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Abstract

This paper proposes a novel method, using constant inter-frame motion, for self-calibration from an image sequence of an object
rotating around a single axis with varying camera internal parameters. Our approach makes use of the facts that in many commercial
systems rotation angles are often controlled by an electromechanical system, and that the inter-frame essential matrices are invariant if
the rotation angles are constant but not necessary known. Therefore, recovering camera internal parameters is possible by making use of
the equivalence of essential matrices which relate the unknown calibration matrices to the fundamental matrices computed from the
point correspondences. We also describe a linear method that works under restrictive conditions on camera internal parameters, the solu-
tion of which can be used as the starting point of the iterative non-linear method with looser constraints. The results are refined by
enforcing the global constraints that the projected trajectory of any 3D point should be a conic after compensating for the focusing
and zooming effects. Finally, using the bundle adjustment method tailored to the special case, i.e., static camera and constant object rota-
tion, the 3D structure of the object is recovered and the camera parameters are further refined simultaneously. To determine the accuracy
and the robustness of the proposed algorithm, we present the results on both synthetic and real sequences.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Acquiring 3D models from circular motion sequences,
particularly turn-table sequences, has been widely used by
computer vision and graphics researchers, e.g.,
[36,31,4,35], since these methods are simple and robust.
Generally, the whole reconstruction procedure includes:
first, the determination of camera positions at different
viewpoints or, equivalently, the different positions of the
rotating device; second, the detection of object boundaries
or silhouettes; third, the extraction of a visual hull as the
surface model from a volume representation [21]. Fitzgib-
bon et al. [9] extended the analysis of the circular motion
to recover unknown rotation angles from uncalibrated
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image sequences based on a projective geometry approach
and multi-view geometric constraints. [28,29] recovered the
circular motion by using surface profiles. Wong et al. [42]
also presented a method for camera calibration using sur-
faces of revolution, which is related to circular motion since
an object placed on a turn-table spans a surface of revolu-
tion. Recently, Jiang et al. [19,18] developed new methods
to compute single axis motion by either fitting the conic to
the locus of the tracked points in at least five images or
computing a plane homography from a minimal of two
points in four images. Colombo et al. [6] improved the
approach [42] in which the calibration of a natural camera,
a pinhole camera with zero skew and unit aspect ratio [22],
requires the presence of two different surfaces of revolu-
tions in the same view. In addition, the method [6] relaxes
the conditions claimed by Bougnoux [19], that three ellipses
are needed to compute the imaged circular points.
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However, most of these methods deal with the case in
which a static camera with fixed internal parameters views
an object rotating on a turn-table (Fig. 1), and utilize the
fixed image entities of the circular motion. These fixed
image entities (Fig. 3) include two lines: one is the image
of the rotation axis ls, a line of fixed points, while the other
one, called the horizon line l1, is the image of the vanishing
line of the horizontal planes, e.g., p1 and p2 (pA and pB in
Fig. 1). Unlike the image of the rotation axis, the horizon
line is a fixed line, but not a line of fixed points. Under
the assumption of the fixed camera internal parameters,
the image of the absolute conic is fixed for a rigid motion.
Therefore, there are two points, i and j, located at the inter-
section of the absolute conic with the horizon line, and
remaining fixed in all images. Actually, these two fixed
points are the images of the two circular points on the hor-
izontal planes, and can be found by the intersections of
conic loci of corresponding points since the trajectories of
space points are circles in 3D space and intersect in the cir-
cular points on the plane at infinity. However, these entities
are fixed only when the camera has fixed internal parame-
ters. For example, the projected trajectory of a 3D point is
not a conic any more when the camera’s internal parame-
ters are varying (Fig. 2B).

In this paper, we concentrate on the situation where the
stationary camera is free to zoom and focus, and assume
that in many commercial systems, rotation angles are often
controlled by an electromechanical system [36,31,35,26],
i.e., they are constant and even known. We show that the
inter-frame essential matrices are invariant if the rotation
angle is constant but not necessary known and, therefore,
recovering camera internal parameters is possible by mak-
ing use of the equivalence of essential matrices. We also
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Fig. 1. The geometric configuration in 3D space. The space points Ai and
Bi are circularly moving around the fixed rotation axis on two different
planes pA and pB. To aid in visualization, we assume that the rotation axis
is vertical, so that the 3D points rotate in horizontal planes. In our case,
the relative angle between views i and i + 1 are constant and denoted by h.
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Fig. 2. Both (A and B) are the projected trajectories across 90 views of a typi
from (A) which uses a fixed camera, the solid curve in (B) has focal lengths chos
while the dashed curve in (B) has rf = 100 pixels.
introduce a linear method that works under restrictive con-
ditions on camera internal parameters, such as known cam-
era skew, aspect ratio and principal point, the solution of
which can be used as the starting point of the iterative
non-linear methods with looser constraints. The results
are optimized by enforcing the global constraints that the
projected trajectories of 3D points should be conics after
compensating the focusing and zooming effects. Finally,
using the bundle adjustment method tailored to the special
case, i.e., static camera and constant rotation angle, the 3D
structure of the object is recovered and the camera param-
eters are further refined simultaneously.

