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Abstract

This paper describes a novel approach to automatically re-
cover corresponding feature points and epipolar geometry
over two wide baseline frames. Our contributions consist of
several aspects: First, the use of an affine invariant feature,
edge-corner, is introduced to provide a robust and consis-
tent matching primitives. Second, based on SVD decom-
position of affine matrix, the affine matching space between
two corners can be approximately divided into two indepen-
dent spaces by rotation angle and scaling factor. Employing
this property, a two-stage affine matching algorithm is de-
signed to obtain robust matches over two frames. Third,
using the epipolar geometry estimated by these matches,
more corresponding feature points are determined. Based
on these robust correspondences, the fundamental matrix is
refined, and a series of virtual views of the scene are syn-
thesized. Finally, several experiments are presented to illus-
trate that a number of robust correspondences can be stably
determined for two wide baseline images under significant
camera motions with illumination changes, occlusions, and
self-similarities. After testing a number of examples and
comparing with the existing methods, the experimental re-
sults strongly demonstrate that our matching method out-
performs the state-of-art algorithms for all of the test cases.

1. Introduction
Tracking feature points is a classic and the basic com-
puter vision problem. Currently, the tracking technique over
small baseline, such as a video sequence, is fully developed
[11, 3]. However, a number of very interesting applications
need to obtain reliable corresponding features over a wide
baseline, such as view morphing [10] and reconstruction
from multiple images [2, 4, 9]. In these applications, the
external and internal parameters between any two views are
significantly different, and illumination may also be signifi-
cantly different. Therefore, the features corresponding over
two wide baseline frames cannot be effectively determined
via the traditional matching or tracking methods due to the
large geometric transformation and illumination changes.
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Figure 1: Wide baseline frames of “House” sequence from Ox-
ford Univ. are 3D views, and “Graffiti-6” sequence from INRIA
are planar views (Homography). The corresponding viewing angle
is indicated below each image.

Fig.1 shows two sequences of wide baseline frames at dif-
ferent viewing angles.

In this paper, we present a new approach to obtain a
number of reliable corresponding points. First, an edge-
corner detector is used to determine affine invariant edge-
corners, which guarantee that the corners are located at the
intersection of two or more edges. Second, after decom-
posing the affine matrix, we found that the affine matching
space between two corners can be approximately divided
into two independent spaces by rotation angle and scaling
factor. Therefore, a two-stage affine matching algorithm is
designed to obtain robust matches over these two frames to
recover geometric transformation and illumination changes
between corresponding points. In the first stage, we explic-
itly search these two spaces to obtain a good initial state
for the gradient descent minimization used in the second
stage. Third, we use the robust fundamental matrix esti-
mation [4, 16, 2] to eliminate the outliers and estimate the
initial epipolar geometry. Fourth, using the initial epipo-
lar geometry constraint, we recompute the matches in the
images by using our two-stage matching algorithm, which
can efficiently deal with the self-similarities. Finally, we
reestimate the fundamental matrix and get more robust cor-
responding points, and generate a series of virtual views to
synthesize a 3D virtual scene by employing image based
rendering technique.
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Figure 2: The red pixel ‘×’ is an edge pixel (a) or a pixel neigh-
boring edge pixels (b). It is located at the origin of a n×n window.
The edge passing through the origin can be quickly detected.

2. Related Work

The popular technique for small baseline motion tracking is
to minimize the sum of squared differences (SSD) of im-
age intensities over two consecutive frames. However, SSD
based frame-to-frame tracker only uses translation motion.
Therefore, it may accumulate the errors over time due to
other geometric deformation: rotation, and scaling. Shi and
Tomasi demonstrated that using an affine model can effec-
tively compensate the errors over video frames [11]. At the
same time, they designed a monitor to evaluate the good-
ness of the correspondences based on the image residuals.
Following this direction, Fusiello et al. presented a statisti-
cal approach to monitor and reject the outliers [3], and Jin
et al. explicitly used illumination information to improve
the monitor [5].

