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Abstract

In this fast paced digital age, a vast amount of videos are produced every day, such as

movies, TV programs, personal home videos, surveillance video, etc. This places a high

demand for effective video data analysis and management techniques. In this dissertation,

we have developed new techniques for segmentation, linking and understanding of video

scenes. Firstly, we have developed a video scene segmentation framework that segments the

video content into story units. Then, a linking method is designed to find the semantic

correlation between video scenes/stories. Finally, to better understand the video content,

we have developed a spatiotemporal attention detection model for videos.

Our general framework for temporal scene segmentation, which is applicable to several

video domains, is formulated in a statistical fashion and uses the Markov chain Monte Carlo

(MCMC) technique to determine the boundaries between video scenes. In this approach, a

set of arbitrary scene boundaries are initialized at random locations and are further automat-

ically updated using two types of updates: diffusion and jumps. The posterior probability of

the target distribution of the number of scenes and their corresponding boundary locations

are computed based on the model priors and the data likelihood. Model parameter updates

are controlled by the MCMC hypothesis ratio test, and samples are collected to generate

the final scene boundaries. The major contribution of the proposed framework is two-fold:
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(1) it is able to find weak boundaries as well as strong boundaries, i.e., it does not rely on

the fixed threshold; (2) it can be applied to different video domains. We have tested the

proposed method on two video domains: home videos and feature films. On both of these

domains we have obtained very accurate results, achieving on the average of 86% precision

and 92% recall for home video segmentation, and 83% precision and 83% recall for feature

films.

The video scene segmentation process divides videos into meaningful units. These seg-

ments (or stories) can be further organized into clusters based on their content similarities.

In the second part of this dissertation, we have developed a novel concept tracking method,

which links news stories that focus on the same topic across multiple sources. The semantic

linkage between the news stories is reflected in the combination of both their visual content

and speech content. Visually, each news story is represented by a set of key frames, which

may or may not contain human faces. The facial key frames are linked based on the analysis

of the extended facial regions, and the non-facial key frames are correlated using the global

matching. The textual similarity of the stories is expressed in terms of the normalized textual

similarity between the keywords in the speech content of the stories. The developed frame-

work has also been applied to the task of story ranking, which computes the interestingness

of the stories. The proposed semantic linking framework and the story ranking method have

both been tested on a set of 60 hours of open-benchmark video data (CNN and ABC news)

from the TRECVID 2003 evaluation forum organized by NIST. Above 90% system precision

has been achieved for the story linking task. The combination of both visual and speech
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cues has boosted the un-normalized recall by 15%. We have developed PEGASUS, a content

based video retrieval system with fast speech and visual feature indexing and search. The

system is available on the web: http://pegasus.cs.ucf.edu:8080/index.jsp.

Given a video sequence, one important task is to understand what is present or what is

happening in its content. To achieve this goal, target objects or activities need to be detected,

localized and recognized in either the spatial and/or temporal domain. In the last portion

of this dissertation, we present a visual attention detection method, which automatically

generates the spatiotemporal saliency maps of input video sequences. The saliency map is

later used in the detections of interesting objects and activities in videos by significantly nar-

rowing the search range. Our spatiotemporal visual attention model generates the saliency

maps based on both the spatial and temporal signals in the video sequences. In the temporal

attention model, motion contrast is computed based on the planar motions (homography)

between images, which are estimated by applying RANSAC on point correspondences in the

scene. To compensate for the non-uniformity of the spatial distribution of interest-points,

spanning areas of motion segments are incorporated in the motion contrast computation.

In the spatial attention model, we have developed a fast method for computing pixel-level

saliency maps using color histograms of images. Finally, a dynamic fusion technique is ap-

plied to combine both the temporal and spatial saliency maps, where temporal attention

is dominant over the spatial model when large motion contrast exists, and vice versa. The

proposed spatiotemporal attention framework has been extensively applied on multiple video

sequences to highlight interesting objects and motions present in the sequences. We have
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achieved 82% user satisfactory rate on the point-level attention detection and over 92% user

satisfactory rate on the object-level attention detection.
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CHAPTER 1

INTRODUCTION

Due to the rapid development of video production technology and the decreasing cost of video

acquisition tools and storage, a vast amount of video data is generated around the world

everyday, including feature films, television programs, personal/home/family videos, surveil-

lance videos, game videos, etc. There necessitates techniques for automatically managing

this vast amount of information, such that users can structure them quickly, understand

their content and organize them in an efficient manner.

In this dissertation, we present three multimedia processing and content understanding

techniques. Firstly, we have developed a stochastic framework for temporal video scene

segmentation, which divides video sequences into semantic units. Then, we present a novel

semantic linking technique to correlate semantically similar video stories. Finally, we present

a spatiotemporal video attention method, which automatically generates spatiotemporal

saliency values for interesting objects or activities in video sequences.
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1.1 Motivations

Videos are often constructed in the hierarchical fashion: [Frame]→[Shot]→[Scene] →[Video].

The lowest level contains the individual frames. A series of continuous frames with consistent

background settings constitute a shot. The video shots are caused by different camera

operations, e.g., turning camera on/off, the switching between cameras, and other video

editing techniques. Consider the situation where a tourist is recording a video around a

monument. He would like to have different views of the monument. First, he takes one

sequence for the frontal view of the monument and shuts the camera off. Then he walks to

the other side of the monument and records another sequence of the side view. In this case,

the entire scene is composed of two shots, which are generated by the on/off operations of

a single camera. On the other hand, in movies or TV programs, shots are generated from

different cameras and are later appended one after another to constitute the story lines. A

scene or a story is a group of semantically related shots, which are a coherent subject or

theme. A scene sometimes can be composed of a single shot. For instance, in the example

described above, the tourist could have the camera on all the time and record the video

continuously. However, more often, scenes are composed of multiple shots, such as movies

or TV programs. At the highest level, the entire video is composed of multiple scenes, which

results in the complete storyline.

Scenes/stories are the meaningful units of the video. A single shot is insufficient to reveal

the story line of the video content. For instance, in feature films, how could one answer a
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query related to a suspense scene based only on the content of a single shot? These types

of scenes can only be identified with multiple shots showing the increasing tension in the

video. In other domains, more often the semantic concepts are difficult to determine by

using only a single shot, since they are introduced to viewers over time. Thus, a meaningful

result can only be achieved by exploiting the video scenes, which are the interconnections of

the shot contents. To achieve this, temporal video scene segmentation is needed. Temporal

scene segmentation is defined as a process of clustering video shots into temporal groups,

such that shots within each group are related to each other with respect to certain aspects.

This is an important and fundamental problem in video processing and understanding. This

process provides more meaningful and complete information for understanding the video

content compared to the shot-level analysis. Scene segmentation has many applications in

various domains. For example, in feature films, scene segmentation provides the chapters

that correspond to the different sub-themes of the movies. In television videos, segmentation

can be used to separate the commercials from the regular programs. In news broadcast

programs, segmentation can be used to identify different news stories. In home videos, scene

segmentation may help the consumers logically to organize the videos related to the different

events (e.g., birthdays, graduations, weddings, or vacations like city tours, sightseeing).

With the availability of video scenes/stories generated from the temporal scene segmen-

tation, as described above, one can better understand the semantic content of the video. To

archive the videos efficiently and retrieve them in future tasks, the inter-video relationship

must be discovered. The discovery of such a relationship is usually referred to as the index-
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ing process of the videos. To achieve this goal, the videos need to be linked based on their

semantic similarities. In this dissertation, we present a semantic linking method for the new

video domain. There are many news agencies nowadays that broadcast what is happening

around us and around the world. Their reporting is real-time and comprehensive, covering

politics, economics, health, sports, etc. Large-scale news networks provide more national and

global news, while local stations concentrate more on the regional issues. Due to the variety

of audiences, one may only be interested in a few areas or topics, e.g., sports or politics.

Thus, finding a particular story that fits to the user’s preference is important. Furthermore,

even though every news network in the industry claims that their reporting is objective,

the actual opinion presented or the attitude of the reporter may be biased and differs from

network to network due to the differences in their culture backgrounds. Therefore, watching

the same news from multiple sources provides the audience with a more comprehensive and

balanced view of a particular story. To accomplish this goal, the semantic linkage between

stories must be established. As suggested by the name, semantic linkage between two stories

represents their similarity in terms of their semantic contents. For example, two stories that

focus on the same news event have strong semantic linkage. On the other hand, stories that

have little overlap in their themes have weaker semantic linkage. Other motivations for the

semantic linking of stories include finding the most recent stories, tracking the development

of the same stories over time, and finding the most interesting stories on a particular date.

Taking a video segment, often we want to better understand what is happening in the

scene, such as who is doing what. In this situation, automatic detection of interesting ob-
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jects and activities is necessary. Let us consider how humans achieve this goal. Human

perception firstly picks the points or regions in an image that stimulate the vision nerves

the most before continuing to interpret the rest of the scene. Visual attention simulates the

human visual system to automatically produce a saliency map of the image. These attended

regions could correspond to either prominent objects in the image or interesting actions in

video sequences. Visual attention analysis simulates this human vision system behavior by

automatically producing saliency maps of the target image or video sequence. It has a wide

range of applications in tasks of image/video representation, object detection and classifica-

tion, activity analysis, small-display device control and robotics controls. Visual attention

deals with detecting the regions of interest (ROI) in images and interesting activities in video

sequences that are the most attractive to viewers. For example, in the task of object/activity

detection, visual attention detection significantly narrows the search range by giving a hier-

archical priority structure of the target image or sequence. Consider the following scenario,

a video sequence is captured by a camera that is looking at a classroom entrance. At the

time the class is dismissed, the majority of the students will be going out of the classroom.

In this situation, if two people are trying to walk back into the room, their actions would

be considered “irregular” compared to the rest of the students. Attention analysis is able

to quickly highlight the abnormal regions and perform further activity analysis on these

regions.
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1.2 Proposed Work

We have developed several techniques to solve the problems described in the previous section.

First, we present a general framework for the temporal video segmentation by using the

Markov chain Monte Carlo (MCMC) technique. We have developed an iterative method to

evaluate the segmentation parameters, including the number of scene segments and their

corresponding locations. These two parameters are estimated in a statistical fashion using

the MCMC technique, which has been used in several applications in the fields of image

processing, video content analysis and computer vision in the past few years. Geman et

al. [28] were the first to apply the MCMC technique in image analysis using the Gibbs

sampler. The MCMC technique involving the jump and diffusion method was introduced

by Grenander et al. [30], and Green [29] further proposed the reversible jumps. It has been

applied in sampling and learning by Zhu et al. [125]. For 1D signal segmentation problems,

Phillips et al. has discussed the change-point problem in [82]. Dellaert et al. [19] proposed an

EM-based technique for solving the structure-from-motion (SFM) problem without known

correspondences. The MCMC algorithm [36] with symmetric transition probabilities was

used to generate samples of the assignment vectors for the feature points in each frame.

Senegas [88] proposed a method for solving the disparity problem in stereo vision. The

MCMC sampling process was applied to estimate the posterior distribution of the disparity.

Tu et al. [98] and Han et al. [33] have applied the data-driven Markov chain Monte Carlo

(DDMCMC) technique to optical and range image segmentations.
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Our developed Markov chain contains three types of updates: shifting of boundaries,

merging of two adjacent scenes and the splitting of one scene into two scenes. Due to these

updates, the solution can jump between different parameters spaces, i.e., the parameter

vector dimension can change, as well as diffuse inside the same space, i.e., the elements

in the parameter vector are changed without changing the vector dimension. We assume

that each shot in the video has a likelihood of being declared as the scene boundary. Shots

with higher likelihoods coincide more with the true boundaries. Initially, two segments are

assumed, and they are separated by a randomly selected shot. Then, in each iteration of the

updates in the MCMC process, several shots are declared as the scene boundaries. Their

likelihoods are accumulated, while the likelihoods of other shots are kept the same. Several

Markov chains are executed independently to avoid the possible mis-detections caused by a

single chain, and the samples from all the chains are collected for the computation of the

shot likelihoods. Finally, the shots with the highest likelihoods in their neighborhoods are

declared as the scene boundary locations. One advantage of using the sampling technique

is that both the weak and strong boundaries can be detected without defining any specific

threshold. We have tested the presented framework on two video domains, home videos and

feature films, and we have obtained very accurate and competitive results.

Once the videos are segmented into scenes or stories that possess meaningful seman-

tic content, these logical units can be further linked by their similarities in the context of

semantics. We present a framework for the semantic linking of news stories. Unlike the

conventional video content linking methods, which are based only on the video shots, the
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developed framework links the news video across different sources at the story level. An-

other advantage is that the developed method uses more semantic features compared to

other methods, such as face-related features and textual information. The semantic linkage

between the news stories is computed based on their visual and textual similarities. The

visual similarity is carried on both of the story key frames, which may or may not contain

human faces. To overcome the limitations of the conventional face correlation approach, we

analyze the information from the person’s body that appears in the video. The detected

face region is extended to cover the upper body of the person, and the facial similarity is

computed based on the resulting “body” patches. For non-facial key frames, point corre-

spondences between matching images are used to estimate homography, whose goodness is

considered as the non-facial visual similarity between key frames. The textual similarity is

computed using the automatic speech recognition (ASR) output of the video sequences. The

normalized textual similarity is defined for comparison of speech information from different

new stories. The proposed method is tested on a large open benchmark dataset. Further-

more, the output of the story linking method is applied in a news ranking task. The matched

stories are modelled in a bipartite graph. The graph is segmented into sub-graphs using the

connected-components algorithm, and story ranking is performed by analyzing the corre-

sponding component’s size. The proposed semantic linking framework and the story ranking

method have both been tested on a set of 60 hours of open-benchmark video data from the

TRECVID 2003 evaluation forum, and very satisfactory results have been obtained.
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In the last portion of this dissertation, we propose a bottom-up approach for modelling

the spatiotemporal attention in video sequences. The proposed technique is able to de-

tect the attended regions as well as attended activities in video sequences. Unlike previous

methods, most of which are based on the dense optical flow fields, our proposed temporal

attention model utilizes the interest point correspondences and the geometric transforma-

tions between images. In our model, feature points are firstly detected in consecutive video

images, and correspondences are established between the interest-points using the Scale In-

variant Feature Transformation (SIFT [59]). RANSAC algorithm is then applied on the

point correspondences to find the moving planes in the sequence by estimating their ho-

mographies and corresponding inliers. Projection errors of the interest points based on the

estimated homographies are incorporated in the motion contrast computation. In the spa-

tial attention model, we have constructed a hierarchical saliency representation. A linear

time algorithm is developed to compute pixel-level saliency maps. In this algorithm, color

statistics of the images are used to reveal the color contrast information in the scene. Given

the pixel-level saliency map, attended points are detected by finding the pixels with the local

maxima saliency values. The region-level attention is constructed based upon the attended

points. Given an attended point, a unit region is created with its center to be the point.

This region is then iteratively expanded by computing the expansion potentials on the sides

of the region. Rectangular attended regions are finally achieved. The temporal and spa-

tial attention models are combined in a dynamic fashion. Higher weights are assigned to

the temporal model if large motion contrast is present in the sequence. Otherwise, higher
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weights are assigned to the spatial model if less motion exists. To demonstrate the effec-

tiveness of the proposed spatiotemporal attention framework, we have extensively applied it

to many video sequences, which contain both sequences with moving objects and sequences

with uniform global motions. Very satisfactory results have been obtained and presented in

this dissertation.

