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Abstract—A camera mounted on an aerial vehicle provides an excellent means to

monitor large areas of a scene. Utilizing several such cameras on different aerial

vehicles allows further flexibility in terms of increased visual scope and in the pursuit

of multiple targets. In this paper, we address the problem of associating trajectories

across multiple moving airborne cameras. We exploit geometric constraints on the

relationship between the motion of each object across cameras without assuming

any prior calibration information. Since multiple cameras exist, ensuring coherency

in association is an essential requirement, e.g., that transitive closure is maintained

between more than two cameras. To ensure such coherency, we pose the problem

of maximizing the likelihood function as a k-dimensional matching and use an

approximation to find the optimal assignment of association. Using the proposed

error function, canonical trajectories of each object and optimal estimates of

intercamera transformations (in a maximum likelihood sense) are computed.

Finally, we show that, as a result of associating trajectories across the cameras,

under special conditions, trajectories interrupted due to occlusion or missing

detections can be repaired. Results are shown on a number of real and controlled

scenarios with multiple objects observed by multiple cameras, validating our

qualitative models, and, through simulation, quantitative performance is also

reported.

Index Terms—Applications, scene analysis, motion, sensor fusion, registration.
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1 INTRODUCTION

THE concept of a cooperative multicamera ensemble has recently
received increasing attention from the research community. The
idea is of great practical relevance since cameras typically have
limited fields of view, but are now available at low costs. Thus,
instead of having a single high-resolution camera with a wide field
of view that surveys a large area, far greater flexibility and
scalability can be achieved by observing a scene “through many
eyes,” using a multitude of lower-resolution COTS (commercial off-
the-shelf) cameras. Several approaches with varying constraints
have been proposed, highlighting the wide applicability of
cooperative sensing in practice. For instance, the problem of
associating objects across multiple stationary cameras with over-
lapping fields of view has been addressed in a number of papers,
e.g., [25], [3], [4], [10], [24], [20], [9], [1], [22], and [19]. Extending the
problem to associating across cameras with nonoverlapping fields
of view, geometric, and appearance-based approaches has also been
proposed recently, e.g., [14], [18], [6], [15], [31], [29], and [30].
Camera motion has also been studied, where correspondence is
estimated across pan-tilt-zoom cameras [23], [7], [17]. In general,
when using sensors in such a decentralized but cooperative fashion,
knowledge of intercamera relationships becomes of paramount
importance in understanding what happens in the environment.
Without such information, it is difficult to tell, for instance, whether
an object viewed in each of two cameras is the same object or a new
object. Two cues available to infer this are the appearance and the
motion of the object. For the interested reader, some notable papers

describing the use of appearance information for association include
[16], [29], and [30].

In this paper, we consider the problem of inferring the correct
association based on the motion of the object, contained wholly in its
trajectory, and describe an approach to recover the most likely
association given our scene model. Furthermore, we address the
problem of recovering the optimal estimates of the scene parameters
from the given observations. We make two fundamental assump-
tions about the data: 1) That the altitude of the aerial vehicle upon
which the camera is mounted is significantly high with respect to the
ground (and, so, a planar assumption is viable) and 2) that at least
one object is seen simultaneously between every pair of cameras for
at least five frames. Given these assumptions and taking as input the
timestamped trajectories of objects observed in each camera, we
estimate the intercamera transformations, the association of each
object across the views, and “canonical” trajectories, which are the
best estimate (in a maximum likelihood sense) of the original object
trajectories up to a 2D projective transformation. To that end, we
describe an extension to the reprojection error for multiple views,
providing a geometrically and statistically sound means of evaluat-
ing the likelihood of a candidate correspondence set. We formulate
the problem of maximizing this joint likelihood function as a
k-dimensional matching problem and use an approximation that
maintains transitive closure. The estimated solution is verified using
a strong global constraint for the complete set of correspondences
across all cameras. We evaluated the proposed approach with both
simulated and real data. During evaluation, the object association
problem within each sequence (single camera tracking) is consid-
ered to have already been solved and the solution of this module in
each camera is taken as input. The rest of the paper is organized as
follows: Section 2 describes the estimation of intercamera relation-
ships and the problem of association is posed as a maximum
likelihood assignment. The problem of association is posed and
solved in a graph-theoretic framework. Results on controlled and
real sequences are shown in Section 3, with conclusions in Section 4.