The rest of the paper is organized as follows. We start
with the description of previous work on self-calibration
in the next section, and then present the preliminaries of
the pinhole camera model and epipolar geometry in Section
3. In Section 4, a practical calibration method, making use
of constant inter-frame motion, is developed. A simple lin-
ear solution is also given which can be used as an initializa-
tion. The method is then validated through the experiments
on both computer simulation and real data in Section 5.
Finally, Section 6 concludes the paper with perspective of
this work.

2. Related work

Self- (or auto-) calibration is the process of determining
internal camera parameters directly from a set of uncali-
brated images. This differs from conventional calibration,
where the camera internal parameters are determined from
the image of a known calibration grid, e.g., [41,46,14], or
properties of the scene, such as vanishing points of orthog-
onal directions [5,22]. In self-calibration the metric proper-
ties of the cameras are determined directly from constraints
on the internal and/or external parameters.

The first self-calibration method, originally introduced
into computer vision by Faugeras et al. [8], involves the
use of the Kruppa equations. Kruppa equations embrace
the constraints that camera intrinsic parameters should
be consistent with the underlying projective geometry of
a sequence of images. Luong and Faugeras [25] have shown
that the Kruppa equations are equivalent to the Trivedi
constraints [40] and the Huang and Faugeras constraints
[17,11], although the equivalence does not mean that they
will produce the same results when used in self-calibration
algorithms. Algorithms for computing the focal lengths of
two cameras given the corresponding fundamental matrix
cal scene point under the configuration described in Section 5.1. Different
en with a mean value of 1000 pixels and a standard deviation rf = 10 pixels,
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and knowledge of the remaining intrinsic parameters are
provided by Hartley [11] and Bougnoux [3]. Mendonça
[27] generalizes the results [11,3] for an arbitrary number
of cameras and introduces a built-in method for the detec-
tion of critical motions for each pair of images in the
sequence. Thorough analyses of critical motions which
would result in ambiguous solutions by Kruppa-based
methods are described in [34] and [20].

An alternative direct method for self-calibration esti-
mates the absolute dual quadric, introduced by Triggs
[37], over many views. The basic idea is to transfer a con-
straint on the dual image of absolute conic to a constraint
on the absolute dual quadric and, as a result, to determine
the matrix representing the absolute dual quadric, from
which a rectifying 3D homography can be decomposed
that transforms from a projective to metric reconstruction.
Heyden and Astrom [15] showed that metric reconstruction
was possible knowing only skew and aspect ratio, and
[32,16] showed that zero skew alone was sufficient. In addi-
tion, Pollefeys et al. [32] developed a practical method for
self-calibration of multiple cameras with varying intrinsic
parameters, and showed results for real sequences.

Special motions can also be used for self-calibration.
Refs. [1,33] solved the self-calibration of a rotating and
zooming camera using the infinite homography constraint.
Before their work, [12] solved the special case where the
camera’s internal parameters remain constant throughout
the sequence. Frahm and Koch [10] showed it was also pos-
sible to solve the problem of generally moving camera with
varying intrinsics but known rotation information. Triggs
[38] provided a solution for self-calibration from scene
planes when the internal parameters are constant. Zisser-
man et al. [47] presented a method for self-calibration of
a stereo rig. For planar motion of a monocular camera,
the original method was published by Armstrong et al. [2].

Different from the existing self-calibration methods, our
algorithm makes use of constant inter-frame camera
motion, i.e., a 3D rigid displacement described by the rela-
tive orientation and translation of two cameras. Inter-
frame essential matrices are invariant in this case, since
the essential matrix depends only on relative camera
motion. This paper develops a novel linear algorithm for
estimating the relative focal lengths of multiple cameras.
The input of the algorithm is only a set of fundamental
matrices, and therefore there is no need for projective
bundle adjustment before self-calibration.
3. Preliminaries

3.1. Pinhole camera model

A real world camera can be modeled by a pinhole or
perspective camera model. A pinhole camera, based on
the principle of collinearity, projects a region of R3 lying
in front of the camera into a region of the image plane
R2. As is well known, a 3D point X = [X Y Z 1]T and its
corresponding projection x = [x y 1]T in the image plane
are related via a 3 · 4 matrix P as

x � K½Rjt�|fflffl{zfflffl}
P

X; K ¼
f cf u0

0 kf v0

0 0 1

2
64

3
75; ð1Þ

where � indicates equality up to multiplication by a non-
zero scale factor, R is a 3 · 3 orthonormal rotation matrix,
t is a translation vector, and K is a non-singular 3 · 3 upper
triangular matrix containing the five camera intrinsic
parameters: the focal length f, the aspect ratio k, the prin-
cipal point u0 = [u0v0]T and the skew factor c accounting
for non-rectangular pixels. The intrinsic parameters in K

define the internal imaging geometry of the camera, while
the extrinsic parameters (R and t) relate the world coordi-
nate frame to that of the camera.