1.3 Dissertation Overview

The structure of this dissertation is as follows: First, we summarize previous works on the

target topics in Chapter 2. The stochastic scene/story segmentation method is presented

in Chapter 3. Then, the method for the story semantic linking is presented in Chapter 4.

Finally, we present the spatiotemporal video attention detection in Chapter 5.
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CHAPTER 2

RELATED WORK

In this chapter, we review the current approaches and solutions in the fields of the three

proposed problems: temporal video scene segmentation, video semantic linking and spa-

tiotemporal video attention detection.

2.1 Temporal Video Segmentation

Several temporal segmentation methods have been developed for different types of videos.

Hanjalic et al. [35] proposed a method for detecting boundaries of logical story units in

movies. In their work, inter-shot similarity is computed based on block matching of the key

frames. Similar shots are linked, and the segmentation process is performed by connecting the

overlapping links. Rasheed et al. [84] proposed a two-pass algorithm for scene segmentation

in feature films and TV shows. In the first pass, potential scene boundaries of the video are

initially detected based on the color similarity constraint, Backward Shot Coherence (BSC).

Over-segmented scenes from the first pass are then merged in the second pass, based on the
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analysis of the motion content in the scenes. Sundaram et al. [92] used the audio-visual

features of the video in movie scene segmentation. First, two types of scenes, audio scenes

and video scenes, are detected separately. Then, the correspondences between these two

sets of scenes are determined using a time-constrained nearest-neighbor algorithm. Adams

et al. [1] proposed the “tempo” for the segmentation of the movies. The “tempo” of a

shot is a combination of the shot length and the motion content of shot. The dramatic story

sections or events in the movie are detected by finding the zero-crossings of the “tempo” plot.

Yeung et al. [101] proposed a graph-based representation of the video data by constructing

a Shot Connectivity Graph. The graph is split into several sub-portions using the complete-

link method of hierarchical clustering such that each sub-graph satisfies a color similarity

constraint. These methods are based on the “film grammar”, which is a set of production

rules of how the movies or TV shows should be composed. For instance, in action scenes,

the shots are generally short, and their motion content is high. On the other hand, the shots

are long and the visual appearance is smooth in drama scenes. However, these heuristics

are not applicable to the other types of videos. For instance, home videos are recorded in

a completely “free” style. Shooters are not trained with recording techniques, and often no

obvious format or pattern exists in the video. Furthermore, since the rules in the production

of films and TV shows are different, the methods for these two domains of videos cannot be

used interchangeably.

There is a particular interest in the story segmentation of the news broadcast videos.

Hoashi et al. [38] has proposed an SVM-based news segmentation method. The segmen-
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tation process involves the detection of the general story boundaries, in addition to the

special type of stories, e.g., finance report and sports news. Finally, anchor shots are further

analyzed based on audio silence. Hsu et al. [39] proposed a statistical approach based on

discriminative models. The authors have developed BoostME, which uses the Maximum En-

tropy classifiers and the associated confidence scores in each boosting iteration. Chaisorn et

al. [11] used Hidden Markov Models (HMM) to find the story boundaries. The video shots

are first classified into different categories. The HMM contains four states and is trained on

three features: type of the shot, whether the location changes (true or false) and whether

the speaker changes (true or fase). These methods were developed based on the unique

characteristics of news video. The video shots are commonly classified into news program

related categories, e.g., anchor person, weather, commercials and lead-in/out shots. These

categories are not available in other domains of videos, such as home videos or feature films.

Furthermore, the news segmentation methods usually involve the special treatment on the

anchor person shots, which exist only in news videos.

2.2 Semantic Linking of Videos

Semantic video linking is related to the problem of video matching, which is a long studied

problem. Hampapur and Bolle [32] proposed a video copy detection method by exploiting

multiple video features. These features are image-based and computed from video key-

frames. Hoad and Zobel [37] have proposed a fast video matching technique using the
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signature alignment. The videos are represented by a sequence of number, each of which

is computed based on the individual frames. Video matching is achieved by comparing

the representation sequences. Authors in [2] and [124] have proposed similar approaches

based on the string matching techniques, where small video elements (frames or shots)

are represented by numerical features, which are used in the distance/similarity measures.

Various frameworks have been proposed for shot-level video matching. Tavanapong and

Zhou [95] has proposed shot clustering method for the purpose of video scene segmentation.

The shot image is constructed from the corresponding key-frames. The links for grouping

the shots are established by comparing the sub-blocks in the shot images. Odobez et al. [73]

used the spectral technique to cluster the video shots. Multiple key-frames were employed for

representing a single shot. The color histograms were used for the visual similarity measure.

The correlation was further scaled by the temporal distance. Sivic et al. [91] extended their

object grouping framework for clustering the video shots in the movie. First, an object is

extracted by a series of actions, including feature extraction, feature tracking, homography

estimation and object grouping. The 3D structure of the object is computed and used for

searching the same object in other shots. Ngo et al. [70] has proposed a two-level hierarchical

clustering method for grouping the shots. Both color and motion information are used as

features. A color histogram in the YUV space is computed for each shot from its discrete

cosine (DC) images and used in the first level clustering. Temporal slice analysis is used

to compute the tensor histogram, which is a motion feature, for the second level clustering.

Cheng and Xu [16] proposed a structure called Shot Cluster Tree. First, the shots that are
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visually similar and are adjacent in time are grouped into shot groups. The shots groups are

later merged into shot clusters based on their content similarity. The color histogram of the

key-frame of each shot is used as the similarity feature.

Several video matching techniques have been designed for the story-based linking of news

videos. Ide et al. [41] proposed a database management system for TV news programs. The

news programs are first segmented into topics. The topics are further threaded into the

video database in a chronological order, based on the semantic linkage between each other.

Kender and Naphade [47] proposed a story tracking method utilizing the mid-frequency

high-level semantic features. The similarity between stories is defined in terms of the high-

level feature correlation, and normalized cut method is used to cluster the stories based on

their similarities. Zhang et al. [120] proposed a simpler version of the spectral clustering

technique. The stories from two sources are modelled as the vertices in a bipartite graph, and

the computation of the eigenvalues for the similarity matrix is dramatically reduced. The

clustering for the stories is based on the analysis of text information, e.g., term frequency

and inverse document frequency (TF-IDF), and the clustering of video shots is based on the

mid-level or high-level visual concepts.

2.3 Spatiotemporal Video Attention

Visual attention detection in still images has been long studied, while there is not much work

on the spatiotemporal attention analysis. Psychology studies suggest that human vision
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system perceives external features separately (Treisman and Gelade [97]) and is sensitive to

the difference between the target region and its neighborhood (Duncan and Humphreys [22]).

Following this suggestion, many works have focused on the detection of feature contrasts to

trigger human vision nerves. This is usually referred as the “stimuli-driven” mechanism.

Itti et al. [42] proposed one of the earliest works in visual attention detection by utilizing

the contrasts in color, intensity and orientation of images. Han et al. [34] formulated the

attended object detection using the Markov random field with the use of visual attention and

object growing. Ma and Zhang [62] incorporated a fuzzy growing technique in the saliency

model for detecting different levels of attention. Lu et al. [60] used the low-level features,

including color, texture and motion, as well as cognitive features, such as skin color and faces,

in their attention model. Different types of images have also been exploited. Ouerhani and

Hugli [75] has proposed an attention model for range images using the depth information.

Besides the heavy investigation using the stimuli-driven approach, some methods utilize

the prior knowledge on what the user is looking for. Milanese et al. [65] constructed the

saliency map based on both low-level feature maps and object detection outputs. Oliva et al.

[74] analyzed the global distributions of low-level features to detect the potential locations

of target objects. A few researchers have extended the spatial attention to video sequences

where motion plays an important role. Cheng et al. [15] has incorporated the motion

information in the attention model. The motion attention model analyzes the magnitudes of

image pixel motion in horizontal and vertical directions. Bioman and Irani [10] have proposed

a spatiotemporal irregularity detection in videos. In this work, instead of using read motion
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information, textures of 2D and 3D video patches are compared with the training database to

detect the abnormal actions present in the video. Meur et al. [64] proposed a spatiotemporal

model for visual attention detection. Affine parameters were analyzed to produce the motion

saliency map.

Visual attention modelling has been applied in many fields. Baccon et al. [8] has proposed

an attention detection technique to select spatially relevant visual information to control the

orientation of a mobile robot. Driscoll et al. [21] has built a pyramidal artificial neural

network to control the fixation point of a camera head by computing the 2D saliency map

of the environment. Chen et al. [13] has applied the visual attention detection technique in

devices with small displays. Interesting regions with high saliency values have higher priority

to be displayed comparing to the rest of the image. Attention models were used in image

compression tasks by Ouerhani et al. [76] and Stentiford [93], where regions with higher

attention values were compressed with higher reconstruction quality. Peters and Sullivan

[79] has applied visual attention in computer graphics to generate the gaze direction of

virtual humans.
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CHAPTER 3

TEMPORAL VIDEO SCENE SEGMENTATION

In this chapter, we present a general framework for the temporal video segmentation by using

the Markov chain Monte Carlo (MCMC) technique. Many of the previously developed meth-

ods are based on fixed global thresholds, which are not desirable in many cases. Moreover,

due to the fixed thresholds, these methods are likely to generate either over-segmentation

or under-segmentation. Further, these methods may use some special knowledge about a

particular domain, which may not be appropriate for other domains. For example, there is

no obvious video structure in home videos. Hence, it is not easy to generalize these methods

to other domains. In contrast, we do not use any fixed threshold or utilize any structure

information of the video. Instead, we have developed an iterative method to evaluate the seg-

mentation parameters, including the number of the scene segments and their corresponding

locations. In our formulation, if the number of the segments changes, the dimension of the

vector containing the boundary locations also changes. The solution space for these two pa-

rameters is too complex for direct analytical computation. Therefore, these two parameters

are estimated in a statistical fashion using the MCMC technique.
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The rest of this chapter is organized as follows: Section 3.1 describes the MCMC al-

gorithm and presents the computations of the transition probabilities and the posterior

probability. Sections 3.2.1 and 3.2.2 deal with the applications of the general framework on

the segmentations of the home videos and the feature films, respectively. Section 3.3 presents

the discussions of the proposed work on other video domains. Finally, Section 3.4 provides

the conclusion and discussions of the proposed framework.

3.1 Proposed Framework

By the problem definition, given shots in the video, scene segmentation of the video is a

process of grouping the related shots into clusters. In each scene, the shots are related to

each other in terms of the corresponding central concept. The central concepts are different

in various contexts. For instance, in home videos, the central concept sometimes refers to the

same physical environmental setting, e.g., shots related to the same historical monument, or

sometimes it refers to the same event, e.g., shots related to a birthday party or a wedding

ceremony. In news programs, the central concept refers to a specific story topic, e.g., shots

related to a political reporting, a weather forecast or a sports reporting. In the feature films,

central concept refers to the same sub-themes of the story line, e.g., shots related to an

action scene or a suspense scene. Different scenes are distinguished by their differences with

respect to the central concept, and the scene boundaries are the locations where the intrinsic

properties of the central concept change.
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Figure 3.1: An example of the change-point problem. There are five segments con-
taining over 600 observations that are generated by the uniform distributions with
different parameters. The red plot is the posterior mean of the segments, and the
locations of the steps are the change-points in the data, i.e., the places where the
mean changes.

Based on this, we have developed a statistical solution for the two model parameters,

the number of scenes and their corresponding boundary locations. The boundary locations

are considered as the change-points of the central concept, and the problem is formulated

as a change-point problem. In a typical change-point problem, the random process has

different controlling parameters over time. The goal is to find the points where these pa-

rameters change. A simple example of a change-point problem is shown in Figure 3.1. In

this example, 600 observations are generated from five different uniform distributions. The

change-points are the locations where the distribution mean changes (the steps in the plot).

In our application of the temporal scene segmentation, the controlling parameters become

the central concept, and the steps in the posterior mean plot become the scene boundaries

in the video. To estimate the boundary locations, the MCMC technique is used. In the

iterative process of MCMC, the posterior probability of the model parameters is computed

based on the model priors and the data likelihood of the video. The samples are collected
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based on the ratio tests involving the posterior probabilities and the transition probabilities.

In the rest of this section, we first introduce the overall MCMC algorithm. Then we present

a detailed description of the different types of update proposals. Finally, we describe the

computation of the posterior probability.

3.1.1 General MCMC Algorithm

We use a hierarchical Bayesian model in the Markov chain Monte Carlo process. We assume

that the model set {Mk, k ∈ Φ} is a countable set, where k is the number of detected scenes,

and Φ = {1, 2, · · · } is a set of all the possible scene numbers. Model Mk has a parameter

vector θk, which contains the k − 1 scene boundary locations (Note: since the first scene

always takes the first shot as its starting boundary, it is ignored in our estimation process).

Let y denote the video features selected for the data likelihood computation. Based on the

Bayes rule, the posterior probability of the parameter k and θk given y is:

p(k, θk|y) ∝ p(y|k, θk)p(θk|k)p(k), (3.1)

where p(k) is the prior probability for the number of scenes, p(θk|k) is the conditional prior

for the boundary locations θk given k, and p(y|k, θk) is the likelihood of the data given the

parameters k and θk. Since the boundary vector, θk, implicitly determines k, the above

equation can be further simplified as,
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p(k, θk|y) ∝ p(y|θk)p(θk|k)p(k). (3.2)

In the rest of this paper, we use the shorter term π(x) = p(k, θk|y) to denote this target

posterior, with x = {k, θk} considered as a combined parameter vector of k and θk.

The general Metropolis-Hasting-Green algorithm [29] is well suited for our task, where

the dimension of the parameter vector, x, may change during the updates. It is described

as follows:

• Initialize the model parameter x0.

• At each iteration i, perform the following actions:

1. Generate Thα from Uni[0, 1].

2. Create a new parameter x′i−1 from some trial distribution based only on xi−1 with

a proposal transition (diffusion or jump).

3. Calculate the ratio α(xi−1, x
′
i−1) as,

α(xi−1, x
′
i−1) = min

{
1,

π(x′i−1)q(x
′
i−1, xi−1)

π(xi−1)q(xi−1, x′i−1)

}
. (3.3)

4. Update xi = x′i−1, if α > Thα. Otherwise, set xi = xi−1.

In this algorithm, q(x, x′) is the transition probability from x to x′. The transition proba-

bility from one state to another depends on the type of the updates. It should satisfy the
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Figure 3.2: Graphical representation of three types of updates. The top row shows
the scenes before updates, and the bottom row shows the update results.

reversibility property. Therefore, the proposed updates should also be reversible to ensure

this property.

Before going into a detailed description of the updating process, we first present the

notations for the variables. Let k be the current number of detected scenes, T be the total

number of shots in the video, Sm be the m-th scene with shots {s1
m, s2

m, · · · , snm
m }, where nm

is the number of shots in scene Sm, S ′m be the m-th scene after update, L(y|θk) be the data

likelihood of the entire video, L(ym|fm) be the likelihood of scene Sm given the corresponding

features fm. Finally, kmax is the maximum number of the scenes allowed.