2 TRAJECTORY ASSOCIATION ACROSS CAMERAS

In this section, an unsupervised approach is presented to estimating
the intercamera relationships in terms of the interframe homo-
graphy. We describe how the likelihood that trajectories, observed
in different cameras, originating from the same world object, is
estimated. The use of this, in turn, for multiple object assignment
across multiple cameras is then described next. The scene is
modeled as a plane in 3-space, �, with K moving objects, observed
by N cameras. The kth object moves along a trajectory on �,
represented by a time-ordered set of points. A particular object k,
present in the field of view of camera n, is denoted as On

k and the
imaged location of On

k at time t is Xnk ðtÞ ¼ ðxnk;t; ynk;t; �nk;tÞ
T 2 IP2, the

homogeneous coordinates of the point in sequence n. The imaged
trajectory of On

k is the sequence of points Xnk ¼ fXnk ðiÞ;Xnk
ðiþ 1Þ; . . .Xnk ðjÞg. When referring to inhomogeneous coordinates,
we will refer to a point as xnk ðtÞ ¼ ðxnk;t=�nk;t; ynk;t=�nk;tÞ

T 2 IR2. For two
cameras, an association or correspondence cn;mk;l is an ordered pair
ðOn

k ;O
m
l Þ that represents the hypothesis that On

k and Om
l are images

of the same object. Formally, it defines the event, cn;mk;l ¼
: fOn

k and Om
l

arise from the same object in the worldg, l ¼ 1; � � � ; zðmÞ, and cn;mk;0 ¼
:

fOn
k was not viewed in camera mg, where zðmÞ is the number objects

observed in cameram. Since these events are mutually exclusive and
exhaustive,

PzðmÞ
l¼0 pðcn;mk;l jXn

k ;Xm
l Þ ¼ 1. Similarly, for more than two

cameras, a correspondence cm;n;...pi;j;...l is a hypothesis defined by the
tuple ðOm

i ;O
n
j ; . . .Op

l Þ. Note that O1
1 does not necessarily correspond

to O2
1; the numbering of objects in each sequence is in the order of

detection. Thus, the problem is to find the set of associations C such
that cm;n;...pi;j;...l 2 C if and only if Om

i ;O
n
j ; . . .Op

l are images of the same
object in the world. Graphical illustration allows us to more clearly
represent these different relationships (Fig. 1). We abstract the
problem of tracking objects across cameras as follows: Each
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observed trajectory is modeled as a node and the graph is
partitioned into N partitions, one for each of the N cameras. A
hypothesized association, c, between two observed objects (nodes) is
represented as an edge between the two nodes. This N-partite
representation is illustrated in Fig. 1. At a certain instant of time, we
have zðnÞ trajectories for thenth camera corresponding to the objects
visible in that camera. The measured image positions of objects xnk ¼
fxnk ðiÞ;xnk ðiþ 1Þ; . . . xnkðjÞg are described in terms of the true image
positions �xnk ¼ f�xnk ðiÞ; �xnk ðiþ 1Þ; . . . �xnk ðjÞg. It is assumed in this work
that the trajectories are compensated for by global egomotion of the
camera, through the estimation of frame-to-frame homographies,
and are therefore in a single coordinate system for each camera. The
sample is assumed to be corrupted by independent normally
distributed measurement noise, � ¼ 0 and covariance matrix RnðiÞ,1
that is, xnk ðiÞ ¼ �xnkðiÞ þ �, � � Nð0;RnðiÞÞ.