Pritchett and Zisserman estimated reliable point corre-
spondences based on local planar homographies [7]. These
homographies were determined by parallelogram structures
or using motion pyramids. Based on these homographies,
the matches can be increased by cross-correlation at the
sub-pixel level. However, in general case, the parallelo-
grams that they used may not be present in certain images,
or the similar parallelograms may be repeated due to the
self-similar structure. Moreover, their method only recovers
the homographies related to the parallelograms, and misses
some other important homographies implied in the frames.

Baumberg detected Harris features using the second mo-
ment matrix and scale space [1]. After obtaining affine tex-
ture invariant corner, a Mahalanobis distance metric was
used to measure similarity between the two feature vectors.
Similarly, Tuytelaars and Van Gool extracted affine invari-
ant regions based on a combination of corners and edges,
then matched these features using color moments [14]. Fol-
lowing this direction, Mikolajczyk and Schmid presented
the recent work on affine invariant interest point detector
[6]. Since they used multi-scale space to determine feature
points, their method worked very well for significant scal-
ing case (homography case).

3. Edge-Corners
A corner is a very useful feature for motion correspondence
and stereo matching, etc. The common Harris corner de-

tector uses a corner operator,C =
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over a window around a pixel, where C is the second mo-
ment matrix. This operator detects point where the image
gradients, Ix and Iy, change significantly along the hori-
zontal and vertical directions. Rangarajan et al. defined a
corner as the junction of two or more straight line edges,
and determined an optimal function to detect the corner[8].
Smith and Brady used non-linear filtering to obtain a fast,
noise resistant corner over an image [12]. Recently, Shen
and Wang used modified Hough transform to dynamically
detect edges and corners [13]. However, their edge detec-
tor seems not robust when it is applied to real images. In
our experiments, we found that the existing corner detec-
tors usually do not provide consistent and reliable results
when the motion gap between two frames is large.

In order to obtain a consistent and affine invariant corner
over a wide baseline gap, we combine Canny edge detector,
local Hough transform, and Harris corner operator together
to design a new matching primitive, edge-corner. One very
important property of an edge-corner is that the corner is
guaranteed to be located on the intersection of multiple
edges. Since the intersection of edges is projected as an
edge intersection under the perspective projection (except
in the cases when the view point is located on the plane con-
taining these edges), the edge-corner is a consistent, affine
invariant primitive for accurate matching over wide baseline
frames. Our edge-corner detector is implemented by using
the following steps.

First, we use the Canny edge detector to get the edges.
Then, we select each edge pixel and its neighboring pixels
as corner candidates. Fig.2.b shows that even though the
pixel with ‘×’ is not lying at the edge, it still has a chance
to become an edge corner.

Next, for each candidate, we consider a n × n window
around this pixel, and set the origin at the window’s center
to build a local coordinate system (Fig.2). Every straight
line across the origin has a fixed tangent value, which can
be denoted as θ = tan−1(y/x). For each quantized interval
θi, if the number of edge points is greater than a threshold,
there is an edge with angle θi passing through the corner
candidate. If the number of edges passing this origin is more
than 1, this point becomes a potential corner.

Third, we select a threshold λ and use the Harris corner
operator to evaluate the goodness of this corner. Then, the
non-maxima suppression method is applied to suppress a
nearby area to find the best corner candidates. Fig.3 com-
pares Harris corners with edge-corners for “House” frames.
Our edge-corners are more precisely located on the junction
of edges than Harris corners, and some poor Harris corners



Figure 3: Corners in house frame 0. Left: corners detected
by Harris corner detector. Right: edge-corners detected by our
method.

are eliminated, which can speed up matching process in the
next step.