3.2. Epipolar geometry

Among the geometric properties of a set of two cameras,
the widely known property in computer vision is the epipo-
lar geometry. It is algebraically represented by the funda-
mental matrix F,

x0TFx ¼ 0; ð2Þ
where x and x 0 are a pair of corresponding points. F is also
known as the uncalibrated version of the essential matrix,
E, because

F ¼ K0�TEK�1; ð3Þ
where K 0 and K are matrices representing the internal
calibration parameters of the stereo cameras. In general,
both matrices F and E have a rank two. For an arbi-
trary stereo pair, the rank two constraint is the only
constraint on the F, and thus F generally has seven de-
grees of freedom. The essential matrix, E = [t]·R, where
the rotation matrix R and the translation vector t repre-
sent the motion between the two positions of the camer-
as, has only five degrees of freedom: both R and t have
three degrees of freedom, but there is an overall scale
ambiguity. Note that the essential matrix, E, must have
a zero singular value and two equal non-zero singular
values, which is also known as the Huang and Faugeras
constraint.

4. Solving for self-calibration

It is well known that when the projective image mea-
surements alone are used it is only possible to recover the
scene up to an unknown projective transformation [7,11].
Additional scene, motion or calibration constraints are
required for a metric or Euclidean reconstruction. We also
use the constraints on camera internal parameters similar
to previous self-calibration methods. However, the main
difference is that constant inter-frame motion is exploited
in this paper.
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4.1. Self-calibration using constant inter-frame motion

In this section, we first elaborate on the equivalence
between the scenario where the camera is static and the
object is rotating around an unknown axis, and the case
where the object is fixed while the camera is both rotating
and translating.

The ith camera projection matrix can be factorized as
Pi = Ki [R|t], since our camera is static and thus has the
same R and t through all views. We are interested in the
case where the relative rotation angle between views i and
i + 1 are constant (Fig. 1). Let Rh denotes the 3 · 3 ortho-
normal rotation matrix of the object, which has only one
degree of freedom from h. Therefore, after applying the
rotation, the projective transformation of the ith frame
becomes Ki½RRi

hjt�. This means that the new camera center
is located at �ðRRi

hÞ
T
t, with new rotation matrix RRi

h.
Note that the equality is also true for non-constant
rotations.

Then let us rewrite the ith camera matrix such that the
world origin coincides with the ith camera center,

xi � Ki½RRi
hjt�X ¼ Ki½Ij0�

RRi
h t

0T 1

" #
X.

For the (i + 1)th view, we can derive that

xiþ1 � Kiþ1½RRhRTjðI� RRhRTÞt� RRi
h t

0T 1

" #
X.

Therefore, we obtain the essential matrix as

Ei;iþ1 ¼ ½ðI� RRhRTÞt��RRhRT; ð4Þ
where [Æ]· is the notation for the skew symmetric matrix
characterizing the cross product. Since R, t and Rh are all
constants, the inter-frame essential matrices are invariant.
It is possible to use the invariance property of the inter-
frame essential matrices to solve for the camera matrices,
Ki, given the set of fundamental matrices that encapsulate
the intrinsic projective geometry between two views. The
equality of essential matrices can be expressed as

KT
iþ2Fiþ1;iþ2Kiþ1 � KT

iþ1Fi;iþ1Ki; ð5Þ

where Fi,i+1 is the fundamental matrix between the ith and
(i + 1)th views. A solution may be obtained using a
non-linear least squares algorithm. The parameters to be
computed are the unknown intrinsic parameters of each
calibration matrix Ki and the following criterion should
be minimized:

min
Xn�2

i¼1

kKT
iþ2Fiþ1;iþ2Kiþ1 � KT

iþ1Fi;iþ1Kik2
F; ð6Þ

where the subscript F indicates the use of the Frobenius
norm, and KT

iþ2Fiþ1;iþ2Kiþ1 and KT
iþ1Fi;iþ1Ki are both nor-

malized to have unit Frobenius norm. It is also important
to enforce that two of the essential matrices’ singular values
are equal and the third one is zero. In our implementation,
we found that the final results are sensitive to errors in the
computed fundamental matrices. Therefore, we recom-
mend the methods [24,45] that minimize the reprojection
errors to compute the fundamental matrices between pairs
of images.