The principal assumption upon which the similarity between
two trajectories is evaluated is that, due to the altitude of the aerial
camera, the scene can be well approximated by a plane in 3-space
and, as a result, a homography exists between any two frames of
any sequence ([12]). From this assumption of planarity, it follows
that a homography Hn;m

k;l must exist between any two trajectories
that correspond, i.e., for any association hypothesis cn;mk;l . This
constraint can be exploited to compute the likelihood that
2D trajectories observed by two different cameras originate from
the same 3D trajectory in the world—in other words, to estimate
pðcn;mk;l jXn

k ;Xml Þ (which we describe presently). Furthermore, we
show how this can be extended to multiple views to evaluate
pðcn;m;...li;j;...k jfXni ;Xmj ; . . .X lkgÞ. By assuming conditional independence
between each association c, the probability of a candidate
solution C given the trajectories in multiple cameras is

pðCjfXgÞ ¼
Y

cn;m;...l
i;j;...k

2C

p cn;m;...li;j;...k j Xni ;Xm
j ; . . .X l

k

n o� �
: ð1Þ

We are interested in the Maximum Likelihood solution,

C� ¼ arg max
C2C

pðCjfXgÞ; ð2Þ

where C is the space of solutions.

2.1 Evaluating the Likelihood of Associations

Consider first the straightforward case of several objects observed
by two airborne cameras. This can be modeled by constructing a

complete bipartite graph G ¼ ðU; V ;EÞ in which the vertices U ¼
fuðXn1 Þ; uðXn2 Þ . . .uðXnzðnÞÞg represent the trajectories in Sequence n
and V ¼ fvðXm1 Þ; vðXm2 Þ . . . vðXmzðmÞÞg represent the trajectories in
Sequence m and E represents the set of edges between any pair of
trajectories from U and V . The bipartite graph is complete because
any two trajectories may match hypothetically. The weight of each
edge is the probability of correspondence of Trajectory Xml and
Trajectory Xnk , as defined in (8). By finding the maximum matching
of G, we find a unique set of correspondence C0, according to the
maximum likelihood solution,

C0 ¼ arg max
C2C

X
cn;m
k;l
2C

log p cn;mk;l jXnk ;Xml
� �

; ð3Þ

where C is the solution space. Several algorithms exist for the
efficient maximum matching of a bipartite graph, for instance [21]
or [13], which are Oðn3Þ and Oðn2:5Þ respectively. To evaluate the
likelihood of association between trajectories in two cameras, we
need to evaluate pðcn;mk;l jXn

k ;Xm
l Þ. The evaluation of this likelihood is

complicated by the imaging process, so, despite the fact that
trajectories in correspondence can be viewed as “samples” from a
single trajectory on the plane �, the coordinates of the samples are
not registered. We can compute pðcn;mk;l jXn

k ;Xml Þ by computing the
maximum likelihood estimate of the homography, Hn;m

k;l , and two
new trajectories, �Xn

k and �Xm
l , related exactly by Hn;m

k;l , as described
in [12], by minimizing the reprojection error. The reprojection error
is a cost function that explicitly minimizes the transfer error
between the trajectories and was first proposed by Sturm in [32],
continued in further work with Chum et al. in [5]. Using this
estimate of the homography and the “true” trajectories,

p cn;mk;l jXn
k ;Xml

� �
/ L Xnk ;Xml jc

n;m
k;l ; �Xn

k ;H
n;m
k;l

� �

¼ L Xnk jc
n;m
k;l ; �Xnk ;H

n;m
k;l

� �
L Xml jc

n;m
k;l ; �Xnk ;H

n;m
k;l

� �
:
ð4Þ

The proportionality follows from Bayes theorem, assuming a
uniform prior on all associations and ignoring the constant
evidence term. Since the errors at each point are assumed
independent, the conditional probability of the association given
the trajectories in the pair of sequences can be estimated,

L Xnk ;Xm
l j c

n;m
k;l ; Hn;m

k;l ;
�Xnk

� �
¼

Y
i

1

2�kRnðiÞk
1
2kRmðiÞk

1
2

e�
1
2

�
dðXnk ðiÞ; �Xnk ðiÞÞRn ðiÞþdðX

m
l ðiÞ; �Xml ðiÞÞRm ðiÞ

�
;
ð5Þ

where dð�ÞR is the Mahalanobis distance and RnðiÞ is the error
covariance matrix,

d
�
Xnk ðiÞ; �Xnk ðiÞ

�
RnðiÞ þ d

�
Xml ðiÞ; �Xml ðiÞ

�
RmðiÞ ¼�

xnk ðiÞ � �xnk ðiÞ
�T

Rn �1ðiÞ
�
xnk ðiÞ � �xnk ðiÞ

�

þ
�
xml ðiÞ � �xml ðiÞ

�T
Rm �1ðiÞ

�
xml ðiÞ � �xml ðiÞ

�
:

ð6Þ

Thus, to estimate the data likelihood, we compute the optimal
estimates of the homography and the true trajectory (upto a
homography) and use them to evaluate (5).