The proposed updates contain two parts, diffusion and jumps. Diffusion is defined as

the update without changing the structure of the parameter vector x. It traverses within

the same sub-space. On the other hand, jumps change the structure and traverse across

different sub-spaces. In our case, the diffusion is the shifting of the boundaries between

the adjacent scenes. There are two types of jumps: the merging of two adjacent scenes

and the splitting of an existing scene. Figure 3.2 shows the graphical representations of the

updates. In many applications ([33, 29, 98]), two more updates were proposed: diffusion on

the segment model parameter(s) and the change of the segment models. The segment model

parameters are the ones that control the generation of the sample data, e.g., posterior means
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in Figure 3.1. In our application of the video scene segmentation, based on the underlying

assumption that each segment is coherent to its central concept, there is often only one scene

model for a single video domain. Thus, changing between models is not needed in this

case. Furthermore, in some cases like home videos, the data size (number of shots in our

case) is small. The maximum likelihood estimator is adequately effective for computing the

parameter(s). Therefore, the model parameter diffusion steps can also be dropped.

Let ηk, bk and dk denote the probabilities of choosing shifting, merging and splitting,

respectively. They satisfy ηk + bk + dk = 1. Naturally, η1=b1=0 and dkmax=0. We use a

computation similar to the one proposed in [29], where bk+1 = c ·min{1, p(k)/p(k + 1)} and

dk = c · min{1, p(k + 1)/p(k)}, with constant c such that bk + dk ≤ C, ∀k = 1, · · · , kmax.

This results in bk+1p(k + 1) = dkp(k).

3.1.2 Stochastic Diffusions

The diffusions involve the shifts of the scene boundaries between adjacent video scenes. The

update is carried out as follows:

• A number m is randomly drawn from the discrete uniform distribution [1, k− 1], such

that the boundary between Sm and Sm+1 is updated.
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• The new boundary st is drawn from a 1D normal distribution with the mean at the

original boundary s1
m+1 in the range of [s1

m, s
nm+1

m+1 ]. The updated scene S ′m contains

shots of {s1
m, · · · , st−1}, and the updated scene S ′m+1 contains {st, · · · , s

nm+1

m+1 }.

Assume the number of the current scenes is k, and the current parameter vector is

x = {k, θk}. Then the probability for selecting scene Sm is 1/(k − 1). Since the potential

shift is drawn from a normal distribution around the original scene boundary t̂, this drawing

probability for the new boundary t is computed as,

p(t) =
1√

2πσ2
exp(−∆t2

2σ2
)
(
I[s1

m,s
nm+1
m+1 ](t)

)
, (3.4)

where ∆t = t − t̂, and σ is the standard deviation of the movement (in our experiment,

σ = 2). The indicator function I(t) controls the shift, such that the new boundary is

within the correct range. The normal distribution is assumed since the new boundary is

not expected to deviate from the old boundary too far. In summary, the forward transition

probability for the shift update is q(x, x′) = ( 1
k−1

)p(t).

During this entire update, the total number of scenes, k, is not changed, and the new

boundary remains in the original range [s1
m, s

nm+1

m+1 ]. The reverse transition is the process of

shifting from the new boundary t back to the original boundary t̂. Thus, the relationship

between q(x, x′) and its reverse version q(x′, x) is equal due to the symmetrical property of

the normal distribution.
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3.1.3 Reversible Jumps: Merge and Split

For the jump updates, the transition during a merge is related to the transition of a split,

since merge and split are a pair of reversed updates. Let us consider the splits first. The

number of scenes is increased by 1 by splitting a scene Sm = {s1
m, · · · , snm

m } into two new

scenes S ′m = {s1
m, · · · , t − 1} and S ′m+1 = {t, · · · , snm

m }, where t is the new boundary. The

process contains two portions: selecting a scene Sm and selecting a new boundary between

its old boundaries. The selection of the new boundary in the split process can be performed

assuming the uniform distributions [29]. However, to achieve better performance, the data-

driven technique is often used ([33] and [98]) to propose the jump transitions. We assume

the uniform probability for selecting scene Sm. The new boundary t is chosen, such that it

provides the maximum likelihoods for the two new scenes,

t = arg max
(
L(S ′m|f ′m) + L(S ′m+1|f ′m+1)

)
, (3.5)

where L(S ′m|f ′m) and L(S ′m+1|f ′m+1) are the likelihoods of the new scenes S ′m and S ′m+1, given

their corresponding features. If we consider that video scenes are independent events in the

time series, the proposal probability for a split can be expressed in the following form,

q(x, x′) =
1

k
L(S ′m|f ′m)L(S ′m+1|f ′m+1). (3.6)

The reversed update of the split is the merging of two scenes into one. The construction

of the proposal probability for the merge can be carried out similarly to the one for the split.
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Again, we assume the uniform distribution for selecting scene Sm, such that scenes Sm and

Sm+1 are merged into S ′m. The proposal probability for the merge transition is constructed

as follows,

q(x, x′) =
1

k − 1
L(S ′m|f ′m). (3.7)

3.1.4 Posterior Probability

Since Poisson distribution models the number of incidents happening in a unit time interval,

we assume the number of scenes, k, is drawn from such a distribution with mean λ. The

model prior on k is computed as

p(k) = e−λ λk

k!
· I[1,kmax](k), (3.8)

where I[1,kmax](k) is an indicator function. Ik = 1, if 1 ≤ k ≤ kmax; Ik = 0 otherwise. A plot

of the prior distribution is shown in Figure 3.3.

If there are k segments (scenes) in the video, then there are k−1 scene boundaries, since

the boundary for the first scene is always the beginning of the video. The probability of

p(θk|k) is the same as the probability of selecting a subset with size k−1 from the remaining

T − 1 shots. Therefore, the conditional prior can be defined in terms of the combinations,
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Figure 3.3: Prior distribution (Poisson) of the model parameter k, the number of
scenes in the video. The mean of the distribution, λ, is pre-assigned as 2.5, and kmax

is 8.

p(θk|k) =
1

CT−1
k−1

=
(k − 1)!(T − k)!

(T − 1)!
. (3.9)

The last term to be computed is the likelihood. Let L(y|θk) = p(y|θk) denote the global

likelihood of the video data y given the parameter vector θk. As discussed in Section 3.1,

each scene possesses a different central concept. It is meaningful to make an assumption that

each scene is independently recorded from others. Therefore, the overall likelihood can be

expressed as,

L(y|θk) =

( L∏
m=1

L(ym|fm)

) 1
L

, (3.10)

where L(ym|fm) is the individual likelihood of data ym in scene Sm, based on the feature

values fm. The geometric mean of the individual likelihoods is considered for the normaliza-

tion purpose. In order to make the ratio test meaningful, the likelihood should be scaled to

the same level during each iteration. The definition of the central concept is different across

domains. Therefore, the features selected to compute the likelihoods are different for the

28



different types of videos. Here, L(y|θk) is a general representation of the likelihood rather

than a specific computation.

The target posterior probability is proportional to the product of the model prior p(k),

the conditional prior p(θk|k), and the data likelihood L(y|θk),

π(x) ∝ L(y|θk)p(θk|k)p(k). (3.11)

To determine whether the proposed update in the parameter space is accepted or rejected,

we compute the ratio of the two terms: π(x′)q(x′, x) and π(x)q(x, x′). If the ratio, α(x, x′),

satisfies the stochastically generated threshold, the proposed update is accepted; otherwise,

the model parameters are kept the same as in the previous iteration.

3.2 Applications and Discussions

In this section, we demonstrate the proposed scene segmentation method on two video do-

mains. If we examine the generation process of the videos, we can classify them into two

categories:

• Produced Videos : This group contains feature films, television news programs and

other TV talk or game shows. They are initially recorded in raw format and are later

modified to produce the carefully organized video programs with accordance to the

certain video production rules.
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• Raw Videos : Compared to the previous group, this category involves little post-

modifications and contains videos that are mostly in the form in which they were

originally recorded. Common domains in this category are home, surveillance and

meeting videos.

Due to the large variety of video domains, we have selected two representative domains to

demonstrate the effectiveness and the generality of the proposed method, with one domain

from each of the categories described above. The home video domain is chosen as the

representative domain of the Raw Video category, and the feature film domain is selected

for the Produced Videos category. In this paper, we assume the video shots are available. In

the experiment, we used a multi-resolution method provided in [118] to detect and classify

the video shot boundaries in both home videos and feature films.

3.2.1 Home Videos

Home video is a broad term that refers to videos composed with a “free style”, e.g., family

videos, tour videos, wedding tapes or ground reconnaissance videos (GRV). They are recorded

from handhold cameras, spy cameras, cameras mounted on ground vehicles, etc., and come

in different forms. Some are in high resolution, while others have been shot at lower quality.

Some have a full field of view, and some may be recorded by cameras hidden in bags (GRV),

so part of their field of view is blocked by the carrier. Some example key frames are shown
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Scene (a) Scene (b) Scene (c) Scene (d) Scene (e)

Figure 3.4: Five example home video scenes with their key frames. Some of them are
indoors (c); some are outdoors (a,b,d,e). Scenes (a,b) were taken by cameras mounted
on ground vehicles, (e) was taken by a spy camera in a bag, and (c,d) were taken by
handhold cameras.

in Figure 3.4. Temporal scene segmentation of home videos provides the logical units related

to interesting locations or events, and the output segments can be used for the further

analysis and processing of the videos, e.g., indexing, storage, retrieval of the video and

action recognition. Since there is no grammar involved in the production process of the

home videos, temporal segmentation emphasizes the analysis of the features derived from

the video than on the video structure. As mentioned at the beginning of this chapter,

this type of analysis could be threshold based, zero-crossing based, etc., with or without

the training of the features. Home videos are not as well controlled as other domains like

TV programs. The scene boundaries sometimes are clearly identifiable (strong boundaries),

but many times they are difficult to determine using the same criteria as strong boundary

detection. Due to this uncertainty in the home videos, it is likely to result in either under-

segmentation or over-segmentation using any fixed threshold, and it is not practical to train

the system for the threshold selection. On the other hand, the proposed approach finds the
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boundary locations by detecting the local peaks in the likelihood plot of the video shots, and

therefore, avoids the previously mentioned problems.

3.2.1.1 Feature Selection

In the context of temporal scene segmentation, a variety of features have been exploited.

The commonly used features include color, motion content, shot length, etc. Since home

videos are taken in a “free style”, the patterns for motion content and shot length are not

distinctive across different scenes. Usually the shots in the same temporal scene are coherent

with respect to the same environment; there are visual similarities that exist among these

shots. On the other hand, the shots from different scenes should be visually distinctive.

Therefore, we have focused our efforts on the analysis of the color information in the shots.

We use the histograms to represent the color information in the video frames. The color

histogram for each frame is the 3-dimensional histogram in the RGB space with 8 bins in

each dimension. Let hi be the histogram for frame fi. Furthermore, we define the histogram

intersection between frames fi and fj as,

HistInter(fi, fj) =
∑

b∈Allbins

min(hb
i , hb

j), (3.12)

where b is the individual bin in the histogram.
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Instead of using all the frames in the shot, we extract the key frames as the representation

of the shot, and further analysis is performed based on the key frames only. It is common

to select a single key frame for each shot. However, for shots with long durations and with

high activity content, multiple key frames provide a better representation. Several key frame

selection approaches have been proposed in the past few years ([31, 35, 84, 122]). In this

paper, we use the method proposed in [84]. Assume there are a total of n frames in shot s,

the procedure for selecting the key frames is described as follows:

• Include the middle frame into the key frame set Ks as the first key frame κ1
s;

• For i = 1 : n, do

If max(HistInter(fi, κ
j
s)) < Th, ∀κj

s ∈ Ks

Include fi into Ks as a new key frame.

In this algorithm, Th is the threshold for selecting a new key frame, and we use the

histograms of the key frames as their representation.

3.2.1.2 Likelihood Computation

We define the visual similarity between two shots in terms of the Bhattacharya distance,

which is the distance between two histograms h1 and h2, defined as dB(h1, h2) =

−ln
( ∑

b∈allbins

√
hb

1h
b
2

)
. The visual similarity between shots si and sj is as follows:
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Figure 3.5: Visual similarity map of the shots in a testing video. Brighter cells
represent higher similarity. The shots in the same scene possess higher similarity
compared across scenes. The bright blocks on the diagonal gives the idea of temporal
scenes. The figure shows the intermediate results for one iteration, where the red
scenes (1 and 2) are not matched with the correct boundaries, and the blue scenes (3
and 4) show the correct detections. A short sequence of updates demonstrated on the
similarity map is shown in Figure 3.8.

Sim(si, sj) = max(C− dB(κm
si

, κn
sj

)), (3.13)

where κm
si
∈ Ksi

, κn
sj
∈ Ksj

, and C is a constant. After computing the visual similarity

between all pairs of shots in the video, a similarity map is generated. One such map is

shown in Figure 3.5. In this map, the brighter cell represents higher similarity value. The

shots that are in the same temporal scene form a bright block along the diagonal in the

similarity map. If the shots [sa, · · · , sb] are clustered into scene Sm, the likelihood for this

scene is computed as:

L(ym|fm) = avg
(
M(a : b, a : b)

)
, (3.14)
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which is the average similarity value of the sub-block in the similarity map M starting from

row a to row b. It is intuitive that the correct segmentation of the video gives the diagonal

blocks to reach the maximum likelihood. To compute the overall likelihood, substitute

Eqn. 3.14 into Eqn. 3.10. Up to this point, the overall likelihood L(y|θk), the conditional

prior p(θk|k) and the model prior p(k) are determined. Therefore, acceptance for proposal

updates is decided by the ratio test described in the MCMC algorithm.

3.2.1.3 System Performance

The proposed method has been tested on four home videos with 23 total scenes. These scenes

were recorded with various environmental settings. Each scene is composed of multiple video

shots. Some of them are indoor scenes (Scenes (c,e) in Figure 3.4), while others are out-door

scenes (Scenes (a,b,d) in Figure 3.4). Furthermore, the videos were taken in different styles.

Some scenes were recorded from handhold cameras (Scenes (a,c,d) in Figure 3.4), some were

recorded by a spy camera hidden in bag (Scene (e) in Figure 3.4), and others were recorded

by a camera mounted on a ground vehicle (Scene (b) in Figure 3.4).

It is well known that samples generated from a single Markov chain may not give an

accurate solution. Rather, the solution generated from a single chain may be in the neigh-

borhood of the true solution. To overcome this problem, we independently execute multiple

Markov chains. The results from each individual chain provide the votes for the shots that

have been declared as scene boundaries. After certain runs, the shots with the locally highest
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Figure 3.6: The overall votes of the shots declared as scene boundaries from multiple
independent Markov chains. The red circles represent the shots that are declared
as the final scene boundary locations, which correspond to the local maxima in the
overall vote plot.

votes represent the final scene boundaries. Figure 3.6 shows the overall votes of the scene

shots being declared as scene boundaries from all runs, and the red circles represent the

local maxima, which correspond to the true boundaries. Even though one single chain may

not provide the correct result, there is an issue of the posterior probability reaching the

“confidence” level. This is referred as the “burn-in” period. As shown in Figure 3.7, after

certain iterations, the posterior probability reaches a level and stays there with only minor

fluctuations. For this particular testing video, the “burn-in” time is short, due to the small

size of the data (number of shots). A simplified version of the iteration process is shown in

Figure 3.8.

