Chapter 14

Detection and Representation
of Events in Motion Trajectories

K. Gould, K. Rangarajan, M. Shah

14.1 Introduction

The world we live in changes with time. Our visual system is capable of discovering
these changes; in particular we are able to detect moving objects and recover
structure from their motion. In our daily life we move our eyes, head and sometimes
whole body in order to perceive the changing environment and to interact with the
surroundings. We can recognize objects by looking at their shape only, however,
recognition tremendously improves if motion information is incorporated as well.
Conventional approaches to dynamic scene analysis attempt to recover structure
of objects using a sequence of frames, under the assumption that the structure
information will be used by a recognition system. However, motion itself has
generally not been used explicitly for recognition. Moreover, most approaches to
the structure from motion problem involve a number of assumptions regarding the
objects and their motion, and can only deal with a restricted set of cases with
a certain minimum number of points in some minimum number of frames. It is
also necessary in these approaches to solve systems of non-linear equations using
approximate methods which are very sensitive to noise.

We propose a different approach for the use of motion, in whick the motion
characteristics of moving objects are used without actually recovering the structure.
In this approach, we consider extended trajectories followed by the objects. We
believe that in many cases, where an object has a fixed and predefined motion,
the trajectories of several points on the object may serve to uniquely identify the
object itself. Therefore, it should be possible to recognize certain objects based on
motion characteristics obtained from trajectories of representative points.

A group of trajectories carry information about the motion as well as the shape
of the object they belong to. Therefore, a method which uses trajectory information
for recognizing objects will be superior to the method using only shape information.
Because it will be able to distinguish between objects having the same structure,
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but different motion, and between objects having the same motion, but different
structure. One isolated trajectory does not carry any explicit information about
the object shape, for instance a point on rotating cylinder and a cube will give
rise to very similar trajectories. However, a translating cube and rotating cube
can always be distinguished, because the spatial relationship between the points
in sequential frames as well as the trajectories of points themselves will differ.

One domain of application for a system that recognizes objects based on their
trajectories is in a controlled environment such as a factory, where the trajectories
of objects can be used to distinguish between stationary and various moving ob-
stacles. This information can then be used in planning a path for a moving piece
of machinery. TPS can also be applied to track the motion of stars in the solar
system, the trajectory followed by a military target, and chromosome motion in
the human body. .

In our approach, trajectories will be represented in a manner which will simplify
the identification of changes in motion. The representation of the trajectories are
analyzed at multiple scales in order to identify important evenis corresponding
to discontinuities in direction, speed, and acceleration using scale-space. These
important events are recorded in a representation called Trajectory Primal Skeich
(TPS).

In Section 2, methods for representing trajectories and the changes in motion
which occur in the trajectories will be discussed. In order to identify which of
these changes are significant, the scale-space of the trajectory representation is
calculated. This is discussed in Section 3. Section 4 deals with identifying the
primitives of motion as represented by trajectories. We have found that the prim-
itives of motion are the straight line, circle, ellipse, cycloid, and projectile. The
exact behavior of each of these primitives in the trajectory representations and in
scale space has also been determined so that arcas of the trajectory which corre-
spond to one of these primitives can easily be identified. Determining the primitive
types of unknown trajectories is discussed in Section 5. Section 6 presents some of
the results we have obtained. Finally, the composite TPS is discussed in section
seven.

14.1.1 Related Work

A great deal of work has been done in the field of psychology to show that people can
recognize objects from their trajectories {3, 11]. It has been theorized that humans
can recognize an object based on the motion of several points on that object by
inferring the three dimensional structure of the object from the transformations
the two dimensional image undergoes.

Cutting [2] discusses two similar concepts to be used for recovering the structure
of objects from their trajectories. The first concept, which is due to Johansson [4] is
that the motion of an object can be separated into two parts, the common moiion
or the motion of the objects as a whole, and the relative motion or the motion of
the individual parts of the object with respect to the entire object. Cutting defines
the term absolute motion which is the path of a particular point on the object.
The absolute motion of a point is equal to the sum of the common motion of the
object and the relative motion of the point. The absolute motion of a point is also
its trajectory. -

The second concept Cutting discusses is due to Wallach [12] who says that
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there are two types of displacements an object can undergo, those relative to the
object and those relative to the observer. These ideas are similar to those of Marr,
whose object centered coordinate system corresponds to Wallach’s displacements
relative to the object and whose viewer centered coordinate system corresponds
to Wallach’s displacements relative to the observer. Cutting points out that the
percetved center of the object centered coordinate system is critical to correctly
identifying the motion of the object and the object itself.

Cutting gives examples of six different types of motion, rolling wheels, walk-
ing people, swaying trees, aging faces, the rotating night sky and ezpending flow
fields. From experiments with human observers, Cutting concludes that the type
of motion determines which coordinate system, object centered or viewer centered,
should be used. In the first four examples Cutting suggests that an objéct centered
coordinate system is used by the observers since only one object in each image is
moving. In the last two examples, expanding flow fields and the rotating night
sky, a viewer centered coordinate system is more appropriate because the entire
environment is changing rather than just one object.

Todd [11] is interested in distinguishing between rigid and several types of non-
rigid motion such as bending, stretching, twisting and flowing. By displaying the
trajectories of either rigid or non-rigid objects, Todd shows that human observers
are able to distinguish between the two. Human observers are also able to visualize
the three dimensional form of the rigidly moving objects from their trajectories.

Todd explains this by noting that the two dimensional projections of rotating
rigid objects are elliptical trajectories, the minor axes of these ellipses lie along
a single straight line, and the points must traverse these ellipses at the same fre-
quencies. The purpose of Todd’s experiments was to determine what would affect
the observer’s ability to distinguish between rigid and non-rigid motion, such as
whether the axis of rotation is moving or stationary, the frame rate, and the speed
of rotation, none of which affected performance significantly, and the number of
frames, which did significantly affect the performance of the observers. He also
found that some non-rigid motions are easier to detect than others. Non-rigid mo-
tions due to differences in relative frequency and orientation are easier to detect
than those due to relative eccentricity.

