrie, Humboldt-Univerait zu Berlin 1993.

D. Van Essen, C. Anderson, and D. Felleman. “Information processing in the primate
visual system: an intergrated systems perspectiveScience1992.

C. Wren, A. Azarbayejani, T. Darrel, and A. Pentland. “Pfinder: Real time Tracking of
the Human Body.” INEEE Transactions on Pattern Analysis and Machine Intelligence
1997.

K. Whitlock. “The mind’s eye.” InPerspectives, Ohio Universjt§998.

M. Wand and M. Jones. “Kernel Smoothing.” Monographs on Statistics and Applied
Probability. Chapman & Hill, 1995.

T. Wada and T. Matsuyama. “Appearance Sphere: Background Model for pan-tilt-
zoom camera.”Proceedings of the International Conference on Pattern Recognition
1996.

A.Yilmaz and M. Shah. “Recognizing Human Actions in Videos Acquired by Uncal-
ibrated Moving Cameras.” IRroceedings of the IEEE International Conference on
Computer Vision2005.

J. Zhong and S. Sclaroff. “Segmenting Foreground Objects from a Dynamic Textured
Background via a Robust Kalman Filter.” IEEE Proceedings of the International
Conference on Computer Visia2003.

124



	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION AND NOTATION
	1.1 Problem Stratification
	1.2 The Approach
	1.3 Overview of the Thesis

	CHAPTER 2 LITERATURE REVIEW
	2.1 Multiple Stationary Cameras with Overlapping Fields of View
	2.2 Multiple Stationary Cameras with Non-Overlapping Fields of View
	2.3 Multiple Pan-Tilt-Zoom Cameras
	2.4 Object Detection
	2.5 Formulation

	CHAPTER 3 OBJECT DETECTION
	3.1 Joint Domain-Range Background Model
	3.1.1 Bandwidth Estimation

	3.2 Modeling the Foreground
	3.3 Spatial Context: Estimation using a MAP-MRF Framework
	3.4 Results and Discussion
	3.4.1 Qualitative Analysis
	3.4.2 Quantitative Analysis

	3.5 Conclusion

	CHAPTER 4 OBJECT ASSOCIATION ACROSS MULTIPLE OVERLAPPING CAMERAS
	4.1 Estimating Inter-Camera Relationships
	4.1.1 Evaluating an Association Hypothesis
	4.1.2 Maximum Likelihood Assignment of Global Correspondence
	4.1.3 Repairing Trajectories

	4.2 Concurrent Mosaic
	4.3 Results
	4.3.1 Data Generation
	4.3.2 Simulations
	4.3.3 Experiments on Controlled Sequences
	4.3.4 Experiments on UAV Sequences

	4.4 Discussion and Conclusion

	CHAPTER 5 OBJECT ASSOCIATION ACROSS MULTIPLE CAMERAS
	5.1 Data Model
	5.1.1 Kinematic Polynomial Models
	5.1.2 Imaging and the Error Model
	5.1.3 Problem Statement

	5.2 Maximum Likelihood Estimation
	5.3 Initialization
	5.4 Experimentation and Results
	5.4.1 Simulations
	5.4.2 Real Sequences


	CHAPTER 6 CONCLUSION
	6.1 Summary of Contributions
	6.2 Future Directions
	6.2.1 Global refinement of association and tracking
	6.2.2 Non-planar Scenes
	6.2.3 General Kinematic Models
	6.2.4 Spatiotemporal Alignment

	6.3 Discussion

	LIST OF REFERENCES