This formulation generalizes to multiple airborne cameras by
considering k-partite hypergraphs instead of the bipartite graphs
considered previously, shown in Fig. 2. Once again, we wish to
find the set of associations C0,

C0 ¼ arg max
C2C

X
cp;q...r
k;l...m

2C
log p cp;q...rk;l...m jX

p
k;X

q
l . . . ;X r

m

� �
: ð7Þ

To evaluate the inner probability, for instance, pðc1;2;...;N
1;1;...1 jX 1

1;

X2
1; . . . ;XN1 Þ, we proceed by computing the maximum likelihood

estimate of a set of N � 1 homographies and one “canonical”
trajectory related to each view by the set of homographies (see
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1. The covariance matrix is time indexed since it has been transformed by
a homography while compensating for frame-to-frame motion. This also
captures the inherent error in the estimated frame-to-frame homography
that causes drift. Details on transforming the covariance matrix from the
frame coordinate to the reference coordinate are available in [8] or [12]. This
paper also discusses the use of first order analysis, implicitly justifying the
use of our error model.

Fig. 1. (a) Three trajectories observed in three cameras. (b) The graph associated
with the scenario in (a). In this instance, Object 1 is visible in all cameras, and the
association across the cameras is represented by c123

211. Object 2 is visible only in
Camera 1 and Camera 3 and therefore an edge exists only between Camera 1
and 3. Object 3 is visible only in the field of view of Camera 2; therefore, there is a
unconnected node in the partition corresponding to Camera 2.

Authorized licensed use limited to: University of Central Florida. Downloaded on April 7, 2009 at 14:15 from IEEE Xplore.  Restrictions apply.



Fig. 3). Each homography relates the one camera coordinate frame

with the canonical reference frame (less one because the homo-

graphy from the canonical reference to itself is the identity matrix).

The canonical trajectory is estimated that best describes all the

observations in each camera simultaneously. Using these estimates

of the N � 1 homographies and the canonical trajectory, we have

p c1;2;...;N
1;1;...1 jX 1

1;X 2
1; . . . ;XN1

� �

/ L X1
1;X2

1; . . . ;XN1
� �

j H1;2
1;1; . . . ;HN�1;N

1;1

n o
; �X 1

1

� �
;

ð8Þ

where the pdf of LðfX1
1;X2

1; . . . ;XN1 gjfH
1;2
1;1; . . . ;H1;N

1;1 g; �X 1
1 Þ is2

L X1
1;X2

1; . . . ;XN1
� �

j H1;2
1;1; . . . ;HN�1;N

1;1

n o
; �Xi

� �
¼
Y
i

1
�
2�kRk

�N
2

e�dr=2;

ð9Þ

where

dr ¼ d X 1
1ðiÞ; �X1ðiÞ

� �
R
þ
XN
j¼2

d X j
1ðiÞ;H

1;j
1;1

�X1ðiÞ
� �

R
: ð10Þ

The Direct Linear Transform algorithm or RANSAC can be used as
an initial estimate, followed by a Levenberg-Marquardt minimiza-
tion over 9ðN � 1Þ þ 2�t variables: 9ðN � 1Þ unknowns for the set
of homographies and 2�t unknowns for the canonical �t
2D points. Equation (9) is used to compute the maximum likelihood
estimates of the homography and the canonical trajectory and then
used to evaluate the probability of the association hypothesis. Two
important properties of the reprojection error for two cameras are
also inherited by this multicamera reprojection error: 1) invariance
to the choice of canonical reference (since the estimated trajectories
are exactly related by the estimated intercamera homographies)
and 2) invariance to rigid transformations. The maximum like-
lihood estimate of the canonical trajectory is also the maximum
likelihood estimate of the true world trajectory up to a projective
transformation.