The matches between the ground truth data and the segmented scenes are based on the

matching of their starting boundaries. For a given home video with n scenes, let {t1, t2, ..., tn}

denote the starting shots of the reference scenes and {s1, s2, ..., sk} denote the starting shots

of the detected scenes. Scene ti is declared as matched if one of the detected scenes sj has

the same starting shot. Figure 3.9 shows a graphical representation of the video matching.
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Figure 3.7: (a). The plot of the posterior probability of the parameter estimation
during a single Markov chain (run). As demonstrated in the figure, after certain
iterations, the posterior reaches a “confidence” level and stays there with minor fluc-
tuations. It should be noted that if the data size (number of shots in our application)
is small, the process reaches this level quickly. (b). The plot of the model prior for
the number of scenes, k, where the model mean, λ, is set at 3.5. The horizontal axis
in both plots represents the number of iterations. At the end of the process, plot (a)
gives the posterior probability of the parameters given the video data, and plot (b)
gives the information on the number of scenes, k.

In these videos, shots in each scene are coherent with respect to the same environmental

settings. For instance, there are five scenes in video 2. The first scene is an indoor scene,

which shows the interior of a building. The next scene shows the exterior of the same

building. The third scene is a sequence around a fountain. Finally, the last two scenes shows

the exterior and the interior of the same building again. It is evident that the shots within

the same scene are visually similar, while shots in different scenes are visually distinctive.

Two accuracy measures are used to measure the system performance: precision and recall,

Precision =
X

A
, Recall =

X

B
, (3.15)
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Figure 3.8: Demonstration of a simplified MCMC iteration process. We show ten
updates during a single run. The red boxes represent the detected scenes that do
not match the true boundaries, while the blue boxes show the detected scenes that
do match the ground truth. The sample video contains 19 shots, which are initially
split into two arbitrary scenes (1). After a series of updates, including shift (6), merge
(2,7,9) and split (3,4,5,8,10), the final detected scenes (10) match the true boundary
locations. As illustrated in the figure, the scenes are eventually “locked” with the
bright diagonal blocks in the similarity map.

where X is the number of correct matches between the system detections and the ground

truth scenes; A is the total number of system detections; B is the total number of ground

truth references. The detailed precision/recall measures are shown in Table 3.1. If the

matches in all the videos are treated as equally important, the overall precision and recall

are 0.840 and 0.913, respectively.

To further demonstrate the effectiveness of the proposed method, we also compare our

system output with the results generated by one of the previously developed methods. As

the most relevant technique to our scenario, we choose the Backward Shot Coherence (BSC)

approach proposed in [84]. The BSC approach is a two-pass algorithm, which first segments

the video into initial scenes using the color consistency and then merges them based on

the similarity between their motion contents. In home videos, the same recorder often
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Table 3.1: Accuracy measures of four home videos. Insertion is the num-
ber of over-segmentation (false positives), and deletion is the number of the
mis-detections (false negatives).

Measures clip1 clip2 clip3 clip4

Length 12:42 06:53 07:31 17:53
Num. of Shot 47 16 19 25
Num. of Scenes 8 5 5 5
Detected Scenes 8 5 5 7
Match 7 5 5 4
Insertion 1 0 0 3
Deletion 1 0 0 1
Precision 0.875 1.000 1.000 0.571
Recall 0.875 1.000 1.000 0.800

Table 3.2: Comparison between the proposed Markov chain Monte Carlo
(MCMC) method and the Backward Shot Coherence (BSC) [84]. The over-
all precision and recall are computed as if every scene in all videos were equally
important. The last column shows the number of the reference scenes in each
clip.

Measures MCMC BSC Reference

Clip 1 Detection 8 7 8
Clip 1 Match 7 4 -
Clip 2 Detection 5 4 5
Clip 2 Match 5 4 -
Clip 3 Detection 5 6 5
Clip 3 Match 5 4 -
Clip 4 Detection 7 7 5
Clip 4 Match 4 4 -

Total Detection 25 24 -
Total Match 21 16 -
Total Insertion 4 8 -
Total Deletion 2 7 -

Overall Precision 0.840 0.667 -
Overall Recall 0.913 0.696 -
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Figure 3.9: Matches in the testing home video clips. The figure shows the key frames
of the videos. In each video, the detected scenes are labelled by alternating blue and
orange groups of shots, and the true boundary locations are shown by the deep green
separators.

exhibits similar motion of the camera. Furthermore, unlike other domains, motion content in

home videos is less meaningful and not distinctive across scenes. Based on the experimental

observations, results obtained using both passes in the BSC algorithm are the same as the

results obtained using only its first pass, which generates the scene segments using color

information. Since only the visual information is useful in our application, we compare the

system performance between the results generated by the proposed MCMC method and the

BSC method for the sake of fairness. The comparison results are shown in Table 3.2.
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3.2.2 Feature Films

To demonstrate the generality of the proposed framework, we have also tested the proposed

system on three feature films: Gone in 60 Seconds, Dr. No (James Bond) and The Mummy

Returns.

3.2.2.1 Feature Selection

Based on the definition provided by the Webster dictionary [100], a movie scene is one of

the subdivisions of a play, or it presents continuous actions in one place. Movie scenes are

composed according to the film grammar, which is a set of rules about how the movies are

produced. In a scene, the shots often exhibit similar patterns, which can be reflected by

low-level features. For example, in action scenes, shots are generally short in length, and

the visual content, which indicates the activity level of the scene, changes rapidly. On the

other hand, in drama scenes, the shots are much longer, and the visual content is relatively

consistent. For feature films, we use these two features computed from the movies, shot

length and visual content, to group the semantically coherent shots into scenes. Let ls

denote the length of shot s and vs be the visual content in that shot. The shot length

represents the pace of the movie, and the visual content shows how much is going on in the

shot. The visual content is defined as,
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vs =
1

Ns

Ns∑
i=1

(1−HistInter(fi, fi+1)), (3.16)

where HistInter(fi, fi+1) is the color histogram intersection between the i-th and (i + 1)-th

frames, and Ns is the number of frames in shot s. The plots of the shot length and the

visual content are shown in Figure 3.10. These two features are used in the construction of

the data likelihood.

3.2.2.2 Likelihood Computation

In film production, the patterns for different features are related to each other. For instance,

in action scenes, the short shots are accompanied by a high degree of visual content. There-

fore, the features ls and vs should not be considered independently of each other. We use a

two-dimensional normal distribution to model the features in a scene Sm,

N(gs, m) =
1√
2πS

exp
(
− (gs − ĝm)T G−1(gs − ĝm)

2

)
, (3.17)

where gs is the feature vector [ls vs]
T . The vector ĝm is computed as the sample means for the

entire scene Sm, and G is the covariance matrix with determinant S. Again, by considering

shots as recorded independently, the likelihood in each scene Sm is,

L(ym|fm) =
( nm∏

s=1

N(gs, m)
) 1

nm
. (3.18)
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(b) Plot of the shot length in the movie. 

(a) Representative frames of example scenes in the movie

(c) Plot of the visual content in the movie. 

[1] [2] [3] [4] [5]

(d) PDFs of the 2D normal distributions of first five scenes. 

Figure 3.10: (a). Representative frames of some example scenes in the movie Gone

In 60 Seconds; (b). Plot of the shot length variable; (c). Plot of the visual disturbance
feature. Usually, shots with shorter length are accompanied by a high level of visual
disturbance. The green bars represent the scene boundaries in the movie, which were
detected by the proposed method; (d). PDF plots on the 2D normal distribution of
the first five scenes in the movie. The distribution parameters, mean and covariance,
are different across the scenes.

We substitute Eqn. 3.18 in Eqn. 3.10, and perform the ratio test for the acceptance

decisions. A similar argument is applied here for taking the geometric mean as in Eqn. 3.10.

3.2.2.3 System Performance

We have experimented our approach on three feature-length films: Gone in 60 Seconds,

Dr. No and The Mummy Returns. Each movie contains thousands of shots. The matching

follows similar procedure as used in Section 3.2.1.3. However, the matching technique is
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Table 3.3: Accuracy measures for three movies: Gone in 60 Seconds, Dr. No,
and The Mummy Returns

Measures Gone in 60 Seconds Dr. No The Mummy Returns

Length 01:46:09 01:30:55 01:45:33
Num. of Frames 152665 130811 151802
Num. of Shot 2237 677 1600
Num. of Scenes 29 17 18
Detected Scenes 25 20 18
Match 24 14 15
Insertion 1 3 3
Deletion 5 6 3

Precision 0.960 0.700 0.833
Recall 0.828 0.824 0.833

slightly different. In movies, usually there is not a concrete or clear boundary between two

adjacent scenes due to editing effects. Movie chapters are sometime segued with a smooth

transition. Therefore, matching based on boundaries is not meaningful and often returns

incorrect results. Instead, we use a “recovery” method. Suppose there are a set of the

reference scenes {T1, T2, ..., Tn} and a set of the detected scenes {S1, S2, ..., Sk}. A reference

scene Tm is said to be “recovered”, if a majority of this scene (> 50%) overlaps one of the

detected scenes. The “recovery” is a one-to-one correspondence, i.e., one reference scene can

only be matched with at most one detected scene, and one detected scene can cover at most

one reference scene. The scene matching for the movie The Mummy Returns is shown in

Figure 3.11. In this example, we consider the chapters provided by the DVD as the ground

truth scenes. The key frames of both the ground truth scenes and the detected scenes are

presented. Again, we use the precision and recall measures defined in Section 3.2.1.3 for the
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War by Scorpion King

Family in the Tomb

Digging the Mummy

Back Home

Invasion of Home

Plan on Rescue

In the Library

Chase by Bus

Journey to Palace

Looking for Pilot

Journey by Balloon

Back Ancient Time

Murder in Palace

Scene Matching for Movie Mummy Returns
DVD Chapters

Fighting Scorpion King

Inside the Palace

Fighting in the Jungle

Tracking the Trace

Magic of Flying Flood

DVD Chapters DVD ChaptersDetected Scenes Detected Scenes Detected Scenes

Figure 3.11: Matching of scenes for the movie The Mummy Returns. It shows the
key frames of the ground truth scenes that are obtained from the DVD chapters and
the key frames of the detected scenes. The key frames of the ground truth scenes
are accompanied by their titles. The matches scenes are shown with their key frames
aligned. Pairs with blank spaces are the mis-matches, i.e., insertions and deletions.

performance evaluation. Detailed results for movie scene segmentation are shown in Table

3.3.

3.3 Discussions

The idea of the central concept is also applicable to other video domains. For example, in

television talk shows, one major distinction between the commercials and the real TV talk
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shows is that in the show itself there is often a repeating pattern between the host and

the guest, which the commercials do not possess. The feature to distinguish this central

concept involves the number of the repeating shots in the segment. Another example is the

news video segmentation. In this task, each news segment is composed of the shots that

are coherent to a certain news focus. Non-news segments include commercials, lead-in/out,

reporter chit-chatting, etc. The textual information, closed captions (CC) and automatic

speech recognition (ASR) output can be used as the features for constructing the posterior

distribution. In this case, the semantic relations between the key words appearing in the shots

can be analyzed. Shots that have the same news focus should possess similar distributions of

key words. The MCMC framework can find the places where the distributions of key words

change to detect the scene boundaries.

There is another temporal segmentation process on the lower-level video structure, which

is commonly known as the shot boundary detection. Shot level segmentation and the scene

segmentation have their similarities and differences. A shot is defined as a series of continuous

frames with consistent background settings. This assumption naturally leads to the color

consistency constraints, and it does not refer to any high level semantic meanings. On the

other hand, scene segmentation involves more semantic coherence. For example, in home

videos, shots within the same scene are coherent to each other in terms of the same events

or the same physical sites. In feature films, shots in the same scene are related to the

same sub-theme of the movie story line. In both the cases, the color similarity constraint is

insufficient for segmentation. The high-level semantics are often bridged by analyzing the
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patterns of other types of low-level features, like video pace and visual content in the films

or the narration in the news programs.

3.4 Conclusions

In this chapter, we have presented a general statistical framework for the temporal scene

segmentation of videos. We have solved the scene segmentation task by automatically de-

termining the places where the central concept changes. A target distribution of the model

parameters, including the number of scenes and their corresponding boundary locations, is

constructed to model the probabilities of the video shots being declared as the scene bound-

aries, and the solution is achieved by performing the sampling from this target distribution

using the Markov chain Monte Carlo (MCMC) technique. In the iterative process of MCMC,

the posterior probability is computed based on the model prior, conditional prior and the

data likelihood given the parameters, and updates are determined based on the posterior

probabilities and the transition probabilities. We have applied the method to several home

videos and three feature films, and we obtained high accuracy measures (Tables 3.1, 3.2 and

3.3).
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CHAPTER 4

SEMANTIC LINKING OF VIDEOS

In this chapter, we present a framework for the semantic linking of news topics. Unlike

the conventional video content linking methods, which are based only on video shots, the

proposed framework links the news video across different sources at the story level. The

rest of this chapter is organized as follows: Section 4.1 describes the proposed framework in

detail, including the computation of the visual similarity and the textual correlation between

stories; Section 4.2 presents the system evaluation results for the tasks of the story linking

and news ranking; finally, Section 4.3 concludes our work.

4.1 Proposed Framework

Let us consider how humans link stories on the same topic and distinguish the ones that are

different. Given two news stories, our visual system gives us a first impression about the

common contents of the two. It could be the same person of interest, the same action/activity,

or the same physical site. For example, when the Secretary-General of the United Nations
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proposes a peace plan, all the news channels broadcast the same picture containing his face.

On the other hand, when reporting on a riot, there may not be any particularly person

of interest. Instead, the physical scene is emphasized. In this scenario, global matching

between the images is needed. Besides the visual information, we also acquire the language

information in the video, which provides the most direct semantic cue in the news videos.

Often the form of the language information is speech and/or closed captioning (CC) on the

screen. They contain the textual form of the spoken words in the video. The proposed

method constructs the semantic linkage between news stories in a similar way using both

visual and textual information. It computes the visual similarity based on both the facial and

non-facial key frames of the stories, and establishes the textual correlation using automatic

speech recognition (ASR) output.

4.1.1 Visual Correlation

The first step in the computation of visual correlation is to detect faces in the key frames

of the stories. If a face is detected in a key frame, that key frame is classified as a facial

key frame; otherwise, it is classified as a non-facial key frame. Given a story Si, we have

a set of its key frames, which is composed of two disjoint sets, the facial key frames, K =

{k(i,1), · · · , k(i,mi)}, and the non-facial key frames, Φ = {φ(i,1), · · · , φ(i,ni)}, where mi and

ni are the numbers of facial and non-facial key frames in Si, respectively. Computation of

the visual similarity between two stories is carried on K and Φ separately. Here, the video
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shots containing anchor person(s) are not considered in the visual similarity computation.