14.1.2 Background - Primal Sketch

The term primal sketch has previously been used in shape representation. Marr
introduced the term when he defined the raw primal sketch [6]. The raw primal
sketch contains primitives which are edges, bars, blobs and terminations. Each
primitive is further described by its orientation, contrast, length, width and posi-
tion. These primitives represent the information from the zero-crossings of several
channels. The raw primal sketch is used to create the full primal skeich. This is
done by grouping the primitives in the raw primal sketch into tokens and finding the
boundaries among sets of tokens. The main idea is to integrate the information
from several channels of zero-crossings and identify primitives which correspond
to significant intensity changes, and then recursively grouping these changes into
boundaries.

A second example of the use of the term primal sketch is Asada and Brady’s
curvature primal sketch {1]. The curvature primal sketch is a method for represent-
ing the significant curvature changes on the boundaries of objects. The primitives
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are corner and smooth join, and the crank, end, and bump or dent which are com-
binations of corners.

We would like to define a new primal sketch, the trajectory primal sketch, which
is used not in shape representation, but in motion representation. We will define
a set of primitives which will represent the motion characteristics of trajectories,
and show how unknown trajectories can be described using these primitives.

14.2 Trajectory Representations

Significant changes in motion refer to a segment of the trajectory where the direc-
tion of motion of the point, the speed of the point or both are changing rapidly.
In order to identify the significant changes, a representation which contains all the
information of the trajectory itself while making the motion analysis simpler is nec-
essary. In other words changes in motion must be accurately represented and easy
to identify. Specifically we would like to work with several 1-dimensional functions
rather than the 2-dimensional projection of the trajectory. The approach we have
taken to find an adequate trajectory representation is discussed below.

14.2.1 Trajectory ¥ — S Curve Representation

Our first approach was to use a representation based on the ¥ — S curve. The
¥ — S curve 1s typically used in shape representation to define the boundaries of
objects. In the case of trajectories, ¥ refers to the direction of motion of a point
between two sequential time frames with respect to a horizontal line. S refers to
the distance that a point moves between time; and £;_;. This is a parametric one-
dimensional function where }_.S; is the parameter. 3", .Sy, where n is the number
of frames in the trajectory, equals the total distance a point covers in moving from
its initial position to its final position.

S and ¥ are calculated by applying the following equations to the trajectory
points where (z;,y;) are the coordinates of a point in frame i.

S = Vi(wi—zic)? + (i — 4i-1)? (14.1)
v = tan_l<w> (14.2)
T — Tiog

The ¥ — S curve accurately records the shape of the trajectory however two
problems exist. First, ) .S; is a difficult parameter to work with. Second, the
¥ — S curve itself does not consider the possible changes in speed of the point.
This is a serious problem since the speed of a point, and therefore the time at
which a significant change in motion occurs, is essential to the understanding of
motion. This problem is illustrated in Figure 14.1.

Figure 14.1 shows the trajectories of two different rolling balls which cover the
same amount of distance over the same path. The only difference between these
two rolling balls is that the ball in Figure 14.1.(b) is moving faster than the ball
in Figure 14.1.(a). It takes the ball in Figure 14.1.(a) 377 frames to cover the
same distance that the ball in Figure 14.1.(b) covers in only 94 frames. As shown
in Figure 14.1.(c) and (d), the ¥ — S curves of the trajectories in Figure 14.1.(a)
and (b), respectively, are virtually the same shape. In other words the significant
changes in the shape of the two curves occur at the same position on the S axis.
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Figure 14.1: Trajectory of one point on (a} A rolling ball through 377 frames, (b)
A second rolling ball through 94 frames, (¢) ¥ — S curve of ball in (a), (d) ¥ — S

curve of ball in (b).
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Figure 14.2: A point on a translating object. {a) Case a, {b) Case b. Even though
the two motions are significantly different, since there is no change in the direction
in both cases, the ¥ — S like representation will not be able to distinguish between
them.

Therefore the ¥ — S curve representation is not adequate to distinguish between
the two trajectories since a very valuable piece of information is lost, that is time.
Another simple example is shown in Figure 14.2. Here the locations of a point on
the translating object in five frames is shown for two cases. Even though the two
motions are significantly different, since there is no change in the direction in both
cases, the ¥ — S like representation will not be able to distinguish between them.

14.2.2 Trajectory Direction and Speed Representations

When dealing with shape, the only relevant information is the direction and length
of a line segment on the boundary. Ilowever, when dealing with motion, time is
an essential piece of information to record. Therefore, instead of considering ¥ as
a function of s, as is done in shape representation, two graphs are used. The first
one plots ¥, or the direction of motion, as a function of time. This is known as
the trejectory direction representation. The second graph plots S, or distance, as
a function of time and is known as the trajectory speed representaiion.

tan~! (*-—g::Z:ll)
v - - (14.3)
g = V- xi-1);§:r (y: ~ i-1)? (14.4)

To simplify these equations, if ¢ refers to the frame number rather than the
actual time, then At is always equal to one, and two divisions are eliminated. The
trajectory direction and speed representations make the changes in direction and
speed very obvious to the human observer. They alsoc make a strong distinction
between changes in speed versus changes in direction.