However, it is known that the k-dimensional matching problem
is NP-Hard for k � 3 ([26]). A possible approximation that is
sometimes used is pairwise, bipartite matching; however, such an
approximation is unacceptable in the current context since it is
vital that transitive closure is maintained while tracking. The
requirements of consistency in the tracking of objects across
cameras is illustrated in Fig. 2. Instead, to address the complexity
involved while accounting for consistent association we use the
method proposed in [28]. A weighted digraph D ¼ ðV ;EÞ is
constructed such that fV1; V2; . . .Vkg partitions V , where each
partition corresponds to a moving camera. Direction is obtained by
assigning an arbitrary order to the cameras (for instance, by

enumerating them) and directed edges exist between every node in
partition Vi and every node in partition Vj, where i > j (due to the
ordering). By forbidding the existence of edges against the
ordering of the cameras, D is constructed as an acyclic digraph.
This can be expressed as E ¼ fvðX pkÞvðX

q
l ÞjvðX

p
kÞ 2 Vp; vðX

q
l Þ 2 Vqg,

where e ¼ vðX pkÞvðX
q
l Þ represents an edge and q > p. The solution

to the original association problem is then equivalent to finding the
edges of maximum matching of the split G� of the digraph D. It
should be noted that, with this approach, we need only define
pairwise edge-weights. Fig. 2 shows a possible solution and its
corresponding digraph. It should be noted that, during the
construction of the graph, we need to ensure that “left-over”
objects are not assigned association. In order to avoid this, we
prune all edges whose edge weights are below a certain likelihood.
This is equivalent to ignoring measurements outside a “validation”
region, as described in [2], ensuring that association hypotheses
with low likelihoods are ignored.

Once a global association solution has been obtained, using this
approximation we evaluate pðCjXÞ as follows: We observe that all
homographies mapping pairs of corresponding trajectories in
sequences p and q are equal (up to a scale factor) and are, in turn,
the same homography that maps the reference coordinate of
sequence p to that of sequence q. Since all of the objects lie on the
same plane, the homography relating the image of the trajectory of
any object Hp;q

k;l in Sequence p to the image of the trajectory of that
object in Sequence q is the same as the homography Hp;q

i;j relating
any other object’s trajectories in the two sequences (i.e., i 6¼ p and
j 6¼ q). Since these trajectories lie on the scene plane, these
homographies are equal to Hp;q, the homography that related the
images of sequence p to the images of sequence q. This allows us to
express pðCjfXgÞ as

pðCjfXgÞ ¼
Y
i

1
�
2�kRk

�N
2

e�dr=2; ð11Þ

where

dr ¼
X
k

�
dðX 1

kðiÞ; �X 1
k ðiÞÞR þ

XN
j¼2

dðX jkðiÞ;H1;j �XkðiÞÞR
�
: ð12Þ

This equation differs from (10) in the subscript of H since the

homography and all canonical trajectories are simultaneously

estimated. By using all trajectories between cameras, the spatial
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2. For notational convenience, we assume the covariance matrices are all
equal.

Fig. 2. Tracking across three moving cameras. (a) An impossible matching. Transitive closure in matching is an issue for matching in three of more cameras. (b) Missing

observations. This matching shows the case of missing observations, with three objects in the scene, each visible in two cameras at a time. (c) The digraph associated

with (b).

Fig. 3. A canonical trajectory and a set of homographies are estimated that

minimize the multicamera reprojection error.
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separation of different trajectories enforces a strong noncollinear