4.2. Linear approach

To obtain an initial starting point, we propose a linear
approach to compute an approximate solution for the cal-
ibration. This linear solution can be obtained by assuming
zero skew, known aspect ratio and the principal point. For
instance, we set the principal point u0 to (0,0), and the
aspect ratio to one. These assumptions result as follows:

KT
iþ1Fi;iþ1Ki �

fiþ1F 1
i fi fiþ1F 2

i fi fiþ1F 3
i

fiþ1F 4
i fi fiþ1F 5

i fi fiþ1F 6
i

fiF 7
i fiF 8

i F 9
i

2
64

3
75; ð7Þ

where fi and fi+1 are focal lengths of ith and (i + 1)th cam-
eras respectively, and F k

i denotes, in a row-major order vec-
tor, the components of Fi,i+1. From the Eq. (7), and the
equivalence property of the essential matrix, one obtains

fiF
j
i�1fi�1 ¼ kifiþ1F j

i fi; j ¼ 1; 2; 4; 5;

fiF
j
i�1 ¼ kifiþ1F j

i ; j ¼ 3; 6;

fi�1F j
i�1 ¼ kifiF

j
i ; j ¼ 7; 8;

ki�1;iF 9
i�1 ¼ ki;iþ1F 9

i ;

ð8Þ

where ki 2 R. In the cases where the elements F 9
i of the fun-

damental matrices are not zero, the focal lengths, fi�1, fi,
and fi+1, can be obtained from equations in (8) by the left
null space of the following matrix:

F 9
i F 1

i�1 F 9
i F 2

i�1 0 F 9
i F 4

i�1 F 9
i F 5

i�1 0 F 9
i F 7

i�1 F 9
i F 8

i�1

0 0 F 9
i F 3

i�1 0 0 F 9
i F 6

i�1 �F 9
i�1F 7

i �F 9
i�1F 8

i

�F 9
i�1F 1

i �F 9
i�1F 2

i �F 9
i�1F 3

i �F 9
i�1F 4

i �F 9
i�1F 5

i �F 9
i�1F 6

i 0 0

2
64

3
75.

ð9Þ

When more images are available, the linear estimation of
the focal lengths ðfiÞni¼1 can be given by the null space of
the A8ðn�2Þ�n, where

A8i�7 ¼ ½0T
ði�1Þ�1; F

9
iþ1F 1

i ; 0;�F 9
i F 1

iþ1; 0
T
ðn�2�iÞ�1�;

A8i�6 ¼ ½0T
ði�1Þ�1; F

9
iþ1F 2

i ; 0;�F 9
i F 2

iþ1; 0
T
ðn�2�iÞ�1�;

A8i�5 ¼ ½0T
i�1; F

9
iþ1F 3

i ;�F 9
i F 3

iþ1; 0
T
ðn�2�iÞ�1�;

A8i�4 ¼ ½0T
ði�1Þ�1; F

9
iþ1F 4

i ; 0;�F 9
i F 4

iþ1; 0
T
ðn�2�iÞ�1�;

A8i�3 ¼ ½0T
ði�1Þ�1; F

9
iþ1F 5

i ; 0;�F 9
i F 5

iþ1; 0
T
ðn�2�iÞ�1�;

A8i�2 ¼ ½0T
i�1; F

9
iþ1F 6

i ;�F 9
i F 6

iþ1; 0
T
ðn�2�iÞ�1�;

A8i�1 ¼ ½0T
ði�1Þ�1; F

9
iþ1F 7

i ;�F 9
i F 7

iþ1; 0
T
ðn�1�iÞ�1�;

A8i ¼ ½0T
ði�1Þ�1; F

9
iþ1F 8

i ;�F 9
i F 8

iþ1; 0
T
ðn�1�iÞ�1�;

here Aj denotes the jth row of the matrix A8ðn�2Þ�n.
From the null space of A8ðn�2Þ�n, we have a solution for

the estimation of the focal lengths up to a global scale j.
There are several options to compute j. One possibility is
to pick j that best enforces the Huang–Faugeras constraint



Fig. 3. The entities related to the geometry of a single axis motion
observed by a fixed camera. The fixed entities include the rotation axis, ls,
the horizon line l1, and the circular points, i and j, the vanishing point, v

of the rotation axis. The projection, oi, of the center of one circle Ci is the
pole of the horizon line l1 with respect to conic Ci as oi ¼ C�1

i l1.
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of equality of singular values of the Essential matrices
[3,27] for non-critical motion sequences. In our implemen-
tation, we compute the ratios qi of fi over f1, and thus com-
pensate the effects of varying focal lengths for each image
point, xij of the ith image, as x̂ij ¼ xij=qi. We then use the
existing method [19] to obtain an initial solution of the
focal length, f1, of the first image. Other focal lengths, fi,
can be simply computed as fi ¼ qi � f1.