4. Corner Matching
In this section, we first derive the affine matching equation.
Next, we show that using matching scheme with the affine
matching equation can obtain stable matches over wide
baseline images, which do not contain significant inplane
rotation or scaling. Furthermore, we show that using affine
matrix decomposition, the affine matching space between
two corners can be approximately divided into two inde-
pendent spaces by rotation angle and scaling factor. Then,
a two-stage affine matching algorithm is designed to over-
come the scaling and inplane rotation limitations, and to de-
termine reliable matches for general wide baseline images.

4.1 Affine Invariant Matching

Since our edge-corners are affine invariant, the matching
between corresponding points can be represented as:

I2(Ax + d) = I1(x), (1)

where I1 and I2 are two original images, A is a 2D matrix
and d is the translation vector. Eq.1 uses an affine motion to
compensate the geometric transformation between two im-
age patches (or corners). However, in wide baseline images,
the illumination may also change significantly. In order to
eliminate the illumination effect, we modify Eq.1 and ob-
tain

µI2(Ax + d) + δ = I1(x), (2)

where µ depends on the reflection angle of light source,
δ depends on the camera gain. We can compute the best
match by minimizing the residual

ε =
∑
W

[(µI2(Ax + d) + δ) − I1(x)]2. (3)

This function can be solved by the first order Taylor expan-
sion at A = I (identity matrix), d = 0, µ = 1, and δ = 0.
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Figure 4: Corner matching. Point ‘�’ is the starting position of
p1i, which is located at the center of a search area (big square).
Points ‘�’ are the local minima. Points ‘◦’ are the corner points
p2j . (a) Search by traditional gradient descent scheme. The search
may be stalled at some local minimum such as 1 and 2. (b) corner
matching scheme, which directly compares the corners p2j with
p1i in the search area.

4.2 Matching Scheme

In wide baseline matching, the search process is more diffi-
cult than small baseline frames. Fig.4.a shows a traditional
searching scheme, which starts from position of p1i follow-
ing the initial gradient descent direction. After encountering
a local minimum or a corner (corner may be a kind of lo-
cal minimum), the algorithm will stop and usually can not
jump out of the trap by using Newton-Raphson iteration.
As a result, the traditional searching scheme usually cannot
obtain the correct solution even for simple translation case
as shown in Fig.5.a (we used the KLT code of [11], which
is available online).

In our scheme (Fig.4.b), we only compare the matches
between edge-corners, which can efficiently reduce the
search space and avoid the trapping problem due to the lo-
cal minima. First, we initialize the translation part d = 0
in Eq.2 and set the origin of the corner’s window at p1i in
I1 and p2j in I2 respectively. The new equation is repre-
sented as x2 = Ax1 + d, where x1 and x2 are the local
coordinates of the corners. Next, we apply this scheme us-
ing Eq.2. Since our edge-corner is consistent in most cases,
we add a constraint d ≤ 2 pixels and only allow a small
translation of p2j , which can effectively avoid the serious
divergence problem in the Newton-Raphson iteration. Af-
ter the iteration, the corner p2j may move to a new position
p′2j , where d = |p′2j − p2j | ≤ 2. The residue ε1i2j(Eq.3) is
used to evaluate the goodness of the match. After searching
the whole area, we consider the corner p′2j with the smallest
ε1i2j as the best match for corner p1i. Third, we use the ro-
bust fundamental matrix estimation to eliminate the outliers
in these matches. In this paper, we use RMS (Root-Mean-
Squared distance error (pixel)) to evaluate our results [4].
Fig.5 shows that our method works very well if the major
motion of camera is translation (Fig.5.b) or looming (≤ 2×
scaling) (Fig.5.c).