constraint on association despite the near collinear motion of

individual objects. In this way, even with relatively small durations

of observation, the correct correspondence of objects can be

discerned. Once again the optimal value of the set of homographies

and the canonical trajectories are estimated using Levenberg-

Marquardt minimization and the “goodness of fit” is measured. A

degenerate case exists where all objects in the scene move in a

straight line, but this case can be detected and estimation can be

delayed until at least one object in the scene moves in a noncollinear

motion. The algorithm is summarized in Fig. 4. The computational

complexity of the proposed algorithm depends on the number of

cameras, N , the average number of objects per camera, K̂, and the

average length of overlap time each object is observed in each pair of

cameras, t̂. The step with the highest computational cost is the

construction of the association graph in Step 2. The number of

pairwise associations is NðN�1ÞK̂2

2 and a naive implementation of the

algorithm to evaluate each association requires a nonlinear mini-

mization algorithm, for instance, the Levenberg-Marquardt algo-

rithm. Its complexity is thereforeOðNðN�1ÞK̂5 t̂3

2 Þ; however, this can be

improved to OðNðN�1ÞK̂3 t̂
2 Þ by exploiting the sparse structure of the

Jacobian during minimization. It should also be noted that, in

general, bothN andK are small numbers (N ¼ 3 andK ¼ 6 were the

maximum values encountered during our experimentation).

2.2 Repairing Trajectories

During single camera tracking, object trajectories can sometimes be
interrupted because of missing detections, noise, specularities, or
feature similarity to the background. Trajectory interruption can
also occur due to scene events like occlusion of the object by some
other object, such as clouds, bridges, or tree cover, or due to the
exiting and reentering of an object from the field of view. This causes
the object’s motion to be recorded by two different trajectories. Fig. 5
shows trajectories in two cameras, plotted in space and time. In the
second camera, the second trajectory is interrupted as the object
exited and reentered the scene. Several methods have been
proposed to account for this problem at the single camera level
using predictive methods. However, we show that the canonical
tracks and the estimated intercamera homographies can be used to
repair broken trajectories in a straightforward way. Since matching
ensures a one-to-one correspondence, all such broken trajectories
should be unassociated after matching. For each free trajectory Xni ,
we evaluate with respect to each canonical trajectory �Xj,

j� ¼ arg max
j21...N

p Xni j �X j; H
n

� �
: ð13Þ

pðXni j �Xj� ;HnÞ is evaluated asymmetrically,

pðXni j �Xj� ;HnÞ /
Y
k

1ffiffiffiffiffiffi
2�
p
kRnðkÞk

1
2

e�
1
2

�
dðXni ðkÞ; �XiðkÞÞRn ðkÞ

�
: ð14Þ

If this is greater than an empirical threshold �ðkÞ and if there is no

temporal overlap between Xni and Xnj (the trajectory in Camera n

currently associated with X j), then Xni and Xnj are reconnected and

both associated to X j—the trajectory is repaired. It is noteworthy

here that, unlike single camera methods, the duration of occlusion

is irrelevant as long as the object is continuously viewed in any

other camera.

3 RESULTS

In this section, we report the quantitative performance of the

algorithm on simulations. We also report the experimental

performance of our trajectory association approach qualitatively

for data from airborne cameras and in a controlled setting. In each

experiment, we demonstrate that the proposed approach is able to

accurately associate trajectories across multiple moving cameras

despite short durations of observations, nearly linear motion, and

noisy detections. It should be noted that we do not model errors in

object association within each sequence, i.e., we expect that the tracks

within a sequence are correct. If errors in single camera tracking do

exist, it is unlikely that the track will generate an association in

another sequence. However, it should also be noted that, although

erroneous single camera tracking might generate false negatives (no

association where one exists), it is exceedingly unlikely that this will

produce false positives (an incorrect association).
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Fig. 4. Algorithm for object association across moving cameras.

Fig. 5. Trajectory interruption. (a) Complete trajectories observed in Camera 1.

(b) The second trajectory (black) is interrupted as the object exits and then reenters

the field of view. The reentering trajectory is recorded as a new trajectory (red).

Authorized licensed use limited to: University of Central Florida. Downloaded on April 7, 2009 at 14:15 from IEEE Xplore.  Restrictions apply.