Figure 14.3.(a) shows the direction curve for the trajectory in Figure 1.(a). Its
shape is very similar to the ¥ — S curve of that trajectory, except that it is not as
long. This is because ¥, or the direction, is plotted as a function of time rather
than distance. If the object moved exactly one pixel each time frame, the ¥ — S
curve and the direction curve of that trajectory would be exactly the same since
the point would be moving one unit of distance every unit of time. Figure 14.3.(b)
shows the speed curve of the trajectory in Figure 14.1.(a). The small peaks in the
speed curve are the areas of the trajectory where the ball is moving faster. By
comparing the speed curve with the direction curve it is seen that the increase in
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speed occurs at the same time as the ball passes over the peaks in its trajectory.
The ball is moving faster in these areas because the points in the trajectory are
closer together, which means more distance is traveled in that time frame. The
direction and speed curves for the rolling ball in Figure 14.1 .(b) are shown in
Figure 14.4. These curves have similar shape but the elapsed time is much shorter.

14.2.3 Trajectory Velocity Representations

The trajectory velocity representations are another way to incorporate time into
the ¥ — S information. In this case there are again two graphs, the first one called
v, plots the velocity in the positive 2 direction against the time, the second graph
called v, plots the velocity in the positive y direction against time.

vz and vy are calculated from the following equations:

Ti— Ti-1
, = i %=l 14.5
wo= B (14.5)
Yi — ¥Yi-1
= = <= 14.6
Yy Al (14.6)

As with previous method, if we let ¢ be the time between frames At becomes
1, simplifying the equations. Examples of the trajectory velocity representations
for the two rolling balls in Figure 14.1 are shown in Figures 14.3 and 14.4. The v,
curves for both balls are cosine curves plus some constant which raises the curve
above zero. The v, curves for both balls are sine curves. Although v, and v, for
the two different balls have the same general form, the amplitude and the frequency
of these two sets of curves are very different.

The trajectory velocity representations record all the information available in
the trajectory. Changes in motion are also easily identified from this trajectory
representation. Segments of the curve which are fairly horizontal correspond to
times when the motion of the point is fairly constant. Segments of the curve where
the slope is not zero correspond to times when the motion of the point is changing.
The greater the magnitude of the slope the more rapidly the motion is changing.

14.3 Trajectory Primal Sketch

This section describes a method for converting the trajectory velocity representa-
tions into the Trajectory Primal Sketch. The TPS must be a compact representa-
tion of the significant changes in motion. We create the first level of this compact
representation by identifying the changes at various scales. This results in a set of
contours known as TPS contours, where each contour corresponds to a change in
motion. The important information contained in the TPS contours is the position
or frame number at which a contour occurs, the height or strength of the TPS con-
tour and the shape of the contour. Calculating the TPS contours, and extracting
these important values from the contours are explained in the next two sections.

14.3.1 Calculating TPS Contours

Once the trajectory representations have been calculated, the changes in motion
which appear as discontinuities in these representations need to be identified. This
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Figure 14.3: For rolling ball of Figure 1.a (a) Direction curve. (b) Speed curve. {(c)
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is done by studying the scale-space of the trajectory representation [14, 10] which
we call TPS conlours. Scale space is used because the discontinuities may appear
at various scales depending on the physical motion of the point.

The TPS contours are calculated by applying a mask to the input signal. This
mask is created using the Gaussian and its derivatives, where the value of o can
vary between one and fifteen. The size of the mask is dependent on o. Since the
Gaussian approaches zero after 3o, the size of the mask should be approximately
2% (3 x0). We have used a mask size which is equal to 6 * ¢ + 1 to insure the size
of the mask is odd. The results of applying this mask are then checked for zero-
crossings which correspond to discontinuities at a particular scale. TPS contours
are the curves which result from plotting the position of a zero-crossing, or the
frame at which a zero-crossing occurred, on the horizontal axis and the value of o
on the vertical axis. An example of a typical trajectory and scalespace contours
related to its vz, and v, are shown in Figure 14.5. It is clear from this Figure
that nature of the contours is complex, there are large number of contours at the
lower scale, which do not survive at higher scales. Therefore a method is needed
to identify contours corresponding to important events.

14.3.2 Parsing TPS Contours

The TPS contours referred to in the previous section were represented as a simple
list of coordinates, ( frame, o), which correspond to the frame number and the value
of ¢ at which a zero-crossing occurred. This list does not show any relation between
the various coordinates, such as which zero-crossings lie on the same contour. In
order to use this data to characterize motion we would like to link these unrelated
zero-crossings and determine a representative location, strength and shape for each
contour. Witkin refers to this process as Coarse-to-Fine tracking [14].

We begin by creating a two dimensional array in which elements that correspond
to zero-crossings will have a value of one, all other elements will have a value of
zero. This array will be used to link the zero-crossings into contours by tracking
relatively adjacent elements of the two dimensional array with a value of one.

Tracking begins at the smallest o value rather than at the largest o value as in
coarse-to-fine tracking. We have found that in some cases it is impossible to track
a contour entirely from one endpoint to the other. Therefore we will start tracking
at the smallest scale since the location of the zero-crossing is most accurate at this
scale, and the accurate location of the zero-crossing is extremely important. After
the two dimensional matrix is created with the frame number on its horizontal axis
and o on its vertical axis, the first zero-crossing is located. Next, we begin to track
the contour which may begin with this zero-crossing by checking a neighborhood
around this element for another zero-crossing. This neighborhood is shown in
Figure 14.6. The current zero-crossing is marked by an * in this Figure. The
numbers refer to the order in which the adjacent elements are checked for the next
zero-crossing. This tracking process continues until there are no zero-crossing in
the neighborhood of the current zero-crossing. Then we return to the smallest
value of ¢ and search for the next zero-crossing which may mark the beginning of
another contour. /

While performing this tracking process, three values are calculated which de-
scribe the contours location, strength and shape. The first value, the location of the
contour, is simply the frame number where the contour originated. The strength
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Figure 14.6: Neighborhood for tracking contours.

of the contour is the number of zero-crossings that belong to that contour. The
value which represents the shape, or the straightness, of the contour is calculated
by summing the distance between each zero-crossing as it is linked to the next
zero crossing. For example if the next zero-crossing is in region one, then the dis-
tance equals one, or if the next zero-crossing is in region seven, then the distance
equals /8. After the entire contour has been linked this sum is divided by the
strength — 1. A contour whose next zero-crossing was always found in region one
would have a shape value equal to one. The greater the shape value is the more
curved and irregular the contour is.