However, in general, the camera motion between the
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Figure 5: Comparison of KLT algorithm and the corner matching scheme. (a)(frame 0 and 100 of “Artichoke” from CMU) is the result
by using KLT code, there are 5 correct matches. (b) − (e) are the results by using the proposed scheme. (b) shows 184 correct inliers for
this translation case (a), the RMS is 0.277. (c) (frame 0 and 40 of “Lab” from CMU) shows 67 correct inliers for the looming case, the
RMS is 0.435. (d) (frame 0 and 6 of “House”) shows 59 correct inliers located on the house, no correct correspondences are recovered
on the ground due to the in-plane rotation. (e) (image 3 and 8 of “Valbonne” from Oxford Univ.) shows that no correct inlier is obtained.
Red points are correct inliers. Blue points are incorrect inliers, but are consistent with the estimated fundamental matrix. In our results, the
outliers have been eliminated by the robust fundamental matrix estimation.

wide baseline frames is not restricted to translation and
looming only, but also may be combined with some sig-
nificant rotation. The part of 3D rotation of the camera (Rx

or Ry) may be converted to stretch-shearing or translation
after projection, but the rotation component around Z axis,
Rz , remains as the in-plane rotation. In these complicated
cases, this scheme cannot accurately recover point corre-
spondences. Fig.5.c and d show that the correct matches
cannot be obtained if there are some significant in-plane ro-
tations.

4.3 Affine Matrix Decomposition

The reason for the above problems is that we minimize the
error ε (Eq.3) using only the first order Tayor expansion and
employing the Newton-Raphson iteration. This method is
very sensitive to the initial state, which is usually set as A =
I, d = 0, µ = 1, and δ = 0. This initial state is only correct
for a small in-plane rotation and scaling.

In order to find a reasonable initial state for the Newton-
Raphson iteration, we decompose an affine matrix A into
three components, rotation matrix R, scaling matrix S, and
stretch-shearing matrix E using the Singular Value Decom-
position (SVD).

A = UDV
′
= U(V

′
V )DV = (UV

′
)(V DV

′
)

=

[
cos α − sin α
sin α cos α

][
v1 vh

vh v2

]

=

[
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sin α cos α

][
κ 0
0 κ

][
1
κ 0
0 1

κ

][
v1 vh

vh v2

]

=

[
cos α − sin α
sin α cos α

][
κ 0
0 κ

][
v1/κ vh

vh v2/κ

]
= R(α)S(κ)E, (4)

where U and V are the orthogonal matrices, D is a diagonal
matrix, and E is a positive symmetric matrix. In 2D spaces,
U , V and R(α) are represented as rotation matrices, S(κ)
is a scaling matrix, E is represented as a stretch-shearing
matrix.

After decomposing the affine matrix, it is clear that
this affine matrix implies a non-linear rotation component,
R(α), which depends on one component of the 3D camera
rotation, Rz . The scaling matrix S(κ) depends on the focal
length (zooming) and 3D translation component Tz (loom-
ing) of the camera. Therefore, if the viewing angle is large
or if there is some significant scaling between two images,
it is very difficult to obtain the correct convergence by using
the linear Tayor expansion with the Newton-Raphson itera-
tion from the initial state, A = I, d = 0, µ = 1, and δ = 0.
Fig.6.c shows the image patches with a significant rotation
or scaling that do not converge to the correct solution by
using our corner matching scheme.

In order to obtain a reasonable initial state, we sim-
plify the affine matching matrix A≈R(α)S(κ). As a result,
this affine matching space can be divided into independent
spaces, rotation and scaling. Then, rotation angle α and
scaling factor κ can be easily quantized into different ranges
respectively.
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Figure 6: Matching procedures for two corresponding corners
(30× 30). Top: rotation case, the corners from “House” (Fig.5.c),
bottom: scaling case, the corners from ‘Boat” (Fig.10.a). (a) and
(b) are the windows around the original corners in two frames. (c)

is the warped version of (b) using the corner matching scheme.
(d) is the warped version of (b) after finding the best rotation and
scaling in the first matching stage. (e) is the final result by us-
ing our two-stage matching algorithm. It is clear that our method
maintains the appearance (compare (a) and (e)) of the patch over
two wide baseline frames, and provides an accurate matching for
the corresponding edge-corners.