However, the above method using Eq. (10) will fail when
the element F 9

i of the fundamental matrices are zeros. Note
that this special case is easy to be detected since all the
essential matrices are equal up to an unknown scale. In
other words, we only need to check the element, F 9

i , of
one inter-frame fundamental matrix F. It is shown by Men-
donça [27] that whenever the optical axes of the ith and
ðiþ 1Þth cameras intersect, F 9

i is equal to zero, since, in this
case, the principal points must satisfy the epipolar con-
straint, i.e., uiþ1

0

T
Fi;iþ1ui

0 ¼ 0, where uiþ1
0 ¼ ui

0 ¼ ½001�T.
While the case where the optical axes of the two cameras
intersect is a critical motion for Kruppa-based methods
[20], the constant inter-frame motion is still able to provide
enough constraints for the computation of the relative
camera motion. For example, one can check the following
equations based on the equivalence of the inter-frame
essential matrices:

F n
i F m

iþ1fiþ1 � F m
i F n

iþ1fi ¼ 0; m ¼ 1; 2; 4; 5; n ¼ 3; 6; ð10Þ
F n

i F m
iþ1fiþ2 � F m

i F n
iþ1fiþ1 ¼ 0; m ¼ 1; 2; 4; 5; n ¼ 7; 8. ð11Þ

Similarly to A8ðn�2Þ�n, we can build another matrix
A0

16ðn�2Þ�n, whose null space provides the solution of the
focal lengths up to a scale j. In this case, we still can use
existing method [19] to obtain j, although the Huang–
Faugeras constraint will fail. Note that, as in the case of
F 9

i , if any one of the components F m
iþ1;m ¼ 1; . . . ; 8 is zero,

it can be easily identified from the fundamental matrix of
any image pair and excluded in our computations.

4.3. Two-stage optimization

4.3.1. Conic enforcement after compensation

We first improve the results by enforcing the global con-
straint, originally proposed in Ref. [19], that the projected
trajectories of 3D points should be conics after compensat-
ing for the focusing and zooming effects. The main advan-
tage of enforcing conic constraint is that it is intrinsically a
multiple view approach as all geometric information from
the whole sequence is nicely summarized in the conics as
argued by Jiang et al. [19]. Practically, conic enforcement
efficiently improves the results as shown in Section 5.1.

The image points xi,j can be compensated as

x̂ij ¼ K1K�1
i xij; ð12Þ

where K1 is the camera calibration matrix of a reference
view, which is without loss of generality assumed to be
the first view. After the compensation, the conic property
of the correspondence tracks are fully restored, where the
entities related to the conic and plane motion become fixed
again, such as the rotation axis ls, horizon line l1, and cir-
cular points, i and j, shown in Fig. 3. Given a conic Cj,
there is a homography Hj to map Cj into an unit circle,
O, such that

O ¼ H�T
j CjH

�1
j ;

where Hj can be parameterized as [23,19]

Hj ¼
sj 0 �lj

0 sj �m

0 0 1

2
64

3
75

1
b � a

b 0

0 1 0

0 0 1

2
64

3
75 1 0 0

0 1 0

l1 l2 l3

2
64

3
75; ð13Þ

where sj is the scale that enforces the radius of the circle O

to be one, (lj,m, 1) is the pole, oj (Fig. 3), of l1 with respect
to the conic Cj, (a + ib, 1,0)T are the circular points i and j,
and (l1, l2, l3)T is the vanishing line l1. Basically, the param-
eters l1, l2, l3, a and b are fixed, since circular points and
vanishing line are fixed entities. In addition, m can be as-
sumed to be constant in that the pole is constrained by
the fixed rotation axis ls. Given m 3D points, therefore, a
total of 6 + 2m parameters needs to be estimated by mini-
mizing the following MLE function:

arg min
H1

Xn

i¼1

Xm

j¼1

d2ðx̂ij;CjÞ; ð14Þ

where H1 = {l1, l2, l3,a,b,m, sj,lj}, d2ðx̂ij;CjÞ are distance
function from point, x̂ij, to conic Cj, defined as

d2ðx̂ij;CjÞ ¼
ðx̂ijCjx̂ijÞ2

4ððCjx̂ijÞ21þðCjx̂ijÞ22Þ
; if ðx̂ij 2 CjÞ;

0; otherwise,

(
ð15Þ

where ðCjx̂ijÞi is the ith component of Cjx̂ij. After substitut-
ing x̂ij with Eq. (12), we obtain

arg min
H1;Ki

Xn

i¼1

Xm

j¼1

d2ðK1K�1
i xij;CjÞ. ð16Þ

This cost function is minimized using the standard
Levenberg–Marquardt algorithm [30].
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The 6 + 2m parameters are initialized as follows. First,
the focusing and zooming effects are compensated by using
the Eq. (12). Second, each conic is fitted to corresponding
points from at least five views. Third, the pole of each conic
with respect to the vanishing line is calculated as shown in
Fig. 3, and the point on the rotation axis ls which is nearest
to the pole, oi, is used to estimate the initial value of li.
Fourth, the radius of each 3D circle, transformed from
each imaged conic, determines the initial value of sj. Final-
ly, each conic is mapped to a unit circle with center at the
origin and the points on the conic is mapped to the points
near the unit circle for the optimal procedure.