Only the contours which survive over a large percentage of the range of ¢ should
be considercd to correspond to significant changes in motion. For our experiments
we required that the contours survive over 60% of the o values. The shape value
could also be used to pick contours that represent significant changes in motion,
since drastic changes in motion result in trajectory representation segments which
are similar to step edges, and the scale-space model of a step edge is known to be
a straight line [10]. The TPS contains these three values for all contours which
survive.

14.4 Primitive Trajectories

In this section, we will present a number of primifive trajectories which can be
written as analytical expressions. We will compute the expressions for their v,,
and vy, and the trajectory primal sketch contours. For each primitive trajectory,
we will identify important events in its TPS. The aim is to express an arbitrary
trajectory as a composition of these primitives. We will consider four main types
of motion: translation, rotation, projectile and cycloid.

14.4.1 Translation

The trajectory corresponding to translation can be expressed as a sum of straight
lines. We know that the equation of a straight line is given by:

y=mz+ec¢ (14.7)

where m, and c are the slope and y-intercept respectively. Now, incorporating the
time in the above equation we can rewrite it as:

= at (14.8)
y = mat+ec (14.9)
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Differentiating z, y with respect to ¢t we get the expressions for v, and vy:
vy = a (14.10)
vy = ma. (14.11)

The sum of n such straight lines for a translation trajectory are given by:

n

g o= Y at(U(t—t:)—U(t - tig1)) (14.12)
y = Z(m;agt+c,-) (Ut ~t:) = U(t = tig1)) (14.13)

where U(t) is the unit step function, defined such that U(t) = 1 for ¢ > 0 and
U(t) = 0 otherwise. Now, v,, v, are given by:

ve = @t (8(t—t:) = 8(t —tip)) + > (Ut~ 1)

izl i=1
— Ut —tip1)) (14.14)
v = ) (miait+e) (8(—t:) = 8(t ~ tig1)) + D (muas) (Ut — 1)
=1 i=1
— Ut ~tig1)) (14.15)

where 6(t) is the impulse function. Now, the TPS contours are the loci of zero-
crossings of the following expression:

g ¥z = gft*éait (6(8 —ti) — 8(t — tiy1))
+ ia,- (Ut —1:) = Ut — tip1)) (14.16)
=
= iai (ti 97, (t:) ~ tiy1 97, (tiv1))
+ Z (97 (8) - 97 (ti21)) (14.17)

where ¢,7, g7, are the respectively the first and second derivatives of Gaussian with

. 2
zero mean and standard deviation o (¢9(¢) = e“#). And the TPS contours for
vy is given by:

ghxvy = gfx > (miait+c) (§(t — t;) — 6(t — tiy1))
i=1
+ Y (e (Ut =) = Ut = tig1)) (14.18)
i=1

n
= D (miaiti+0) gh(t:) = (Mitigr + ¢) g7, (ti)
i=1
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+ > miai (97 () = 97 (tinr)) (14.19)
i=1

In Figure 14.7.a we have shown an example of translation motion of a point
which is moving from location A to E in time tg — t4. Between locations A,
and B the point is moving with the constant speed in the same direction. At
location B the speed is changed instantaneously, but the direction remains the
same, the point continues to move with the same speed and direction up to location
C where the direction changes instantaneously but the speed remains the same.
The point continues with the constant speed and in the same direction up to
location D, where there is a sudden change in the speed as well as in the direction.
The TPS for this trajectory contains the location, strength and shape of the TPS
contours which correspond to significant changes in motion. The locations of these
significant changes in motion are is shown in Figure 14.7.a . We have indicated the
discontinuities in vz by ‘+’°, and the discontinuities in v, by ‘X’. It is clear that the
points B, C, and D are identified as events in the trajectory. At B we observe the
discontinuity in v, while at C and D we have discontinuities in both vz and vy.

14.4.2 Rotation

The trajectory corresponding to the rotation around a fized axis can be expressed
by an ellipse. The ellipse is defined as follow:

&

y2
+35 =1 (14.20)

where a, and b are the major and minor axes respectively. By incorporating time
and writing this equation separately for v, and v, we get:

aw| 8

z = —axcos(w#t) (14.21)
y = bxsin(wxt) (14.22)

where w is frequency. Figure 14.8, shows the parametric representation of ellipse.
The angle of rotation # = w xt. Notice, that for ¢ = b = r the above equations
reduce to equations for a circle of radius r around the origin. The TPS contours
of this trajectory can be obtained by convolving the above equations with g7:

g *Vp = —gp*(—aw)sinwt (14.23)
= —awsinwt (14.24)

since there is no effect of convolving Gaussian with the sine function. Similarly, we
get the following for vy:

g *Vy = g *bw * coswt (14.25)
= bwcoswt (14.28)

Therefore, in the interval 0— 27 the TPS contours of v; will be three straight lines

one each at 0, 7, 27 for wi. While the TPS contours of v, will be two straight lines
one each at %, %1 One example trajectory of a point rotating about a fixed axis

is shown in Figure 14.7.b. Four events corresponding to this trajectory are also
shown. The endpoints of the major axis are identified as significant changes in v,.
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Figure 14.7: Examples of primitive types. (a) Translation, (b) Rotation, (¢) Pro-
Jectile, (d) Cycloid.
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Figure 14.8: Parametric representation of an ellipse.