This is because it does not provide meaningful linkage, since no anchor person works for two

stations, and stories broadcasted by the same anchor person do not imply they are similar.

We use a graph-based method to remove the anchor shots [119]. The underlying mechanism

for the anchor removal technique is to analyze the frequencies of the video shots in the news

program. The shots are classified as the general anchor, anchor of special programs and the

non-anchor shots, according to their frequencies based on the fact that anchors appear much

more often than other non-anchor shots.

4.1.1.1 Facial Key-Frame Matching

Many times, the news networks broadcast events that involve a particular person or a group

of persons. In these types of news stories, since the person is performing the action (e.g., a

political leader giving speech), or the person constitutes the major part of the event (e.g.,

meeting of foreign leaders), he/she becomes the focus of the interest. The images often

reveal the person’s face. In these situations, the best linkage between stories is provided by

the correlation of the persons by their facial information. Common face correlation methods

are known to have some drawbacks, such as being sensitive to the pose of the face, lighting

conditions, and the sizes of the faces. This is because the traditional face correlation methods

use the local information of the face patch. To overcome the aforementioned problems, we

utilize the global properties related to the detected faces. An extended region, “body”, is
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(a). Sample key-frames from the testing videos with faces labeled. 

(b). The “body” regions extracted from the above detected faces.

Figure 4.1: (a). The sample key frames with the detected faces; (b). The body
regions extended from the faces. Global feature comparison or face correlation fails to
link the same person in these examples, while the comparison of the “body” regions
provides the meaningful information.

used. The procedure for obtaining the “body” region is as follows: first, the face in the key

frame is detected by the face detector [99]. The detected face region is then extended to cover

the upper body of the corresponding person. The idea behind this is that in the news stories

involving the important person, the person usually wears the same clothes. Therefore, this

can be taken as the cue for the similarity. All the body regions in story Si are collected to

provide the body set, B = {b(i,1), · · · , b(i,βi)}, where βi represents the total number of body

patches in the story. Note that βi ≥ mi, because there might be multiple faces detected

in a single key frame. Some of the facial key frames and their body patches are shown in

Figure 4.1.

We compute the 3D color histogram, denoted by h(i,j), of each body patch b(i,j). The

Bhattacharya distance between two histograms is used in the similarity measure. The simi-

larity between two body patches b(i,j) and b(p,q) is defined as,

SimF (b(i,j), b(p,q)) = e−dB

(
b(i,j),b(p,q)

)
, (4.1)
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where dB

(
b(i,j), b(p,q)

)
= −ln

( ∑
r∈allbins

√
br
(i,j)b

r
(p,q)

)
is the Bhattacharya distance. The visual

similarity between two stories Si and Sp over the facial key frames is computed as follows,

ΓF (i, p) = max
(
SimF (b(i,j), b(p,q)

)
, (4.2)

where j = {1, · · · , βi} and q = {1, · · · , βp}. Based on Eqns. 4.1 and 4.2, the range for ΓF is

bounded in [0, 1].

4.1.1.2 Non-Facial Key-Frame Matching

Some stories do not contain human faces. For instance, in a report of a riot, no particular

human face can be detected due to various reasons. Another case is the stories with special

format, such as the weather forecast and the sport reporting. In these stories, only non-facial

key-frames are available. The visual linkage here is defined by the similarity between the

non-facial key-frames, which is computed based on the homography between the images.

If the key-frames of two news stories are focusing on the same scene, the homography is

able to successfully capture the transformation between the key-frames with small residual.

Otherwise, the homography would provide high residual.

Homography models the planar transformation between two images. To estimate the

homographies across images, interest-points and their correspondences (sparse optical flow)

need to established. In our formulation, we use the Scale Invariant Feature Transform

52



(SIFT [59]) for the feature point detection and matching. Given a pair of corresponding

points x = [x y t] and x′ = [x′ y′ t′] in their homogeneous coordinates from image I1 and I2,

respectively, the homography is expresses as,




x′

y′

t′




=




a1 a2 a3

a4 a5 a6

a7 a8 1







x

y

t




, (4.3)

where parameters {ai, i = 1 · · · 8} capture the transformation between two matching planes,

they can be estimated by providing at least four pairs of correspondences. For simplification

purpose, the coordinates of x and x′ are normalized, such that their third elements are 1.

The above equation can be written in a shorter form x′ = Ax. With noise presented in

the images, x may not match exactly with x′. Rather, it maps to a projected point x̂′

by applying the homography A. Therefore, the goodness of the homography between two

images is computed as in terms of the residual between the true matches and the projections,

ε(I1, I2) =
1

k

∑

∀(xi,x′i)

||x̂′i − x′i||, (4.4)

where k is total number of the correspondences.

Two situations should be considered. Firstly, if two images are totally different, few

correspondence would exist. Thus, the detected points in the images will be insufficient for

the minimum criteria of the homography computation. Secondly, if there are multiple planes

exist in the image, the homography computed using all correspondences would be invalid
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(a) Examples of the matching image pairs.  

(b). A pair of non-matching images from different scenes. 

Figure 4.2: Point matching of images. (a). Two pairs of images, which were taken
from the same scenes. The correspondences between feature points are shown. Figure
(b) shows a pair of non-matching images from two different scenes.

for the matching purpose. Consider two non-facial key-frames φ(i,j) and φ(p,q) from stories

Si and Sp. Assume φ(i,j) has k1 points detected and φ(p,q) has k2 points. We apply the

RANSAC technique on the point correspondences to extract the largest motion plane in the

image, which contains km correspondences. The ratio of km and min(k1, k2) is incorporated

in the similarity computation. If a reasonable portion of the detected points contributes to

the meaningful correspondences, the computed homography then would be valid. Otherwise,

the computed homography should be rejected. The similarity between these two non-facial

key-frames is defined as,

SimN(φ(i,j), φ(p,q)) = I[µ,1]

( km

min(k1, k2)

)
exp

(
− ε2(φ(i,j), φ(p,q))

2σ2

)
, (4.5)
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where I[b](a) is an indicator function, which gives 1 if a falls in range [b], and 0 otherwise.

Criteria µ controls the minimum valid ratio between the number of the interest points and the

points that contribute to the correspondences, and σ is a scaling factor. In our experiment,

we used σ = 3. Finally, the visual similarity between stories Si and Sp based on the non-facial

key-frames is defined as,

ΓN(i, p) = max SimN(φ(i,j), φ(p,q)), (4.6)

where j = {1, · · · , ni} and q = {1, · · · , np}. The similarity values for ΓN are also bounded

in the range of [0, 1]. Examples of the image matching are shown in Figure 4.2. One pair of

images is related to the same scene, and the images in the other group are unrelated.

4.1.2 Text Correlation

Sometimes, visual information is insufficient to distinguish differences. Consider the following

story: Congress is passing a bill. One news source shows the debate among the senators,

while another source shows comments from political activists. The content in each of these

stories focuses on the same topic, but they are visually different. In this type of situation,

textual information plays a more important role in the semantic linking process.

The textual information is obtained from the automatic speech recognition (ASR) output

of the video. The ASR output contains the recognized words from the audio track of the
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Starting Time: 11:35:59
Key-Words: federal, grand, jury, meet, investigate,

allegation, president, clinton, sexual,
relationship, former, white, house, 
interned, urged, lie, deputy, counsel,

bruce, lindsey, chief, staff, john, ...
Ending Time: 11:36:34

Figure 4.3: The key frame of an example story in a video, accompanied by the key
words extracted from that story. The starting and ending times are based on the
analog version of the video (tape).

news programs with their starting time and duration. For each candidate news story Si, we

extract the key words between its time lines by applying a filter to prune the stop words,

such as “the”, “and”, “or”, etc. The story time line covers all the video shots, including

both anchor and non-anchor shots. The extracted key words form the sentence of the story,

which is denoted by Seni and has length of L(Seni). One example of the story sentence is

shown in Figure 4.3. If two stories focus on the same topic, there usually is a correlation in

the narration of the video. In our approach, this textual linkage between stories Si and Sp

with sentences Seni and Senp is computed by the normalized textual similarity (NTS),

NTS(i, p) =
Mi→p + Mp→i

L(Seni) + L(Senp)
, (4.7)

where Mi→p is the total number of key words in Seni that also appear in Senp, and Mp→i

is the number of key words in Senp that also appear in Seni. The textual similarity ΓT

between stories Si and Sp is defined as,

ΓT (i, p) = NTS(i, p). (4.8)
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Based on this definition, it is easy to see that the range for the textual similarity value ΓT

is also [0, 1].

4.1.3 Fusion of Visual and Textual Information

Up to this point, the visual and textual similarities have been determined. The semantic

linkage between the news stories is the fusion of these similarities. To determine the form of

the fusion, the relationship between the similarities must be defined. The final fusion of the

visual and textual similarities is defined as

SSim(i, p) = αV ×Ψ
(
ΓF (i, p), ΓN(i, p)

)
+ αT × ΓT (i, p), (4.9)

where αV and αT are constants to balance the importance of the visual and textual similar-

ities, respectively, and Ψ(·) is the fusion function between ΓF and ΓN .

The visual similarities ΓF and ΓN are computed from two disjoint sets: facial key frames

K and non-facial key frames Φ, therefore, these two measures are independent of each other.

Thus, the one that has a higher value is dominant over the other. In our formulation, the

fusion function Ψ(ΓF , ΓN) is defined as max(ΓF , ΓN). On the other hand, no conclusion

of independence can be drawn between the visual and textual similarities. Therefore, we

use a linear fusion to combine these two measurements. The constants αV and αT balance

the importance of the visual and textual effects. The simplest way to select them is to
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let αV = αT = 0.5. However, based on our experience, we have observed that the textual

information has a higher impact on the semantic correlation than the visual cues. It provides

a better base-line compared to the visual information. Therefore, in our experiments, we set

αV = 0.35 and αT = 0.65. Users can also tune them according to their preferences. If more

effect is expected from the textual information, αT can be increased, while αV is decreased.

A few situations need special attention. Some news stories occur only in the anchor shots.

Therefore, only textual information is available. Similarly, one of the visual similarities might

be missing due to the absence of the facial or non-facial key frames. To deal with these cases,

we have following rules:

• If the facial key frame set K is empty, and the non-facial key frame set Φ is not empty,

set ΓF = ΓN ;

• If Φ is empty, and K is not empty, set ΓN = ΓF ;

• If both Φ and K are empty, replace Ψ(ΓF , ΓN) by ΓT . This means that if no visual

information is available, the textual similarity plays the dominant role.

Given two news videos containing multiple stories, a story similarity map can be con-

structed. One example is shown in Figure 4.4. In this similarity map, brighter cells represent

higher similarity values.
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Stories in CNN news video
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Number of Stories in Video:
19980205_ABC: 21
19980205_CNN: 33
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Figure 4.4: The similarity between two videos. The horizontal and vertical axis
represent the stories from a CNN and an ABC video respectively. The axes are
labelled by the selected anchor images. In this example, brighter cells correspond to
higher story similarity values.

4.2 System Performance

We have tested our method on a large dataset from the TRECVID 2003 forum. This dataset

is provided by the U.S. National Institute of Standards and Technologies (NIST). It is a open

benchmark for the content extraction evaluation and topic search tasks. The dataset contains

100 videos in MPEG-1 format from two news sources: ABC World News Tonight with Peter

Jennings and CNN Headline News. The videos are distributed over 50 days, with each day

having a video from ABC and CNN. Each video is around 30 minutes long, covering both

the regular news programs and the non-news segments in between the stories, and contains

around 20-30 news stories. The TDT2 [4] has provided the ground truth for the news story

boundaries generated by manual annotation. Accompanying with the MPEG-1 video data,
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2: Iraqi Issue; U.S. 
Military action. 

4: Clinton’s Sex 
Scandal w/ Monica

6: El Nino in 
California, Flood

13: Balloon attempt 
circling the globe. 

17: NBA basketball; 
Michael Jordan. 

2: El Nino in 
California, Flood.

7:Clinton’s Sex 
Scandal w/ Monica.

11: Balloon attempt 
circling the globe.

14: El Nino in 
California, Flood

20: NBA basketball 
Michael Jordan. 

23: NBA basketball 
All-Star Game. 

19980207_ABC 
[20 STORIES]

19980207_CNN 
[29 STORIES]

Figure 4.5: One example of story matching. Two news videos from ABC and CNN
for the same date are used. In total, seven matches were detected, six of them are
labelled as “Relevant” (solid lines), and one is labelled as “Irrelevant” (dashed line).
The matched stories are displayed by their first key frame and brief summaries.

NIST also provided the ground truth data for the common shot boundaries, key frames and

the automatic speech recognition (ASR) outputs by LDC [27].

Given two news videos from different sources, assume video 1 contains stories {S1,1, · · · ,

S1,n1}, and video 2 contains stories {S2,1, · · · , S2,n2}. We first compute their similarity map

SimMat based on Eqn. 4.9. To classify a match between S1,i and S2,j, the value of cell

SimMat(i, j) is verified against the predefined threshold. In our experiment, only videos

from the same day are matched with each other. One reason for that is because the news

stories are interesting only to the audience in their proposed time periods. Stories that are

apart in time do not tend to match. However, the proposed method has the capability to

match stories across videos, regardless of their time difference. A full set of matches for a pair

of example videos is shown in Figure 4.5, and one pair of the matched stories is demonstrated
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EVENING REAL DILEMA CLINTON ADMINISTRATION IRAQI

LEADER SADDAM HUSSEIN CONTINUES DEFY INTERNATIONAL

COMMUNITY UNITED STATES FORCE DEAL ATTACK AVOIDED

BAGHDAD TEND EFFECT RUSSIA FRANCE PERSUADE IRAQI

PRESIDENT ACCEPT AVERT MILITARY STRIKES ALLOW U. N.

WEAPON INSPECTORS PRESIDENTIAL PALACE ACCESS

FOREIGN DIPLOMATS ACCOMPANY INSISTED RUSSIAN

ARGUED STRONGLY AGAINST AMERICAN MILITARY STRIKES

ASTONISHING WORDS RUSSIAN PRESIDENT BORIS YELTSIN

UNITED STATES REJECTING LATEST OFFER IRAQI OFFERED 

ALLOW U. N. WEAPON INSPECTORS ACCESS DISPUTED

PRESIDENTIAL PALACE ONCE U. N. SECURITY COUNCIL

MEMBERS IRAQI PREPARED OFFERE INTERNATIONAL ARMS

INSPECTORS COMPREHENSIVE ACTION APPOINTED TEAMS

REPRESENTED U. N. SPECIAL COMMISSION PERSONNEL DATED

DURING TRIPS PALACES REASONS SOVEREIGNTY DIGNITY 

RUSSIAN PRESIDENT YILTSIN CAUTIONING UNITED STATES

YELTSIN WARNED PRESIDENT CLINTON MAY FORCE ……..