4.4 Two-Stage Matching

Using this quantization property of the affine matrix, we de-
sign a two-stage algorithm for the corner matching on gen-
eral wide baseline image pair.

The first stage is to find a reasonable initial state for the
Newton-Raphson iteration. For any corner p1i in I1, we
select p2j from I2 in a large search area. Then, we apply
a rotation-scaling warping R(α)S(κ) to a window around
p2j and compare this window with a window around p1i in
I1 by using SSD. We search for a minimal image residual
by varying α from αl to αh. At each rotation angle, we use
five different ranges of κ for the scaling matrix S, which are
4, 2, 1, 0.5 and 0.25. In our implementation, we use N -split
tree (large step of 20◦ and small step of 4◦) to speedup the
search between αl to αh.

After computing the best estimates of matrices R(α) and
S(κ), we initialize the affine matrix A = R(α)S(κ) in
Eq.2, which provides a reasonable gradient descent direc-
tion for the Newton-Raphson iteration. Then, following this
gradient descent direction, the correct affine matching ma-
trix A between two corners is determined and the residual
is minimized.

The advantages of our approach are: First, we only com-
pare corners with corners instead of searching every pixel in
a big area, that may have several local minima. Second, the
first step of our matching method quantizes affine space by
using the rotation angle and scaling factor. It avoids the
computation of a non-linear components R(α) and large
scaling S(κ) using gradients Ix and Iy , but recovers an
approximate state of the geometric deformation due to the
large rotation and scaling. Third, based on the reasonable

Figure 7: Results by our two-stage matching scheme. The left
shows 83 correct inliers, several of them are on the ground. The
right shows 78 correct inliers.

initial value of A = R(α)S(κ), the second step follows the
correct initial gradient descent direction and quickly finds
an optimized solution of A between p1i and p2j , which ef-
ficiently avoids the local minima.

Fig.6 compares the results by using our two matching
schemes, and illustrates the detailed step of our matching
procedure. It is very clear to see that the correct initial state
is very important to lead to a reliable optimized solution for
correspondences matching. Fig.7 shows that using the two-
stage matching algorithm, we can overcome the significant
in-plane rotation problem and recover more reliable corre-
spondences.

4.5 Increasing Correspondences by Using
Epipolar Geometry

Even though we obtain many reliable correspondences over
two images by our two-stage matching algorithm, some cor-
respondences cannot be determined due to the self-similar
structures and some false matches. These false matches are
consistent with the estimated fundamental matrix and can-
not be eliminated by using the robust fundamental matrix
algorithm (blue points in Fig.5).

After robust fundamental matrix estimation, the epipolar
geometry can be obtained. Let F denote the fundamental
matrix, the epipolar line of p1i on the second image is l1i =
Fp1i. The corresponding point of p1i should be located
around this epipolar line on I2. Therefore, for each point
p2j , we check the distance d1i2j , such that

d1i2j =

√
(pT

2jFp1i)2/ ((Fp1i)21 + (Fp1i)22). (5)

If the distance is less than threshold ξ (ξ ∈ (2 ∼ 4)), we
use two-stage matching algorithm to reestimate the residue
ε1i2j between these two points p1i and p2j in the two im-
ages. Since the probability of self-similar corners is dra-



Figure 8: Refined results obtained by our approach. The left
shows 150 correct inliers, and the RMS is 0.418. The right shows
102 correct inliers, the RMS is 0.632. Several green corresponding
epipolar lines are drawn on the images.
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Figure 9: RMS and number of corresponding points of “House”
and “Graffiti-6” sequences under different viewing angles.

matically reduced within a small band around the epipolar
line, this method can efficiently increase the matches, which
may be missed due to the self-similarity. Fig.8 shows the fi-
nal matching results obtained by our approach.