4.3.2. Reconstruction using bundle adjustment
After the refined camera matrices are obtained, the 3D

points or structure can be determined by triangulation
from two or more views [13]. To minimize the overall
reconstruction errors and to further refine the estimated
camera parameters, here we use a bundle adjustment
approach [39] explicitly enforcing another available con-
straint: static camera and constant rotation angle. Given
n images and m corresponding image points, the maximum
likelihood estimate (MLE) can be obtained

arg min
H2

Xn

i¼1

Xm

j¼1

d2ðxij;Ki½RRi
hjt�XjÞ; ð17Þ

where H2 = {Ki,R,Rh, t,Xj}, and d2 (Æ,Æ) is the distance func-
tion between the image measurement xij and the projection
of the estimated 3D point Xj. Nevertheless, as shown in
[9,13], the circular motion has the fundamental ambiguity
on the vertical apex, v (Fig. 3), which causes unknown ratios
between the horizontal and vertical direction for the 3D
reconstruction. In order to remove this ambiguity, we as-
sume a unit aspect ratio and zero skew for all cameras and
specify a reasonable choice of the aspect ratio of the object.

Similar to most other self-calibration methods, such as
[32,1], we also have difficulty to precisely estimate the prin-
cipal points because the principal point u0 is known to be a
poorly constrained parameter which tends to fit to noise. In
practice, we notice that u0 is mostly located close to the
image center. Using this prior information, we model the
expectation of the principal point as a Gaussian distribu-
tion, which has its mean at the image center �u0, with the
uncertainties Ru0

¼ diagðr2
u; r

2
vÞ. Therefore, we apply the

prior information of principal point on Eq. (17). Conse-
quently, the bundle adjustment is rewritten as

arg min
H2

Xn

i¼1

Xm

j¼1

d2ðxij;Ki½RRi
hjt�XjÞ

 

þðui
0 � �u0ÞTR�1

u0
ðui

0 � �u0Þ
!
; ð18Þ

where ui
0 is the estimate of the principal point for each view.

Without further mention, we use 1/10 image width and
height as ru and rv, and 1/2 image width and height as �u0

and �v0, respectively.
Note that our optimization process differs from the gen-
eral reconstruction in that it explicitly encodes the specific
non-general motion, i.e., constant R, t, and Rh. Conse-
quently, a total of 3m + 4 parameters must be estimated
for m views, where three is the number of degrees of free-
dom of K (note that we enforce zero skew, unit aspect
ratio), and four includes three rotation angles in R and
one constant but unknown angle h (Fig. 1) in Rh. This is
a considerable saving over the 9m that would be required
for a projective reconstruction of a general motion
sequence if we make the same assumptions on the camera
internal parameters, which reduce the number of degrees
of freedom of a projection matrix P of a pinhole camera
from eleven to nine.

5. Experimental results

The proposed approach has been tested on both simu-
lated and real image sequences. First, a synthetic image
sequence is used to assess the quality of the algorithm
under simulated circumstances. Both the amount of noise
on the projected image points and on the rotation angles
of the objects are varied. Then results are given for real
image sequences to demonstrate the usability of this
proposed solution.

5.1. Computer simulation

The simulations are carried out on a sequence of views
of a synthetic scene, which consists of 100 points uniformly
distributed on a sphere with a radius of 200 units and cen-
tered at the origin. Our synthetic camera is located in front
of the scene at a distance of 500 units with three rotation
angles (20�, 20�, and 15�) between the world coordinate
system and the camera coordinate system. In addition to
an unity aspect ratio and zero skew, the camera’s other
internal parameters are chosen as follows. The focal
lengths are different for each view, randomly chosen with
an expected value of 1000 (in pixels) and a standard devia-
tion of 250. To avoid the case that the chosen focal lengths
fall outside the reasonable range, e.g., below zero, we limit
them to vary between 750 and 1250. The principal point,
u0, had an expected value of [0 0]T with a standard devia-
tion of 20

ffiffiffi
2
p

. An example view of the equivalent scene,
where the camera is moving and the object is stationary,
is shown in Fig. 4A.