Figure 4.6: Matched stories from two different sources. The left block contains the
key frames and key words extracted from a story in video [19980204 ABC], and the
right block contains the key frames and key words extracted from a story in video
[19980204 CNN]. The key frames bounded by red boxes provide the visual similarity
between these two stories, since both stories are captured at the same presidential
palace. The key words in blue boldface are the common words that appear in both of
the two stories. From the figure, the reader can easily draw the conclusion that both
stories deal with the issue of weapons inspections of the Iraqi presidential palaces.

in detail in Figure 4.6. In Figure 4.6, the key frames and the extracted key words of the

stories are shown. The key frames providing the visual similarity are boxed in red, and the

common key words in both stories are in blue boldface.

In our evaluation, there are three categories of matched stories: Relevant, Somehow

Relevant and Irrelevant. A pair of matched stories is said to be “Relevant” if there is no

ambiguity in content. For stories that are partially related, they are classified as “Somehow

Relevant”. This happens more in the miscellaneous stories, including commercials, where the

same commercial is broadcasted by two station. It also happens when a story line actually

contains multiple individual stories, which is often in the ground truth data. If the stories

focus on completely different topics, “Irrelevant” is assigned as their label. Since there are

three categories of matching, we assign different satisfactory scores wi ∈ {1.0, 0.5, 0.0} to
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each of the matches. For each “Relevant” pair detected, it is assigned a satisfactory score of

1.0; for each matching pair with “Somehow Relevant”, it is assigned a score of 0.5; finally,

if a matching pair is “Irrelevant”, a score of 0.0 is assigned. Higher overall scale indicates

better satisfaction rate. Ideally, there should be an overall scale of 100% satisfaction. On the

other hand, we should also examine how well the system recovers the ground truth matches,

i.e., more true detected matches indicate better performance. In the areas of multimedia

processing and information retrieval, these are expressed in the precision and recall forms,

which are defined as follows for our application:

Precision =

∑n
i=1 wi∑n
i=1 1

,

Recall =

∑n
i=1 wi∑m
j=1 1

, (4.10)

where n is the total number of detected matches, and m is the total number of ground truth

matches. The precision captures the overall satisfaction rate. However, in our application,

due to the vast amount of data, it is very difficult to determine the number of the ground

truth matches. In this situation, we have replaced the recall measure with another scale,

accumulated satisfaction score, OSat =
∑

i wi. This is equivalent to the recall measure with

a fixed number of ground truth matches.

Based on the experimental observations, we have found that textual features often provide

more semantic inferences and give a baseline of the overall matching. There is a question

on how much impact the visual features can make. In the experiments, the visual features
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(a). Plots of the precision for each video. 
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(b). Plots of the overall satisfactory scale for each video. 

Figure 4.7: Comparison between the results obtained using the visually-based,
text-based and combined methods. Part (a) shows the comparison of individual preci-
sions, and (b) shows the comparison of the individual overall satisfaction scales. The
solid plots are for the combined method, the dashed (–) plots are for the text-based
correlation, and the dashed-dotted (-.) plots are for the visually-based correlation.
The horizontal axes in both of the figures are the video pairs (date of the videos
recorded).

are demonstrated to improve the satisfactory levels. In Figure 4.8, we present the results

obtained based only on the visual cues, the results obtained based only on the textual

cues, and the results based on both cues, separately. The visually-based method returns

total of 332 matches, out of which 173 are relevant, 14 are somehow relevant and 147 are

irrelevant. The text-based measure returns total of 351 matches, out of which, 312 are

relevant, 12 are somehow relevant and 27 are irrelevant. With the combination of both

visual and textual cues, there are 406 total returns, of which 351 are relevant, 31 are somehow

relevant, and 24 are irrelevant. If each of the matches is considered equally important, the

overall precisions for visually-based, text-based and combined results are 0.5422, 0.9060 and
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0.9027, respectively. The combined results have slightly lower precision than the text-based

results because the newly introduced wrong matches are more than the newly introduced

correct matches. However, the combined results also provide significant positive returns

than only using the textual cues. The overall satisfactory scales, which are equivalent to

the recall measure, for the visually-based, the text-based and the combined results are 180,

318 and 366.5, respectively. One can observe that there is a significant improvement by

incorporating the visual information in the linking process. This can be interpreted as,

given a tradeoff of 1% in precision, a 15% gain is obtained in recall. Detailed comparisons

between the three scores for each individual video pair is presented in Figure 4.7. The score

for the visually-based results are fairly low. This is because that the same person appears in

different stories, or the scene has strong parallax, such that Affine is not able to capture the

similarity. Outliers in the text-based results are caused by repeating key words, even though

the stories that carry these key words are not semantically related. For example, key words

“war on drugs” refer to different topic than key words “war in Iraq”. However, the textual

correlation between them is large due to the common word “war”. In this case, the visual

information is able to lower the overall story similarity.
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19980204 4 2 0 2 7 6 1 0 7 6 1 0
19980205 5 2 1 2 7 6 0 1 8 6 1 1
19980207 3 1 2 0 7 6 0 1 8 7 0 1
19980208 11 4 0 9 9 7 1 1 12 10 1 1
19980209 5 4 0 1 8 8 0 0 9 9 0 0
19980211 6 2 0 4 7 5 0 2 8 6 0 2
19980212 10 6 0 4 8 6 2 0 12 10 2 0
19980213 7 4 0 3 9 9 0 0 10 10 0 0
19980214 8 4 0 4 6 5 0 1 6 5 0 1
19980215 6 1 2 3 7 6 0 1 8 7 0 1
19980216 5 3 0 2 5 5 0 0 11 11 0 0
19980217 10 5 0 5 10 9 0 1 11 10 0 1
19980218 9 8 0 1 7 6 0 1 8 7 0 1
19980219 9 7 0 2 8 7 0 1 11 10 0 1
19980220 4 2 0 2 4 4 0 0 5 5 0 0
19980221 6 2 0 4 8 7 1 0 8 7 1 0
19980223 8 5 0 3 7 7 0 0 7 7 0 0
19980225 10 4 2 4 10 10 0 0 11 10 1 0
19980226 3 2 0 1 3 3 0 0 4 4 0 0
19980302 5 4 0 1 4 3 0 1 5 3 1 1
19980304 11 6 0 5 9 8 1 0 9 9 0 0
19980305 7 5 0 2 6 6 0 0 8 7 0 1
19980306 8 1 2 5 9 9 0 0 11 9 2 0
19980307 6 2 0 4 6 4 0 2 9 5 2 2
19980308 10 4 2 4 6 4 1 1 7 5 1 1
19980309 6 6 0 0 7 7 0 0 7 7 0 0
19980310 7 3 0 4 6 5 1 0 10 7 2 1
19980311 11 4 0 7 8 8 0 0 8 8 0 0
19980312 5 2 0 3 8 7 1 0 8 7 1 0
19980313 6 2 0 4 8 7 1 0 9 8 1 0
19980316 6 5 0 1 10 9 0 1 11 9 1 1
19980317 3 3 0 0 7 6 0 1 8 6 1 1
19980318 5 2 0 3 7 6 0 1 8 7 1 0
19980319 10 5 0 5 7 7 0 0 7 7 0 0
19980320 4 1 0 3 4 4 0 0 4 4 0 0
19980321 6 4 0 2 5 5 0 0 6 5 1 0
19980323 6 2 0 4 11 8 2 1 12 10 1 1
19980325 3 2 0 1 5 5 0 0 7 5 2 0
19980326 7 4 1 2 8 8 0 0 9 8 1 0
19980327 10 6 0 4 5 5 0 0 5 5 0 0
19980328 6 2 0 4 3 3 0 0 4 3 1 0
19980329 7 3 0 4 5 4 0 1 6 5 0 1
19980330 8 3 2 3 10 8 0 2 11 9 1 1
19980413 8 6 0 2 13 12 0 1 13 12 0 1
19980414 5 4 0 1 7 7 0 0 8 7 1 0
19980416 7 4 0 3 12 10 0 2 12 11 1 0
19980417 6 2 0 4 3 3 0 0 3 3 0 0
19980418 5 3 0 2 5 4 0 1 4 4 0 0
19980419 4 2 0 2 4 3 0 1 5 3 1 1
19980420 5 3 0 2 6 5 0 1 8 6 1 1

Visual Results Textual Results Overall Results

Figure 4.8: Table Summarizing the Story Linking Results. The left group presents
the results obtained using only the visual information, the middle group shows the
results based only on the textual correlation, and the right group shows the results
using both the visual and textual information.
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4.2.1 Story Ranking

The results computed from the proposed semantic linking method are further used in the

news story ranking. The ranking is based on the repetition of the stories. In a general sense,

more “interesting” or “hot” story topics appear more frequently and longer than other stories.

In our formulation, we use the frequencies of the stories as the “interestingness” criteria. The

story appearing the most is the most “interesting” story of that day.

Given two videos of the same date stamp, containing a and b stories, respectively, then

a similarity matrix with size [a] × [b] is constructed (Figure 4.4). Treating each story as a

node in a graph, the similarity map is considered as a weighted bipartite graph (Figure 4.5).

To rank the stories, we apply a breadth-first traversal technique on the bipartite graphs to

find the connected components of the stories. The stories are ranked by the sizes of their

corresponding clusters. The cluster of the related stories can provide more coverage of the

news topic, and it is better for further story summarization. The traversal algorithm is as

follows:

1. Given videos with a and b stories, construct the semantic similarity matrix and the

bi-partite graph;

2. Initialize the label LL = 1;

3. For node i = 1 to (a + b), perform:

66



������������

������������

�	�
��

��
����

������
��
����

������������

��
����

�	�����

������
��
����

������������

������������

�	�
��

��
����

�	�
�������

��
����

�	�����

Figure 4.9: A demonstration of the story ranking application. It shows two videos
with linked stories, and the story clusters are shown on the right side with different
color labels. Based on the ranking results, the viewer can infer that the stories related
to the “Iraqi Issue” are the most interested topic on that particular date.

• If the node is un-labelled, set label(i) = LL;

Recursively label its connected neighbors with LL;

Set LL = LL + 1.

4. Compute the sizes of the clusters with label = {1, · · · , LL};

5. Rank the story clusters based on their sizes, where larger size is assigned with higher

ranking.

Figure 4.9 shows an examples of story ranking. Linked stories from two videos are

presented, and the story clusters are labelled with different colors. We have applied the

story-ranking method on the test set and extracted the three most “important” story topics

for each day. The detailed results are shown in Figure 4.10. In the results, story clustering
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was performed automatically, while the story summary on each cluster is generated manually

for presentation purpose.

4.3 Conclusions

In this chapter, we have presented a semantic linking method for finding the similar news

stories across different sources. The semantic correlation between two news stories is re-

flected by the visual similarity and the textual correlation. The key frames of the stories

are analyzed. The “body” regions are extracted from the facial key frames for the persons

of focus, and the non-facial key frames are globally aligned using the Affine model to detect

the repeating events. The language correlation is computed based on the automatic speech

recognition (ASR) output of the videos. The visual and textual similarities are fused to

provide the overall semantic linkage between the news stories.

The output results of the semantic linking task are further utilized in a news ranking

task. The matched stories from the linking process are modelled as the vertices in a bipartite

graph. Sub-graphs are detected using the connected-component technique, and the ranking

of the story clusters is performed by analyzing the component’s size. Since more complete

information is provided, the results of the story ranking task can be applied for better

summarization of the stories.
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Date First Ranking Second Ranking Third Ranking

19980204 Crisis on Iraq. Clinton's Investigation. Military Sex Hurrassment Case.

19980205 Crisis on Iraq. Clinton's Investigation. El Nino in California.

19980207 El Nino in California. NBA, Michael Jordan. Clinton's Investigation.

19980208 El Nino in California. Clinton's Investigation. Crisis on Iraq.

19980209 El Nino in California. Clinton's Investigation. Crisis on Iraq.

19980211 Clinton's Investigation. Crisis on Iraq. Tragedy in Italy by US Airforce. 

19980212 Winter Olympics Games. Presidential Veto Law. Clinton's Investigation.

19980213 Surgeon General Nomination. Market and Stocks. Valentine's Day. 

19980214 War on Illegal Drugs. Clinton's Investigation. Crisis on Iraq.

19980215 El Nino in California. Hari Carry in Hospital. Winter Olympic Games. 

19980216 Taiwan Plane Crashed. Crisis on Iraq. Winter Olympic Games.

19980217 Crisis on Iraq. Zamora's Case. Clinton's Investigation.

19980218 Crisis on Iraq. Winter Olympic Games. Clinton's Investigation.

19980219 Clinton's Investigation. Crisis on Iraq. US Trade Deficit. 

19980220 Crisis on Iraq. Crisis on Iraq. American Wrestlers Visit Iran. 

19980221 Crisis on Iraq. Biological Weapon in Nevada. El Nino in California.

19980223 Crisis on Iraq. Tornado in Florida. Union Worker Strick.

19980225 Clinton's Investigation. Tornado in Florida. Market and Stocks.

19980226 Crisis on Iraq. Winfield Opera's Case. Internet Sales Tax.

19980302 Crisis on Iraq. Princess Dianna's Accident. Uranian Bombs.

19980304 Sexual Harrassment for Same Sex. Military Sex Hurrassment Case. First Female Space Shuttle Pilot. 

19980305 Clinton's Investigation. Market and Stocks. Blood Transfusion.

19980306 Unemployment Rate. Shooting of Lottary Workers. Clinton's Investigation.

19980307 White Superemist Suspects. Clinton's Investigation. Holicopter Crashed in California.

19980308 El Nino in California. Cirsis on Kosovo. Clinton's Investigation.

19980309 Woodward's case. Winter Weather Across the Nation. Clinton's Investigation.

19980310 Military Sex Hurrassment Case. Winter Weather Across the Nation. Clinton's Investigation.

19980311 Coffi Annan Visit US. Clinton's Investigation. Winter Weather Across the Nation. 

19980312 Bi-Partison Legislation in Senate. Asteroid 1997-AF-11. Winter Weather Across the Nation. 

19980313 Clinton's Investigation. Market and Stocks. Military Sex Hurrassment Case.

19980316 Clinton's Investigation. Vatican Released WW2 Documents. Separation of Sex in Military.

19980317 Clinton's Investigation. Market and Stocks House Construction.

19980318 Clinton's Investigation. IRS Reform Plan. Crisis on Kosovo.

19980319 Clinton's Investigation. Murcoch's Sale. US Trade Deficit. 

19980320 Clinton's Investigation. Breast Cancer Pill Approved. American Policy to Cuba.

19980321 Social Security Issue. Tornado in Southern States. Pope Johe Paul II in Negiria. 

19980323 President Clinton in Africa. Oil Prices Up. Prostate Cancer.

19980325 Arkensas School Shooting. President Clinton in Africa. Low Mortgage Rate.

19980326 President Clinton in Africa. Arkensas School Shooting. Crisis on Iraq.

19980327 President Clinton in Africa. Market and Stocks. Personal Incomes Increase.

19980328 Arkensas School Shooting. Hospital Deaths in California. Explosion in Arizona. 

19980329 Clinton's Investigation. Peru Plane Crashed. Hospital Deaths in California. 

19980330 Market and Stocks. New Home Sale Increase. President Clinton in Africa.

19980413 Bank Merging. IRS Tax Return Filing. Annual Parade in Northern Ireland. 

19980414 President Clinton is visiting Taxes. IRS Tax Return Filing. South Africa President Mandella.

19980416 Tornado in Southern States. Former Cambodian Dictator Died. Violence on Television. 

19980417 Tornado in Southern States. Clinton's Speech in Chile. US Trade Deficit. 

19980418 Tornado in Southern States. Clinton's Speech in Chile. New Experiments in Space.

19980419 Wang Dan is Released. Oklahoma City Bombing Anniversary. Internet Help on Health.

Figure 4.10: Table Summarizing the Story Ranking Results. The three most “inter-
esting” topics are shown for each day in the dataset.
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CHAPTER 5

SPATIOTEMPORAL VIDEO ATTENTION

In this chapter, we present a novel bottom-up spatiotemporal video attention detection

framework. The proposed method is able to provide potential locations of both prominent

objects in images and interesting activities in video sequences. Video attention methods

are generally classified into two categories: top-down approaches and bottom-up approaches.