5. Experimental Results

In this section, we first demonstrate our results on wide
baseline matching. All of our experiments used gray im-
ages to compute correspondences, and most of the images
are from the public domain resources (CMU, Oxford, OSU,
INRIA, etc). Then, we illustrate several view morphing ex-
amples, where their epipolar geometries are estimated by
proposed method, to show that our matching algorithm is
effective and stable.

Fig.9 shows the results for two sequences of real scenes
(Fig.1), where the viewing angle is changed from 0◦ to 70◦.
The RMS distance error increases as the angle increases,
but is less than 0.6 pixel. After viewing angle reaches the

Name (Frame No) A-H T-S (RMS) RF (RMS)
Graffiti-5 (4,8) 33 276 (0.110) 299 (0.127)
Graffiti-6 (1,5) 27 135 (0.341) 202 (0.327)
Boat (0,5) 22 163 (0.301) 175 (0.560)
Valbonne (5,14) 14 57 (0.665) 185 (0.658)
Valbonne (9,13) 22 155 (0.486) 194 (0.661)
UBC (8,10) 34 184 (0.266) 227 (0.242)

Table 1: The comparison of Affine-Harris method [6] with our
approach. A-H is the results using Affine-Harris method [6]. T-S is
the results using two-stage matching without refinement. RF is the
results after increasing correspondences using epipolar geometry.

60◦, the number of correct corresponding points decreases
due to the severe occlusion and shrinking. Fig.10 shows
the matching results for four different scenes, which in-
clude several kinds of significant camera motions (rotation,
translation, or scaling) with some severe occlusion, illumi-
nation changes, and in presence of self-similarity structures.
Fig.10.a shows four times scaling between the two images.
Fig.10.b, c and d show that the non-inplane viewing angles
are over 50◦. Fig.11 shows the view synthesis results us-
ing our estimated matches and employing view morphing
technique [15, 10].

We also tested a number of image pairs from INRIA and
compared our results with the Affine-Harris method of [6]
in Table 1. In all of the test cases, our method was able
to determine more corresponding points than their method
even without refinement step.

Note: All of these results are available on our web site:
http://www.cs.ucf.edu/∼vision/projects/widematching/.

6. Conclusions
In this paper, we successfully solved the problem of how to
obtain reliable corresponding points over two wide baseline
frames. First, a number of affine-invariant edge-corners are
detected in both images. Then, based on SVD decompo-
sition of affine matrix, we found that the affine matching
space between two corners can be approximately divided
into two independent spaces by rotation angle and scaling
factor. Using this crucial property of the affine matrix, we
designed a novel two-stage matching algorithm to deter-
mine the robust matches between the edge-corners, which
can effectively overcome the significant affine transforma-
tion in the wide baseline images. Moreover, employing the
estimated epipolar geometry, we efficiently refined and in-
creased the matches. Finally, we demonstrated that a series
of virtual views can be correctly synthesized by using our
correspondences and estimated epipolar geometries.

We have tested a number of wide baseline image pairs
under different severe camera motions with illumination
changes, occlusions, and self-similarities, and have ob-
tained the excellent results for all of these cases.



(a) (b) (c) (d)

Figure 10: Final matching results by our algorithm. (a) (frame 8 and 0 of “Boat” from INRIA.) shows 75 inliers, the RMS is 0.686.
(b) (frame 5 and 9 of “Movi” from OSU) shows 89 inliers, the RMS is 0.471. (c) (frame 5 and 14 of “Valbonne” from Oxford Univ.)
show 185 inliers, the RMS is 0.658. (d) (frame 1 and 5 of “Graffiti-6” from INRIA) shows 202 inliers, the RMS is 0.327. Several green
corresponding epipolar lines are drawn in each pair of images.

Figure 11: View synthesis results after matching for “Hotel”(frame 0 and 100 from CMU). There are 131 inliers, the RMS is 0.664.
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