These are the points where, due to the direction of rotation (counter-clockwise),
v, makes the transition from positive values to negative on the right side of the
ellipse and from negative to positive values on the left side of the ellipse. Similarly,
at the endpoints of the minor axis, v, changes from positive to negative values on
the top and from negative to positive on the bottom. If the object were to rotate
in the clockwise direction, the positions of the events would remain the same, but
the positive to negative and negative to positive transitions would be exchanged.

14.4.3 Projectile

The trajectory followed by an object in the space due to gravity is called projectile
motion, and it is defined as follows:

z = wpfcosa)t (14.27)
: 2
vosinat + 95— (14.28)

Y

where vp is initial velocity, G is the acceleration due to gravity, and « is the angle.
Differentiating above equations with respect to t we get:

v; = —vpcosa (14.29)
vy = wvgsina+Gi (14.30)

Figure 14.7.c shows a synthetic trajectory and its TPS for projectile. A sole event
in this trajectory is a change in v, which is indicated by an ‘X’ This event occurs at
the position where the values of v, shift from positive changes to negaiive changes.
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14.4.4 Cycloid

The trajectory followed by the object which is rotating around a translating axis
is defined by a cycloid. The cycloid is defined as:

z = oa(wt--sinwt) (14.31)
y = a(l—coswt) (14.32)
where a is constant, and w is the frequency. The expressions for v., and vy are:
vy = a{w—wcoswt) (14.33)
vy = aw sinwt (14.34)

We have shown in Figure 14.7.d a trajectory corresponding to cycloid motion.
This trajectories might be obtained from a point on the rim of a rolling wheel. This
trajectory contains both types of discontinuities. The changes in vy, indicated by
an ‘X’, occur at the top of each peak and in between peaks. These are the positions
where v, changes from positive to negative or negative to positive. The changes in
v, occur between the peaks on both sides of the v, event. This is due to a change
in speed as each point approaches the bottom of the peak. The first ‘+’ in each
pair marks a slowing down in the positive & direction, while the second ‘+’ marks
a speeding up of the point in the positive 2 direction.

14.5 Determining Primitive Type

The trajectory primal skeich contains the location, strength, and shape of the TPS
contours for the discontinuities in velocity as well as the discontinuities in the first
derivative of velocity i.e. the discontinuities in acceleration. From the analysis and
examples in section 4, it is clear that the first derivative discontinuities of both the
rotation and cycloid have a sine and cosine relationship to each other. Therefore
the first step in identifying primitive types is to separate all the trajectories into
two categories. The first category or the rofation/cycloid group will contain all tra-
Jectories which exhibit a sine/cosine relationship in the first derivative. Everything
else will be placed into the {ranslation group.

The rotation/cycloid group can be broken down further into either rotation or
cycloid motion by examining the discontinuities in velocity as well as the discon-
tinuities in the first derivative of velocity. As predicted in the analysis of cycloid
motion, the v, graph for cycloid motion will be shifted some value above or below
the zero axis. So when the velocity discontinuities for v, are calculated, the scale
space contours will not look like a cosine curve as they did with the acceleration
discontinuities. Therefore v, and v, will not have a sine/cosine relationship. How-
ever, the scale space of v; and v, of a rotating trajectory will have a sine/cosine
relationship. Rotation and cycloid motion can be differentiated by checking for a
sine/cosine relationship in the velocity discontinuities. If it exists, then the trajec-
tory is an example of rotation, otherwise it is a cycloid.

The trajectories placed into the translation group can also be further classified.
The trajectories themselves will be broken down into segments, and each of these
segments will be classified as either straight line translation or curved translation.
The value of the slope of the velacity curve is the same as the value of the accel-
eration of the point within that segment. When a point is moving in a straight
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line, the acceleration of v, and vy, must be the same. However, when a point is
turning steadily, i.e., moving in a curved line, then the acceleration of v, and v,
will be different. The slope of v, and v, within a segment are compared to see
if they are similar to each other within a reasonable bound; if they are then the
corresponding segment of the trajectory is labeled as straight line translation. If
the values of the slopes are significantly different from each other, then the segment
of the trajectory is labeled as curved translation.

The segmentation is accomplished by using the locations of the TPS contours
of both the v, and v, graphs of a trajectory as the end points of each segment.
The slope of v, and v, are calculated within each segment using the values of the
velocity graphs at each of the end points of the segment. The slope of v, and vy
are then compared to determine if the translation is straight line or curved.

Using the locations of significant changes in motion found in the TPS and this
method, the primitive type of all the trajectories in this paper have been correctly
determined. '

14.6 Examples

In this section we will present results analyzing the TPS for a number of trajec-

tories obtained from real scenes. Since the trajectories from the real scenes were

given for a small number of frames, we used interpolation to explode the original
| trajectories to a large number of frames. We assumed that the motion between
| any two consecutive frames was in a straight line. In fact, one can compute the ex-
tended trajectories with a large number of frames from a moving sequence without
using any assumptions. Here, we do not consider that to be any significant factor
in our results.