Methods in the first category, top-down approaches, are task-driven, where prior knowledge

of the target region is known before the detection process. This is based on the cognitive

knowledge of the human brain, and it is a spontaneous and voluntary process. Traditional

rule-based or training-based object detection methods are the examples in this category.

On the other hand, the second category, bottom-up approaches, are usually referred as the

stimuli-driven techniques. This is based on the human reaction to external stimuli, such as

bright color, distinctive shape or unusual motion, and it is a compulsory process.

The proposed video attention detection framework is in the bottom-up fashion. Here,

the saliency maps based on the spatial and temporal features are generated separately and

dynamically fused to produce the final spatiotemporal saliency map. The temporal attention
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Figure 5.1: Work flow of the proposed spatiotemporal attention detection framework.
It consists of two components, temporal attention model and spatial attention model.
These two models are combined using a dynamic fusion technique to produce the
overall spatiotemporal saliency maps.

model is based on the analysis of the planar motions in the scene, while the spatial attention

model is based on the color contrast. The flow of the proposed framework is described in

Figure 5.1. The organization of the rest of this chapter is as follows: The temporal and spatial

attention models are presented in Sections 5.1 and 5.2, respectively. Section 5.3 describes

the dynamic fusion method to combine the two individual attention models. Section 5.4

presents the system performance with extensive experimental results. Finally, Section 5.5

concludes our work.

5.1 Temporal Attention Model

In the temporal attention detection, saliency maps are often constructed by computing the

motion contrast between image pixels. Most of the previously developed methods gener-

ate dense saliency maps based on pixel-wise computations, mostly dense optical flow fields

(Section 2.3). However, it is well known that optical-flows at edge pixels are noisy if mul-
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(a) Image 1 (b) Image 2 (c) Motion Regions

Figure 5.2: One example of the point matching and motion segmentation results.
Figure (a) and figure (b) show two consecutive images. The interest points in both
images and their correspondences are presented. The motion regions are shown in
figure (c).

tiple motion layers exist in the scene. Furthermore, dense optical flows maybe erroneous

in regions with less texture. In contrast, point correspondences (also known as the sparse

optical flows) between images are comparatively accurate and stable. In this section, we

propose a novel approach for computing the temporal saliency map using the point corre-

spondences in video sequences. The proposed temporal saliency computation utilizes the

geometric transformations between images, which model the planar motions of the moving

segments.

Given images in a video sequence, feature points are localized in each image using the

interest point detection method. Correspondences between the matching points in consec-

utive frames are further established by analyzing the properties of image patches around

the feature points. In our framework, we have applied the Scale Invariant Feature Trans-

formation (SIFT [59]) operator to find the interest points and compute the correspondences

between them across video frames. One example of the interesting point matching is shown

in Figure 5.2. Let pm = (xm, ym) be the m-th point in the first image and p′m = (x′m, y′m)
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be its correspondence in the second image. Given the point correspondences, the temporal

saliency value SalT (pi) of point pi is computed by modelling the motion contrast between

this target point and other points,

SalT (pi) =
n∑

j=1

DistT (pi,pj), (5.1)

where n is the total number of correspondences. DistT (pi,pj) is some distance function

between pi and pj. In our formulation, we analyze the geometric transformations between

images. The motion model used is homography. Homography is used for modelling the planar

transformations. The interesting point p = [x, y, 1]T and its correspondence p′ = [x′, y′, 1]T

can be associated by,




x̂′

ŷ′

t̂′




=




a1 a2 a3

a4 a5 a6

a7 a8 1







x

y

1




. (5.2)

Here, p̂′ = [x̂′, ŷ′, t̂′]T is the projection of p in the form of homogeneous coordinates. Param-

eters {ai, i = 1, · · · , 8} capture the transformation between two matching planes, and they

can be estimated by providing at least four pairs of correspondences. For simplicity, we use

H to represent the transformation matrix in the rest of the text. Also, we normalize p̂i, such

that its third element is 1. Ideally, p̂′ should be the same as p′. With noise present in the

imagery, a point p̂′ matches with p′ with an error computed after applying H, as,
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ε(pi,H) =‖ p̂′i − p′i ‖ . (5.3)

Motions of objects are only meaningful when certain reference is defined. For instance,

a car is said “moving” only if visible background is present in the scene and disagrees with

the car in terms of the motion direction. This fact indicates that multiple moving objects

are in the scene to indicate local motion existence. In these types of situations, a single

homography is insufficient to model all the correspondences in the imagery. To overcome

this problem, we apply the RANSAC algorithm on the point correspondences to estimate

multiple homographies that model different motion segments in the scene. The estimated

homographies are later used in the temporal saliency computation process.

For each homography Hm estimated by RANSAC, a list of points Lm = {pm
1 , · · · ,pm

nm
}

are considered as its inliers, where nm is the number of inliers for Hm. Given the homo-

graphies and the projection error definition in Eqn. 5.3, we can define the motion contrast

function in Eqn. 5.1 as,

DistT (qi,qj) = ε(qi,Hm), (5.4)

where qj ∈ Lm. The sizes of the inlier sets play dominant role in the current saliency

computation. It is well known that the spatial distribution of the interest points is not

uniform due to variance in the texture contents of image parts. Sometimes, relatively larger

moving objects/regions may contribute less trajectories, while smaller regions but with richer
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texture provide more trajectories. One example is shown in Figure 5.2. In these cases,

the current temporal saliency definition is not realistic. Larger regions with less points,

which often belong to the backgrounds, will be assigned with higher attention values. While

foreground objects, which are supposed to be the true attended regions, will be assigned

with lower attention values, if they possess more interest-points. To avoid this problem, we

incorporate the spanning area information of the moving regions. The spanning area of a

homography Hm is computed as,

αm =
(
max(xm

i )−min(xm
i )

)
×

(
max(ym

i )−min(ym
i )

)
, (5.5)

where ∀pm
i ∈ Lm, and αi is normalized with respect to the image size, such that αi ∈ [0, 1].

In the extreme cases, where max(xm
i ) = min(xm

i ) or max(ym
i ) = min(ym

i ), to avoid zero

values of αm, the corresponding term in Eqn. 5.5 is replaced with a non-zero constant number

(in the experiment, we use 0.1). The temporal saliency value of a target point p is finally

computed as,

SalT (p) =
M∑

j=1

αj × ε(p,Hj), (5.6)

where M is the total number of homographies in the scene. In the degenerated cases, where

some point correspondences do not belong to inlier sets of any of the estimated homogra-

phies, we apply a simplified form of the homography to each of these point correspondences.

Suppose {pt,p
′
t} is one of the “left-out” correspondences. The transformation is defined as
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(a) Image 1 (b) Image 2

(c) Point Correspondences (d) Temporal Saliency Map

Figure 5.3: An example of the temporal attention model. (a) and (b) show two con-
secutive images of the input sequence. (c) shows the interest-point correspondences.
(d) shows the detected temporal saliency map using the proposed homography-based
method. In this example, the camera follows the moving toy train from right to left.
Thus, intuitively, the attention region should correspond to the toy train. The saliency
map also suggests that the second attended region corresponds to the moving calender.
Brighter color represents higher saliency value.

a translation matrix Ht = [1 0 dt
x; 0 1 dt

y; 0 0 1], where dt
x = x′t − xt and dt

y = y′t − yt, and

the inlier set Lt = pt.

Up to this point, we have the saliency values of individual points and the spanning regions

of the homographies, which correspond to the moving objects in the scene. To achieve object-

level attention for Hm, the average of the saliency values of the inliers Lm is considered as

the saliency value of the corresponding spanning region. All the image pixels in the same

spanning region have the same saliency value. Since the resulting regions are rectangular, it

is likely that an image pixel is covered by multiple spanning regions. In this case, the pixel is

assigned with the highest saliency value possible. If the pixel is not covered by any spanning
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region, its saliency value is set to zero. One example of the proposed temporal saliency map

computation is demonstrated in Figure 5.3, where the camera follows a moving toy train

from right to left, and apparently the attention region in the sequence corresponds to the

moving toy train.

5.2 Spatial Attention Model

When viewers watch a video sequence, they are attracted not only by the interesting events,

but also sometimes by the interesting objects in still images. This is referred to as the

spatial attention. Based on the psychological studies, human perception system is sensitive

to the contrast of visual signals, such as color, intensity and texture. With this underlying

assumption, we propose an efficient method for computing the spatial saliency maps using the

color statistics of images. The algorithm is designed with a linear computational complexity

with respect to the number of image pixels. The saliency map of an image is built upon the

color contrast between image pixels. The saliency value of a pixel Ik in an image I is defined

as,

SalS(Ik) =
∑

∀Ii∈I

‖ Ik − Ii ‖, (5.7)

where the value of Ii is in the range of [0, 255], and || · || represents the color distance metric.

This equation is expanded to have the following form,
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SalS(Ik) = ||Ik − I1||+ ||Ik − I2||+ · · ·+ ||Ik − IN ||, (5.8)

where N is the total number of pixels in the image. Given an input image, the color value

of each pixel Ii is known. Let Ik = am, and Eqn. 5.8 is further restructured, such that the

terms with the same Ii are rearranged to be together,

SalS(Ik) = ||am − a0||+ · · ·+ ||am − a1||+ · · ·+ · · · ,

SalS(am) =
255∑
n=0

fn||am − an||, (5.9)

where fn is the frequency of pixel value an in the image. The frequencies are expressed in

the form of histograms, which can be computed in O(N) time order. Since an ∈ [0, 255],

the color distance metric ‖ am − an ‖ is also bounded in the range of [0, 255]. Since this is

a fixed range, a distance map D can be constructed in constant time prior to the saliency

map computation. In this map, element D(x, y) =‖ ax− ay ‖ is the color difference between

ax and ay. One color difference map is shown in Figure 5.4. Given the histogram f(·) and

the color distance map D(·, ·), the saliency value for a pixel Ik is computed as,

SalS(Ik) = SalS(am) =
255∑
n=0

fnD(m, n), (5.10)

which executes in a constant time order. Thus, instead of computing the saliency values of

all the image pixels using Eqn. 5.7, only the saliency values of colors {ai, i = 0, · · · , 255} are
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Figure 5.4: The distance map between the gray-level color values, which can be com-
puted prior to the pixel-level saliency map computation. Brighter elements represent
larger distance values.

necessary for the generation of the final saliency map. One example of the pixel-level spatial

saliency computation is shown in Figure 5.5.

Greatly inspired by the work presented in [62], we propose a hierarchical representation

for the spatial attention model based on the pixel-level saliency map computed previously.

Two levels of attentions are achieved: attended points and attended regions. Attended points

are analogous to the direct response of human perception system to external signals. They

are computed as the image pixels with the locally maximum spatial saliency values. On the

other hand, region-level attention representation provides attended objects in the scene. One

simple way to achieve the attended regions is to apply the connected-component algorithm to

find the bright regions. However, as shown in Figure 5.5, pixels with low attention values are

embedded in high-value regions. Connected-component algorithm will fail to include these

pixels in the attended region. Furthermore, connected-component method tends to generate

over-detection of the attended regions. In this paper, we present a region growing technique

for detecting the attended regions, which is able to resolve the above mentioned problems.
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Histogram of R-channel

Saliency values of colors

Input Image Saliency Values of Colors Saliency Map

Figure 5.5: An example of the spatial saliency computation. The left figure shows
the input image. The center-top figure shows the histogram of the R-channel of the
image, while the center-bottom figure shows the saliency values of the colors. The
horizontal axis represents the values of the colors, where an ∈ [0, 255]. The saliency
values are close to what human expects, since higher frequency indicates repeating
information in the image, and therefore, are relatively unattractive. The right figure
shows the resulting spatial saliency map.

In our formulation, the attended regions are firstly initialized based on the attended points

computed previously. Given an attended point c, a rectangular box centered at c with the

unit dimensions is created as the seed region Bc. The seed region is then iteratively expanded

by moving its sides outward by analyzing the energy around its sides. The attended region

expansion algorithm is described as follows,

1. For each side i ∈ {1, 2, 3, 4} of region B with length li, two energy terms E(si) and

E(s′i) are computed for both its inner and outer sides si and s′i, respectively, as shown

in Figure 5.6. The potential for expanding side i outward is defined as follows,

EP (i) =
E(si)E(s′i)

l2i
, (5.11)

where l2i is for the purpose of normalization.
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Figure 5.6: An example of the attended region expansion using the pixel-level saliency
map. A seed region is created on the left. Expanding potentials on all four sides of the
attended region are computed (shaded regions). The lengths of the arrows represent
the strengths of the expansions on the sides. The final attended region is shown on
the right.

2. Expand the region by moving side i outward with a unit length if EP (i) > Th, where

Th is the stopping criteria for the expansion. In the experiment, the unit length is 1

pixel.

3. Repeat steps 1 and 2 until no more side of B can be further expanded, i.e., all the

corresponding expansion potentials are below the defined threshold.

It should be noted that the expansion potential defined in Eqn. 5.11 is designed in such

a way, that the attended region is expanded if and only if both the inner and outer sides

have high attention values. The expansion stops at the boundary between the high value

regions representing the interesting objects and the low value regions for the background.

A demonstration of the expanding process is shown in Figure 5.6. It is possible that the

attended regions initiated using different attended points eventually cover the same image

region. In this case, a region merging technique is applied to merge the attended regions that

cover the same target image region by analyzing the overlapping ratio between the regions.
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(a) (b) (c) (d) (e)

Figure 5.7: The results of spatial attention detection on two testing images. Column
(a) shows the input images; column (b) shows the pixel-level spatial saliency maps;
column (c) presents the detected attention points; column (d) shows the expand-
ing boxes from the attention points in (c); finally, column (e) shows the region-level
saliency maps of the images.

To be consistent with the temporal attention model, the final spatial saliency map reveals

the attended regions in the rectangular shapes. Detailed results of the spatial attention

detection on two images are shown in Figure 5.7.

5.3 Dynamic Model Fusion

In the previous sections, we have presented the temporal and spatial attention models sep-

arately. These two models need to collaborate in a meaningful way to produce the final

spatiotemporal video saliency maps. Psychological studies reveal that, human vision system

is more sensitive to motion contrast compared to other external signals. Consider a video

sequence, in which the camera is following a person walking, while the background is moving

in the opposite direction of the camera’s movement. In general, humans are more interested
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in the followed target, the walking person, instead of the his surrounding regions, the back-

ground. In this example, motion is the prominent cue for the attention detection compared

to other cues, such as color, texture and intensity. On the other hand, if camera is being

static or only scanning the scene, in which motion is relatively uniform, then the human

perception system is attracted more by the contrasts caused by other visual stimuli, such as

color and shape. In summary, we propose the following criteria for the fusion of temporal

and spatial attention models,

1. If strong motion contrast is present in the sequence, temporal attention model should

be more dominant over the spatial attention model.