5.1.1. Performance versus pixel error

To assess the performance versus noises on the projected
image points, nine views are generated to compute the cam-
era matrices. Gaussian noise with zero mean and a stan-
dard deviation of r 6 5.0 pixels was added to the
projected image points. The estimated camera parameters
were then compared with the ground truth. As argued by
Triggs [38] and Zhang [44], the relative difference with
respect to the focal length rather than the absolute error
is a geometrically meaningful error measure. Therefore,



A B

Fig. 4. (A) A view of geometrically equivalent sequences used for simulation, where magenta points denote the positions of cameras. (B) Reconstructed
3D points, where blue cubes denote the ground truth while red cubes are reconstructed ones at the noise level r = 2.5 pixels. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this paper.)
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we measured the relative error of focal length, f, and the
principal point, u0, while varying the noise level from 0.5
pixels to 5.0 pixels. At each noise level, we perform 100
independent trials, and the averaged results of the pro-
posed self-calibration algorithm are shown in Fig. 5. Errors
increase almost linearly with respect to the noise level for
both focal lengths and principal points. Using our two-
stage non-linear optimization, the results are refined from
a coarse starting point to a fine level for both f and u0.
After the first stage conic enforcement, it reduces on aver-
age around 18.5% (range from 7.4% to 36.7%) errors of the
estimated focal lengths. Then these errors are further
reduced by another average 11% at the second stage bundle
adjustment after enforcing the constant rotation angle. In
our experiment, we even increase the r up to 5 pixels.
For r = 2.5, a typical large noise in the practical calibra-
tion, the relative error of focal length f is 1.0%. Fig. 4B
shows the 3D reconstructed scene in one trial. The maxi-
mum relative error of f (resp. u0) is around 2.55% (resp.
1.39%) when r 6 5.0.

5.1.2. Performance versus rotation angle error
Another experiment (nine views) is carried out to evalu-

ate how sensitive the algorithm is to noise in the rotation
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Fig. 5. Performance of the focal length, f, and the principal point, u0, in a fun
principal point u0 with respect to the true focal lengths.
angles. Gaussian noise with zero mean and a standard devi-
ation of r 6 2.0 degrees was added to the rotation angles.
Considering the fact that extracted feature points will in
practice be affected by noise, we also add a typical noise
level of r = 1.0 pixels to all projected image points. The
final results after optimal estimation are shown in Fig. 6.
The influence of the orientation noise is larger than that
of pixel noise (see Fig. 5), which of course depends on
the absolute rotation angle between the views. Note that
this coincides with the observation by Frahm and Koch
[10], in which case this is more evident since they have
smaller rotation angles. The errors in both focal lengths
and 3D reconstruction increase almost linearly with respect
to the rotation angle noises. Notice also that the errors do
not go to zero as noise goes towards zero due to the added
noise in image projections.

5.2. Real data

The first real sequence is the Tylenol sequence from
Columbia Object Image Library (COIL-20). The COIL
sequences have previously resisted structure from motion
extraction, due to their low feature counts and variable
focal length, which this paper provides the machinery to
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ction of noise levels: (A) relative error of f, and (B) relative distance of the
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Fig. 6. Performance of focal length and 3D metric reconstruction in a function of rotation angle errors: (A) relative error of focal length and (B) relative
3D metric error. All results shown here are averaged over 100 independent trials.
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overcome. We use 18 frames out of the original 72 views of
the box as shown in Fig. 7. The tracks of the corresponding
points estimated using our previous work [43] are shown in
Fig. 9A, and the final determined focal lengths for these
images are shown in Fig. 8A. The estimated focal lengths
are consistent with the real sequence. For example, the
camera zoomed in a lot to capture the 5th and 15th frames
while it is zoomed out when shooting the 10th frame. To
evaluate the proposed method, we first compensate the
frames according to the final estimated calibration matrices
by using the 7th frame as the reference. The fitted conics
and estimated rotation axis are shown in Figs. 9B–D for
three compensated frames (frames 7, 5, and 11). We also
show the conics, rotation axis and horizontal line of the
compensated frames in Fig. 8B. Finally, piecewise planar
model with mapped texture is shown in Fig. 10.

We also tested our approach on the popular dinosaur
sequence from the University of Hannover. The sequence
contains 36 views of a dinosaur located on a turn-table
which is rotating with a constant angular motion of 10
degrees per frame. One frame with tracked points is shown
Fig. 7. Eighteen views of
in Fig. 11A. The computed focal length for the image
sequence is shown in Fig. 12A. The results are consistent
to the known truth that the focal lengths are fixed.