Figure 14.9 shows four trajectories from the Superman sequence which was
used by Sethi and Jain {9]. The TPS for one of the trajectories is shown in Figure
14.9.(d). This particular trajectory is made by tracking a point on the head of the
leftmost man in the scene. Note that all important events, i.e. the places where
the direction or speed of the man changes, in this trajectory are captured by the
| TPS. The changes occur as the man moves both toward the camera and slightly
’ to the right. The changes in v, occur as the man makes small changes in direction
and changes in speed. The changes in direction in v, correspond to the man’s head

bobbing up and down as he runs toward the camera. There are also changes in
) speed. Figure 14.10 shows the v, and v, and corresponding scalespace contours

for this trajectory. i
| Next, the results for the Blocks scene are shown in Figure 14.11. In this scene :
| four different blocks are moving towards the center of the image. Trajectories of
[ points on two of these block are shown in Figure 14.11.(a). These two block are a
rectangular shaped block which travels from left to right across the image, and a
triangular shaped block which moves from the upper right corner of the image to
the center of the image. The TPS of a point on the rectangle is shown in Figure
14.11.(b). The two blocks whose trajectories are not shown are a rectangle which
does not move and a triangle which moves from the bottom center of the image to
the top center. The Figure 14.12 shows the results for Object scene. This scene
consists of three rectangular blocks, one begins at the lower left corner of the image,
the second begins in the Jower right, and the third begins at the top center of the
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Figure 14.9: Superman Sequence (a)-(b). Two frames of sequence, (c). Trajecto-

ries, (d). TPS of S1 trajectory.
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Figure 14.10: Trajectory Velocities of S1 and their scalespaces.
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image. All three of the blocks move toward the center of the image in a straight
line, they meet in the middle and then continue away from each other. Trajectories
of three points on the block which begins at the lower left corner of the image are
shown in Figure 14.12.(a). The TPS of one of these trajectories is shown in Figure
14.12.(b).

Figure 14.13 contains the nine trajectories of the Card sequence and three
images from this sequence. This sequence consists of two objects moving from right
to left and slightly upwards. Figure 14.13.(e) shows the TPS of one trajectory on
the top object, and (f) is the TPS of a trajectory on the lowest object. Both these
objects are translating, but each has several velocity changes in both z and y.

Figure 14.14 shows the trajectories obtained from the Walker sequence. This
sequence was obtained from a program reported by Cutting [3]. In this sequence
a person is shown walking. Eleven points representing the head, right shoulder,
left and right knees, left and right elbows, right hip, left and right wrists, and
left and right ankles of a person are tracked through ten frames. The trajectory
is then expanded to obtain 99 frames using the interpolation method described
earlier. The entire body moves up and down in a slight bouncing manner. The
movements of the shoulder and hip are ellipsoidal and the movement of arms and
legs are pendular. Figure 14.14.(c) shows the TPS for one foot of the walker while

(d) show the TPS for an elbow. The trajectory of the foot changes velocity in both
the z and y direction. The velocity of the elbow changes in the z direction with
only one change in the y direction. Figure 14.14.(e) shows the TPS for one wrist
of the walker. This trajectory has several velocity changes in the z direction, and
two changes in the y direction where the wrist move up slightly and then down
again.

The primitive type of all the trajectories in this section is translation, and based

on the information in the TPS, they are classified as translation by our procedure
for determining primitive types.

14.7 Composite Trajectory Primal Sketch

So for we have been dealing with individual trajectories. There can be several
trajectories belonging to a single object, we would like to create a composite repre-
sentation which captures the commonalities between trajectories belonging to the
same object. This representation, we shall refer to as CTPS, Composite Trajec-
tory Primal Skeich. A representation of a set of data is complete, if the data can
be regenerated from the representation with a desired accuracy. In the case of
CTPS, the input data is the coordinates of the feature points in the frames taken

at different instants. Therefore, we will also present a reconstruction scheme for
translation and rotation cases.

14.7.1 Translation

When the objects are quite far away from the camera, orthographic projection
can be assumed. Under orthographic projection, trajectories of points on an ob-
ject that undergoes translation only are identical and hence have identical sets of
events in their TPS. The events could be either in v, or vy or both. The CTPS
representation stores the events on one of the trajectories and the spatial coordi-
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Figure 14.11: Block Scene Object-A (a). Trajectories, (b). TPS of Blockl

nates of all the tracked points in the first frame. Each event is characterized by
its location i.e the frame number of its occurrence, and average v, and vy at that
instant. The average v, at the instance of an event is calculated by dividing the
displacement in z between this event and the immediate next event by the time
interval between them. The average v, at the instance of an event is calculated by
dividing the displacement in y between this event and the immediate next event
by the time interval between them. The CTPS representation also stores an initial
event located in the first frame, in addition to the observed events. With this
information, we will be able to recreate the entire sequence for all the points on
the object.:

Figure 14.15 shows the CTPS structure for the translation case. Figure 14.16.a
shows one of the trajectories with the TPS events marked on it. The trajectory of
the Cube has been chosen so as to include all possible combinations of events in
vz and vy. Initially the Cube is traveling along the z direction with a velocity of
vy = 3 and vy, = 0, and in frame 21 it changes its direction and moves along the
y axis with v, = 0 and v, = 2. This is a speed change in both z and y directions
and is accompanied by a direction change. This change is registered as an event
in both v; and vy in TPS. In frame 51, cube increases its speed alone i.e. vz = 0,
vy = 4, without changing its direction. This shows up as an event in vy alone. In
frame 81 the Cube changes its velocity to v; = 2, v, = 4 with a direction change.
This is registered as an event in v, only. Next, in frame 111 the Cube changes its
velocity to vy = 4, v, = 0 with a direction change, this shows up an event both in
vz and vy. In frame 146 it changes its velocity to vy == 6, v, = 0, which is an event



4.19)

point
ns A,
. At
s the
ation
:ame.
ip to
‘tion.