2. On the other hand, if the motion contrast is low in the sequence, the fused spatiotem-

poral attention model should incorporate the spatial attention model more.

Based on these two criteria, simple linear combination with fixed weights between two

individual models is not realistic and would produce unsatisfactory spatiotemporal saliency

maps. Rather, we propose a dynamic fusion technique, which satisfies the aforementioned

criteria. It gives a higher weight to the temporal attention model, if high contrast is present

in the temporal saliency map. Similarly, it gives a higher weight to the spatial model, if the

motion contrast is relatively low.

Finally, the spatiotemporal saliency map of an image I in the video sequence is con-

structed as,
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Figure 5.8: Plots of the dynamic weights, κT and κS, with respect to PV arT

(Const = 0.3). The fusion weight of the temporal attention model increases with
PV arT .

Sal(I) = κT × SalT (I) + κS × SalS(I), (5.12)

where κT and κS are the dynamic weights for the temporal and spatial attention models,

respectively. These dynamic weights are determined in terms of the variance of SalT (I). One

special situation needs to be considered carefully. Consider one scene with a moving object

whose size is relatively small compared to the background. The variance of the temporal

saliency map in this case would be low by the overwhelming background saliency values

and does not truly reflect the existence of the moving object. In this case, we compute

a variance-like measure, pseudo-variance, which is defined as PV arT = max(SalT (I)) −

median(SalT (I)). The weights κT and κS are then defined as,

κT =
PV arT

PV arT + Const
, κS =

Const

PV arT + Const
, (5.13)

where Const is a constant number. From Eqn. 5.13, if the motion contrast is high in the

temporal model, then the value of PV arT increases. Consequently, fusion weight of the
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(a) (b)

(c) (d) (e)

Figure 5.9: An example of model fusion. The video has two sitting people and one
walking person. (a) is the key-frame of the video. (c) shows the temporal saliency
map. (d) shows the region-level spatial saliency map. (e) is the combined spatiotem-
poral saliency map. Obviously, the moving object (the walking person) catches more
attention than the still regions (sitting persons). Thus, it is assigned higher attention
values. The attended region of the interesting action is shown in (b).

temporal model, κT , is also increased, while the fusion weight of the spatial model, κS, is

decreased. The plots of κT and κS with respect to PV arT are shown in Figure 5.8. One

example of the spatiotemporal attention detection is shown in Figure 5.9, which shows a

person is walking in front of the two sitting people. The moving object (walking person) is

highlighted by the detected attention region.

5.4 Performance Evaluation

To demonstrate the effectiveness of the proposed spatiotemporal attention model, we have

extensively applied the method on two types of video sequences, labelled Testing Set 1 and
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Figure 5.10: Spatiotemporal attention detection results for the testing videos in
Testing Set 1. Column (a) shows the representative frames of the videos; column
(b) shows the temporal saliency maps; column (c) shows the spatial saliency maps;
column (d) shows the fused spatiotemporal saliency maps; and column (e) shows the
regions that correspond to potential interesting actions in clips. It should be noted
that when rich texture exists in the scene, temporal attention model is able to detect
the attended regions using motion information, while the spatial model fails.

Testing Set 2. The testing sequences are obtained from feature films and television programs.

Testing Set 1 contains nine video sequences, each of which has one object moving in the

scene, such as moving cars and flying airplanes. The detailed results of Testing Set 1 are

shown in Figure 5.10. The following information is presented: the representative frames of

the testing videos (Figure 5.10(a)), the temporal saliency maps of the representative frames

(Figure 5.10(b)), the spatial saliency maps of the representative frames (Figure 5.10(c)), the

final spatiotemporal saliency maps (Figure 5.10(d)) and the detected regions that correspond

to the prominent actions in the videos (Figure 5.10(e)). It should be noted that, for those

videos that have richer texture, the spatial attention model generates less meaningful saliency

maps. However, with the help of the proposed dynamic model fusion technique, the temporal
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Figure 5.11: Spatiotemporal attention detection results for Testing Set 2. Column (a)
shows the representative frames of the videos; column (b) shows the pixel-level spatial
saliency maps; column (c) shows the extended bounding boxes using the proposed
expansion method; column (d) shows the detected attended points; finally, column (e)
shows the detected attended regions. Note that column (e) shows different information
from column (c). If the extended bounding boxes overlaps with great amount, they are
merged to produce a single attended region. Small bounding boxes are also removed.

attention model becomes dominant and is able to detect the regions where interesting actions

happen (as shown in Figure 5.10(e)). This exactly fits human perceptual reactions to motion

contrast in these types of situations regardless of visual texture in the scene.

The second testing set, Testing Set 2, contains video sequences without prominent mo-

tions. The videos are mainly focusing on the static scene settings or with uniform global

motions, i.e., there is no motion contrast in the scene. In this case, the spatial attention

model should be dominant over the temporal model. Some results on the testing sequences

in Testing Set 2 are shown in Figure 5.11. The presented results include the following: the

representative key-frames of videos (Figure 5.11(a)), the pixel-level spatial saliency maps
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(Figure 5.11(b)), the expanding regions (Figure 5.11(c)), the attended points in the rep-

resentative frames (Figure 5.11(d)) and the attended regions in the representative frames

(Figure 5.11(e)). Temporal saliency maps are not shown since they are uniform and carry

less information.

Assessing the effectiveness of a visual attention detection method is a very subjective

task. Therefore, manual evaluation by humans is an important and inevitable element in the

performance analysis. In our experiments, we have invited five assessors with both computer

science and non-computer science backgrounds to evaluate the performance of the proposed

spatiotemporal attention detection framework. Adopting the evaluation ideas from [62], each

assessor is asked to give a vote on how satisfactory he or she thinks the detected attended

region is for each testing sequence. There are three types of satisfactions, good, acceptable and

failed. Good represents the situations where the detected attended regions/actions exactly

match what the assessor thinks. As pointed out by [62], it is somehow difficult to define

the acceptable cases. The reason is that different assessors have different views even for

the same video sequence. One attended region considered inappropriate by one assessor

may be considered perfect to another. In our experimental setup, if the detected attended

regions in a video sequence do not cover the most attractive regions, but instead cover less

interesting regions, the results are considered acceptable. As described by this definition,

being acceptable is subjective to individual assessors. For instance, in the last example in

Figure 5.10, one assessor considers the walking person is more interesting than the other two

sitting people. Then, the current results shown is considered good to this assessor. However,
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Data Set Good Acceptable Failed

Testing Set 1 
(Moving Objects)

0.82 0.16 0.02

Testing Set 2 
(Attended Points)

0.70 0.12 0.18

Testing Set 2 
(Attended Regions)

0.80 0.12 0.08

System Performance Evaluation

Figure 5.12: System performance evaluation for three categories, Testing Set 1 with

moving objects, Testing Set 2: attended point detection and Testing Set 2: attended

region detection.

another assessor may be attracted by the sitting people the most, then by the walking person.

In this case, the current result is considered acceptable to the second assessor.

We have performed the evaluation on both testing sets with three categories: (1) Testing

Set 1 with moving objects in the scene; (2) Testing Set 2 with detected attended points; and

(3) Testing Set 2 with detected attended regions in the scene. Figure 5.12 shows the assess-

ment of all three categories. In this result table, element in row M and column N represents

the proportion of the votes on category M with satisfactory level N . The assessment shown

in the table demonstrates that the proposed spatiotemporal attention detection framework

is able to discover the interesting objects and actions with more than 90% satisfaction rates.

The results of attended point detection have a lower satisfaction rate than the other two

region-level attention representations. This is due to the fact that, the attended regions pos-

sess contextual information among image pixels, and therefore, have richer contents in terms

of semantic meanings than image pixels. On the other hand, attended points are isolated

from each other, and human perception system responds to them very differently for differ-
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ent persons. Due to the lack of semantic meanings, more disagreements between assessors

emerged for the detected attended points, and therefore, has lowered the satisfactory score.

Another interesting observation from the experiments is that, as the texture content in the

imagery becomes richer, the attention detection performs with lower satisfactory rate. This

is clearly shown in the results (Figure 5.11). For videos that have prominent objects with

relatively plain background settings, the proposed attention detection method performs well

and produces very satisfied attended regions. On the other hand, if the background settings

are much richer, some false detections are generated. This is actually a good simulation to the

human vision system. As pointed by the psychological studies in [22], human vision system

is sensitive to the difference or contrast between the target region and its neighborhood. In

the situations where the background settings are relatively uniform, the contrast between

the object and the background is larger. Thus, human vision system is able to pick up the

target region very easily. On the other hand, if rich background settings are present in the

scene, the contrast between the object and the background is less comparing to the former

cases, human vision system is distracted by other regions in the scene and less capable to

find the target object.

5.5 Conclusions

In this paper, we have presented a spatiotemporal attention detection framework for detect-

ing both attention regions and interesting actions in video sequences. The saliency maps are
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computed separately for the temporal and spatial information of the videos. In the tempo-

ral attention model, interest-point correspondences and geometric transformations between

images are used to compute the motion contrast in the scene. The areas of the spanning

regions of the motion groups are incorporated in the motion contrast computation. In the

spatial attention model, we have presented a fast algorithm for computing the pixel-level

saliency map using the color histograms. A hierarchical attention representation is estab-

lished. Rectangular attended regions are initialized based on the attended points. They

are further iteratively expanded by analyzing the expansion potentials along their sides. To

achieve the spatiotemporal attention model, a dynamic fusion technique is applied to com-

bine the temporal and spatial models. The dynamic weights of the two individual models

are controlled by the pseudo-variance of the temporal saliency values. Extensive testing

has been performed on numerous video sequences to demonstrate the effectiveness of the

proposed framework, and very satisfactory results have been obtained.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we have presented three new video processing and understanding frame-

works. These techniques are the necessities to the understanding of video contents, such

as video summarization, video classification and video clustering. In Chapter 2, we have

reviewed the previous accomplishments in the following three areas, temporal video scene

segmentation, video linking and matching, and visual attention detection. We described our

approaches for these three tasks in details in Chapters 3, 4 and 5, respectively.

In order to correctly analyze the video content, videos need to be firstly segmented into

meaningful units. These units are generally the collections of video shots, which are coherent

to certain aspects, such as sub-themes in movies, stories in broadcast news and family events

in home videos. Common approaches for scene segmentation include detecting significant

changes in video features and utilizing prior knowledge of a specific domain, which have

apparent limitations (Chapter 2). In Chapter 3, we have proposed a novel framework, which

is designed in a statistical fashion using the Markov chain Monte Carlo (MCMC) technique

with proposal updates including diffusions and jumps. The contribution of our proposed
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work is two-fold. First, it is not limited to fixed thresholds, i.e., it is able to detect weak

boundaries as well as strong ones. Second, it is general-purpose. We have applied the

framework to two domains, home videos and feature films, representing categories of raw

videos and produced videos, respectively. High precision and recall scores obtained in both

domains indicate the effectiveness and generality of the proposed technique. The proposed

work is accepted by the IEEE Transactions on Multimedia for publication (Zhai and Shah

[113]).

Once videos are segmented into meaningful units, users can further perform scene under-

standing tasks to organize the videos. In Chapter 4, we have presented a semantic linking

framework for correlating stories in broadcast news videos. Both visual and speech informa-

tion of the videos are used to compute the semantic similarity between videos. Homographies

are estimated using sparse interest-points to detect visually similar key-frames, such as near

duplicates. Automatic speech recognition outputs are analyzed to reveal the keyword co-

occurrence in the matching stories. The proposed story linking technique is also applied

to the story ranking task, which generates the interestingness of the stories. We have ob-

tained very satisfactory performance in both the story linking and ranking tasks. This work

was published in the ACM International Conference on Multimedia in 2005 (Zhai and Shah

[114]).

One of the video understanding tasks is the object/activity detection and recognition. In

order to solve this problem, the target objects/activities need to be firstly localized in the

scene. Visual attention detection provides a hierarchical saliency representation of the videos,
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which guides the search tasks. In Chapter 5, we have presented an effective and efficient

spatiotemporal visual attention detection technique. The temporal and spatial saliency

maps are generated separately. Temporal saliency map is computed based on the differences

between moving planes in the scene. The spatial saliency is computed based on the contrasts

in pixel colors. A dynamic fusion method is designed to combine both the temporal and

spatial saliency maps to emphasize the effects of motion contrasts. The proposed attention

detection framework has been extensively applied on several types of videos. Both point-

level and region-level attentions have been achieved with high user satisfactory rates. The

proposed work is accepted by the ACM International Conference on Multimedia in 2006

(Zhai and Shah [112]).

6.1 Future Directions

Scene level video representation provides more information of the video and many times

possesses complete story lines of the video. Currently, our proposed framework for linking

news stories uses low-level video features, such as speech and interest-points. The high-level

semantic similarity is expressed in terms of the similarities computed using these features.

It is sometimes difficult to bridge the gap between the low-level video features and high-level

video correlation. In our future work, one promising direction is to incorporate high-level

semantic concepts of the video, such as government-leader, outdoor scene, people walking,

etc. In this new plan, the high-level semantic concepts are firstly detected using audiovisual
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features of the video sequences. The semantic similarity between videos is then computed by

comparing their semantic concepts. One possible similarity measurement could be the Dice

metric, which models the co-occurrence of the semantic concepts in the matching videos.

It should be noted that not any semantic concept is meaningful or applicable in the task

of matching videos. For instance, concepts with high frequencies are less discriminative,

such as people walking, male speech and face. They may cause false matching due to their

relatively high occurrences. On the other hand, concepts that occurs very rarely are too

few to be used. Therefore, it is narrowed down to the mid-frequency concepts. There are

several ways to determine which concepts fall into this category. Often, when there is the

luxury of training data, the frequencies of target semantic concepts can be computed from

the training videos and estimated for the testing set. Another common approach is to utilize

public available resources, one of which is the well-known WordNet [25].

It comes down to the problem of how to effectively and efficiently classify videos into

the semantic concepts. Many times, the concepts describe particular objects or activities, or

combinations of these two, and the target objects/activities must be localized before classi-

fication. In this case, it is time consuming and erroneous to analyze the global information

of the scene. In our future work, we plan to apply our proposed spatiotemporal visual at-

tention detection framework in the high-level semantic concept detection task. This will

provides a hierarchical of processing priorities on the image parts. It is expected to limit

the search range and eliminate irrelevant image information in the decision making process.

To strengthen the effectiveness of the proposed visual attention framework, we also plan
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to incorporate other cues in the model, including intensity, texture and orientation. This

will make the proposed method able to detect not only the color difference in the image,

but also the differences in other signal domains. The bottom-up attention approach detects

prominent regions in the scene based on the raw signals. This can also be combined with

the top-down approach, which utilizes the prior knowledge of the target objects/activities,

to achieve more accurate classification performance.
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