In another dinosaur sequence, the focal lengths of the
camera is set to change in a zigzag fashion (0.8–1.0–1.2),
by rescaling the original images. Three consecutive frames
are shown in Fig. 13. When the static camera is free to
zoom and focus, the 3D circular trajectory is not projected
to a conic anymore (Fig. 11B). The computed focal lengths
for the dinosaur sequence is shown in Fig. 12B, which is
close to the changing pattern in a zigzag fashion. To esti-
mate the correctness of our proposed method, the visual
hull of the dinosaur can be computed [31] as shown in
Fig. 14. The processing of the volume is performed using
a resolution in space of 2003 unit cubes for the bounding
box of the dinosaur. We have no hope to expect the same
estimated visual hull by using a calibrated sequence or a
sequence captured by a camera with fixed internal param-
eters. Nevertheless, we extend the power of reconstruction
from circular motion even in presence of changing internal
parameters.
the Tylenol sequence.
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Fig. 11. One frame of the dinosaur sequence and a subset of the point tracks—only 107 tracks which survived for longer than eight successive views are
shown. (A) In the case of a static camera with fixed internal parameters, the point tracks are ellipses which are images of circles. (B) When the static camera
is free to zoom and focus, the 3D circular trajectories are not projected to conics anymore.
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Fig. 10. Three snapshots of the piecewise planar models with mapped texture of the Tylenol box.
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Fig. 13. Three consecutive sample frames of the zigzag dinosaur sequence. These frames are rescaled from the original images by scales (A) 0.8, (B) 1.0,
and (C) 1.2, respectively.

Fig. 14. Four views of the 3D reconstruction of dinosaur from silhouettes.
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6. Conclusion

This paper focuses on the problem of self-calibration
from an image sequence of an object rotating around a sin-
gle axis in presence of varying camera internal parameters.
Using the invariance property of the inter-frame essential
matrices when the rotation angle is constant, we present
a new and simple algorithm for camera calibration. Com-
pared to the existing methods, we effectively utilize the pri-
or information, such as constant rotation angle and
circular motion, and design a two-stage optimization
approach to gradually refine the camera parameters from
coarse to fine. The experimental results demonstrate the
usability of this proposed solution.
References

[1] L.D. Agapito, E. Hayman, I. Reid, Self-calibration of rotating and
zooming cameras, Int. J. Comput. Vision 45 (2) (2001) 107–127.

[2] M. Armstrong, A. Zisserman, R. Hartley, Self-calibration from image
triplets, in: Proc. ECCV, 1996, pp. 3–16.

[3] S. Bougnoux. From projective to euclidean space under any practical
situation, a criticism of self-calibration, in: Proc. IEEE ICCV, 1998,
pp. 790–796.

[4] E. Boyer, Object models from contour sequences, in: Proc. ECCV,
1996, pp. 109–118.

[5] B. Caprile, V. Torre, Using vanishing points for camera calibration,
Int. J. Comput. Vision 4 (2) (1990) 127–140.

[6] C. Colombo, A. Bimbo, F. Pernici, Metric 3D reconstruction and
texture acquisition of surfaces of revolution from a single uncalibrated
view, IEEE Trans. Pattern Anal. Mach. Intell. 27 (1) (2005) 99–114.



X. Cao et al. / Computer Vision and Image Understanding 102 (2006) 227–237 237
[7] O. Faugeras, What can be seen in three dimensions with an
uncalibrated stereo rig?, in: Proc. ECCV, 1992, pp. 563–578.

[8] O. Faugeras, T. Luong, S. Maybank, Camera self-calibration: theory
and experiments, in: Proc. of ECCV, 1992, pp. 321–334.

[9] A.W. Fitzgibbon, G. Cross, A. Zisserman, Automatic 3D model
construction for turn-table sequences, in: SMILE Wkshp., 1998, pp.
155–170.

[10] J. Frahm, R. Koch, Camera calibration with known rotation, in:
Proc. IEEE ICCV, 2003, pp. 1418–1425.

[11] R.I. Hartley, Estimation of relative camera positions for uncalibrated
cameras, in: Proc. ECCV, 1992, pp. 579–587.

[12] R.I. Hartley, Self-calibration of stationary cameras, Int. J. Comput.
Vision 22 (1) (1997) 5–23.

[13] R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer
Vision, Cambridge University Press, Cambridge, MA, 2004.

[14] J. Heikkila, Geometric camera calibration using circular control points,
IEEE Trans, Pattern Anal. Mach. Intell. 22 (10) (2000) 1066–1077.

[15] A. Heyden, K. Astrom, Euclidean reconstruction from image
sequences with varying and unknown focal length and principal
point, in: Proc. IEEE CVPR, 1997, pp. 438–443.

[16] A. Heyden, K. Astrom, Flexible calibration: minimal cases for auto-
calibration, in: Proc. IEEE ICCV, 1999, pp. 350–355.

[17] T.S. Huang, O. Faugeras, Some properties of the e matrix in twoview
motion estimation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (12)
(1989) 1310–1312.

[18] G. Jiang, L. Quan, H.T. Tsui, Circular motion geometry using
minimal data, IEEE Trans. Pattern Anal. Mach. Intell. 26 (6) (2004)
721–731.

[19] G. Jiang, H.T. Tsui, L. Quan, A. Zisserman, Single axis geometry by
fitting conics, IEEE Trans. Pattern Anal. Mach. Intell. 25 (10) (2003)
1343–1348.
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