[P

DerECTION AND REPRESENTATION OF EVENTS IN MoOTION TRAJECTORIES 415

300

y 200

100l

300

Y 200

— 100t

(a)

T I I

(b)

Figure 14.12: Block Scene Object-B (a). Trajectories, (b). TPS of OAl
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Figure 14.13: Card Sequence. (a) Frame-1, (b) Frame-3, (c) Frame-5, (d) Trajec-
tories, (e). TPS of Blockl, (f) TPS of Block2.
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Figure 14.14: Results for Walker Scene. (a) Walker Sequence, (b) Trajectories, (c)
TPS of Right Foot, (d) Left Elbow, (e) Wrist.
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in z alone without direction change. In frame 176 it changes its velocity to v, = 6,
vy = —2 which is an event in v, alone without a direction change. In frame 206
it changes its velocity to v, = 12, v, = —4 which is an event in both v, and v,
without a direction change. Finally, in frame 241 it changes its velocity to v; =0,
vy = —4 which is an event in v, alone and it involves a direction change. Figure
14.16.b shows the CTPS representation for the Cube. Figure 14.16.c shows the
reconstructed trajectories from the representation.

Figures 14.17.a-b and 14.17.c-d show shows respectively the first and last two
frames in a 15 frame sequence. We applied the Moravec interest operator [7]
to this sequence of images and selected interesting points by setting a threshold.
The interest points in the first frame were then edited to choose two points on
the walking man, one on his head and another on his shoulder. The interest
points selected in the first frame are shown in Figure 14.17.e. The correspondence
method [8], with minor modifications was used to compute the trajectory of these
two points. The generated trajectories of these two points are almost parallel, as
expected and are shown in figure 14.17.f. The ctps representation of this trajectory
is shown in figure 14.17.g. The reconstructed trajectories, by choosing events which
survive over 5% of the o values are shown in figure 14.17.h. The number of events
picked up is nearly equal to the number of frames in the trajectory. One reason
being with a low threshold of 5%, even weak events survive. Therefore, the number
of events can be varied depending on the application by changing the threshold.
The other reason being the number of frames considered is not large. We had
problems in generating a long sequence with a stationary camera, a2s the object
was moving out of view in a small interval of time.

14.7.2 Rotation

As noted earlier trajectories corresponding to the rotation around a fixed axis can
be represented by an ellipse. An ellipse is characterized by its phase, frequency,
eccentricity, orientation, size, z-intercept and the distance between the z-intercept
and the center of ellipse [11]. Storing the spatial coordinates of the end points
of its major and minor axis along with the frequency and phase information also
completely specifies an ellipse. The line joining the end points of the minor axis is
extended to obtain the z-intercept, the orientation of this line is the orientation of
the ellipse, also the lengths of the major and minor axis are used to compute the
size and eccentricity. The point of intersection between the major and the minor
axis marks the center of the ellipse and hence the distance between the z—intercept
and the center of the ellipse is computed. Trajectories of points lying on the same
rotating object are ellipses with the same frequency, orientation and z-intercept
[11]. The fixed axis assumption [13] makes an equivalent statement that the minor
axis of the ellipses generated by the points on the same rotating object will all be
collinear. Figure 14.18 shows our CTPS for trajectories of rotating objects. The
representation stores the frequency of rotation of the object and the component
trajectories of the points on the object which are all ellipses. Each component
trajectory is represented by the spatial coordinates of the end points of the major
and minor axis of that ellipse along with the phase information.

Consider a simple case in which the major and minor axis of the ellipse are
aligned respectively with the # and y axis. Let the origin of the z — y coordinate
system be shifted to (z.,y.), the center of the ellipse. Then, parametric equation
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Translation CTPS
Number Of Points On the Object 1 npoinis
Number Of Events In the Trajectory :: nevenis
Location
Point X y
1
2
npoints
Events
No frame v vy
1
2
nevents

Figure 14.15: Translation CTPS. The information regarding the locations of points
in the first frame, and the events is recorded. Each event is characterized by its

location i.e the frame number of its occurrence, and the average velocities at that
instant.

of the ellipse with respect to the origin at (z.,y.) can be written as:

r = —a*xcosfh (14.35)
y = b*sin9 (1436)

Figure 14.8 shows the notation used. The frequency of rotation of the arm OPF is
the same as that of the corresponding point that is rotating in 3D. Also, § = a+w*t,
where « is the phase angle, and w the frequency of rotation. Hence, if we know w,
the frequency of rotation, the parameters a, b, z., y. of the ellipse, and the phase
angle a of the trajectory, we will be able to determine the position of the point at
any instant of time .

The orientation of the ellipse is decided by the axis about which the object
rotates. The decomposition of a trajectory into v, and v, makes it sensitive to
orientation. When the ellipse is oriented such that the major and minor axis respec-
tively are along the z-axis and y-axis, the two events in the v, and vy respectively
appear at the end points on the major and minor axes. As the ellipse gets reori-
ented by an angle §, the events are offset by # and hence don’t appear at the end
points of the major and minor axes. On the other hand we find that the direction
and speed representation is orientation insensitive. However, the observed events
do not appear at the end points of the minor axis of the ellipse. The events in speed
appear at angles /4, 3*x7/4, 5% w/4 and 7 * v /4, and the events in direction are
at angles 0, 7. Since the distance between points doesn’t change with the change
of axis, events in speed are orientation independent. Similarly, change in direction
is orientation independent as change in direction doesn’t change with the change
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Figure 14.16: (a) One of the trajectories with the TPS events marked on it. (b) The
CTPS representation for this translating cube. (c) The reconstructed trajectories
from the representation.
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Figure 14.17: (a)-(b). The first two frames in a 15 frame real sequence. (c)-(d).
The last two frames in the sequence. (e). The interest points detected in the first
frame. (f). The generated trajectories of a point on the head and a point on the
shoulder. The trajectories of these two points are almost parallel, as expected. (g).
The ctps for these trajectories. (h). The reconstructed trajectories, by choosing
events which survive over 5% of the o.
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Rotation CTPS
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Figure 14.18: Rotation CTPS. The representation stores the frequency of rotation
of the object and the component trajectories of the points on the object which are
all ellipses. Each elliptical trajectory is represented by the spatial coordinates of
the end points of the major and minor axis of that ellipse along with the phase
information.

of axis. The events in direction are at the end points of the major axis. The four
events in speed will mark the end points of the major and minor axis if they are
shifted by 45°. In our implementation we use the direction events in identifying
the end points of the major axis of the ellipse and the speed events for identifying
the endpoints of the minor axis. Points belonging to the same object will have
the same frequency of rotation. The frequency of rotation w can be determined
from the TPS of the trajectories, as follows w = 5_—‘13;, where A1 is the number
of frames elapsed between two consecutive events in direction. The point of inter-
section between the major and minor axis is the center {z.,y.) of the ellipse, a is
the half length of the major axis of the ellipse, and b the half length of the minor
axis. Ideally, the major and minor axis should be perpendicular to each other and
intersect at their mid points. However, due to delocalization of the events this is
not the always the case. We have noticed that the delocalization of the end points
of the major axis is negligibly small as the movement near these end points is very
small. On the other hand the movement near the end points of the minor axis
is large, and even a delocalization by only one frame makes a significant change
in the orientation of the minor axis. The difference between delocalization of the
events at the end point of major and minor axis will be more evident in an ellipse
with a high eccentricity value. Hence, we use the following procedure to compute
the parameters for reconstructing the ellipse. The spatial coordinates of the end
points of the major and minor axis are computed from the direction and speed
events. The point of intersection and the average length of the half segments of
the minor axis is computed first. The mid point of the major axis gives (¢, ¥c)-
Thus the parameters z., y., ¢ and b are computed consistently. Next, the phase
angle « of a trajectory is computed as @ = 27 —w.t%, where t* is the frame number
at which the direction event at the left end of the major axis is observed.

Figure 14.19.b shows the ellipse generated by the corner-1 of a Cube shown
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Figure 14.19: (a) A Cube rotating about an axis with direction (0,1,1), passing
through its centroid at (135,135,135). (b) The elliptic trajectories traced out by
‘ the corners of the Cube. {¢) The reconstructed trajectory of corner 1, superimposed
3’ on the original trajectory shown in b. Points on the original trajectory are marked

by ‘+’ and on the reconstructed trajectory by ‘.’ (d) The rotation CTPS of the

Cube.
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Figure 14.20: (a) A Cube rotating about an axis with direction (2,1,1), passing
through its centroid (135, 135, 135). (b) The elliptic trajectories traced out by the
corners of the Cube. {c) The reconstructed trajectory of corner 1, superimposed
| on the original trajectory shown in b. Points on the original trajectory are marked
‘ by ‘+’ and on the reconstructed trajectory by ¢’ (d) The rotation CTPS of the
| cube.
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# { Max | Min | Av # | Max | Min Av

1] 611 0 3.77 1] 10.99 0 8.33
2| 2.03 0 1.69 2 | 6.62 0 4.89
3 2.06 0 1.28 3 3.57 0 1.58
4 | 2.06 0 1.28 4 | 8.99 0 6.23
5 4.72 0 3.03 5 8.99 0 6.22
6 | 6.11 0 3.77 6 ] 10.99 0 8.335
i 2.03 0 1.69 7 6.62 0 4.894
8 | 4.72 0 3.03 8 3.94 0 2.59

(a) (b)

Figure 14.21: Error Tables for (a) Figure 19, (b) Figure 20.

in figure 14.19.a rotating about an axis with direction (0,1,1), passing through
(135,135,135). Orthographic projection was used to generate the trajectories.
The Cube was rotating at a frequency of % rotation per second i.e. 10° per
second. The observed events in direction which mark respectively the end points
of the major and minor axis are separated by 18 frames. Figure 14.19.c shows the
reconstructed trajectory of corner-1, superimposed on the original trajectory. The
small discrepancy between the original and the reconstructed trajectory is due to
the error in detecting the end points of major and minor axis from scale space.

The Table in figure 14.21.a shows the maximum, minimum and the average
error in reconstructing the trajectories of the rotating Cube shown in figure 14.19.
The Euclidean distance between a point on the original trajectory and the position
of the point on the reconstructed trajectory at the same time instant is considered
as the error measure. The minimum error is always 0, since the original trajectory
and the reconstructed trajectory are aligned at the top end of the minor axis.

Figure 14.20.b shows the ellipses traced out by the corners of a Cube shown
in Figure 14.20.a rotating about an axis with direction (2,1,1), passing through
(135,135, 135). In this case also, orthographic projection was used to generate the
trajectories, and it was assumed that the Cube was rotating at a frequency of 3l6
rotation per second. The observed events in direction and speed respectively were
used to find the end points of the major and minor axes. Figure 14.20.c shows the
reconstructed trajectory of corner-1, superimposed on the original trajectory. The
small discrepancy between the original and the reconstructed trajectory is due to
the error in detecting the end points of the major and minor axis from scale space.
The Table in Figure 14.21.b shows the maximum, minimum and the average error
in reconstructing the trajectories of the rotating Cube shown in Figure 14.20.

14.8 Conclusion

In this paper, we proposed a new approach for use of motion in a computer vision
system. In our approach, we use motion characteristics of objects without actually
recovering the structure. We outlined a multi-scale scheme for representing the
important events in the motion trajectories. These important events correspond
to the discontinuities in speed, direction and acceleration of the objects. Our
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method consists of converting the 2-D trajectory into two 1-D parametric functions,
vy and vy. These functions are then analyzed at multiple scales to identify the
significant changes in motion. The results of the multi-scale analysis are then used
to determine the primitive type of the trajectory based on a relationship between
the significant changes in motion in v, and v,. From experimental results with both
real and synthetic trajectories, the method is quite promising. Further, we showed
how a set of trajectories belonging to a single object can be compactly represented
in a composite trajectory primal sketch representation. We also presented a method
for reconstructing a trajectory from its CTPS.
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