In order to run simulations, a generator was designed to
randomly synthesize data for quantitative experimentation. The
camera parameters included the number of cameras and the number
of frames of observation and the object parameters included the
number of objects and the mean and variance of the object motion
ð�̂; ��Þ. For each object, an initial position, Xð0Þ and Y ð0Þ, was
determined by sampling from a uniform distribution over a spatial
support region, assuming the world plane � was the plane Z ¼ 0.
To closely imitate the smooth motion of real-world objects, the object
motion ð�;�	Þwas sampled from the normal distributionsNð�̂; ��Þ
and Nð0; �	Þ and initial 	 was a (single) sample from a uniform
distribution over the interval ½��; ��. For each camera, a reference to
frame homography P was randomly generated by sampling from a
uniform distribution over the support of the camera extrinsic and
intrinsic parameters and the imaged trajectories of each object in
each camera are generated asXðtÞ ¼ P½XðtÞ Y ðtÞ 1�T þ �, where � is
the zero-mean measurement noise that is specified by a noise
variance parameter ��. The ratio �=�� is referred to as the motion-to-
noise ratio, measuring the expected strength of noise. In order to
analyze the accuracy of the estimated intercamera homography as
the ratio of mean motion to noise variance, we recorded the mean
squared error of difference between the maximum likelihood
estimate of the homography and the true homography over 100 runs.
At each run, a new set of trajectories and homographies was
generated. As expected, the estimation error decreased as the
number of frames increase and the objects began to show more
noncollinear motion, shown in Fig. 6. We then analyzed the quality
of the estimate of the canonical tracks with respect to the ground
truth by computing the average log-likelihood of the canonical
frame given the ground truth. Here, too, the average of 100 runs was
taken. We then analyzed the association accuracy with respect to
larger increase in noise as the number of cameras and objects
increased. Fig. 6c reports the association accuracy 10 trajectories

viewed across of 10 cameras as the number of frames increase. The
motion-to-noise ratio was varied from infinity (divide-by-zero) to
5� 10�5, while the number of frames was tested for 5, 50, 100, and
200 frames. Clearly, as the number of frames increased, the accuracy
increased too. One hundred runs were executed (with randomly
generated trajectories) per noise strength and the average accuracy
was reported. The accuracy is shown in Fig. 6d as it varies with
respect to the number of cameras/objects. As expected, as the
number of cameras and objects decrease, the accuracy of the
approach reduces too. The trajectory length was 60 frames (2 seconds
at 30 fps). It can be noted that the motion-to-noise ratio in both
experiments is not linearly increasing.

We conducted experiments on data collected by cameras

mounted on unmanned aerial vehicles (UAVs). In these experi-

ments, two UAVs mounted with cameras viewed real scenes with

moving cars. The objects exited and entered the field of view and all

three objects were only briefly visible together in the field of view.

The individual trajectories of each sequence, on a single registered

coordinate are shown in Figs. 7a and 7b. The result of correspondence

is shown in Fig. 7c. An experiment involved association across IR and

EO cameras was also conducted. Since only motion information is

used in discerning association, the modality of the cameras does not

affect the viability of the algorithm. In the first set, six objects were

recorded by one EO and one IR camera. Although the relative

positions of the cameras were fixed in this sequence, no additional

constraints were used during experimentation. The vehicles in the

field of view moved in a line and one after another performed a

U-turn and the durations of observation of each object varied in both

cameras. Since only motion information is used, the different

modalities did not pose a problem to this algorithm. Fig. 8 shows

all six trajectories color coded in their correspondence. Despite the

fact that the sixth trajectory (color coded yellow in Fig. 8) was viewed
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Fig. 6. Accuracy of the estimated parameters. (a) The log-likelihood of the canonical tracks as the motion-to-noise ratio was increased across three cameras observing

three objects. (b) The error norm of the estimated to the true homography. One hundred iterations were run for each noise level, which are plotted (dots) along with the

median value (line). Association accuracy with regard to number of cameras, number of objects, number of frames, and motion-to-noise ratio. The horizontal axis is not

progressing linearly. (c) For 10 cameras with 10 objects, the percentage of correct associations to the total number of associations. (d) As the number of cameras and

objects increase linearly, for a fixed 60 frames, the association accuracy decreases. The results are the average of 100 runs.

Fig. 7. Second UAV experiment—short temporal overlap. Despite a very short duration of overlap, correct correspondence was estimated. (a) Mosaic of Sequence 1.

(b) Mosaic of Sequence 2. (c) Concurrent visualization of two sequences. The two mosaics were blended using a quadratic color transfer function. Information about the

objects and their motion is compactly summarized in the concurrent mosaic.
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only briefly in both sequences and underwent mainly collinear

motion in this duration due to the matching correct global

correspondence was obtained. In the second set, trajectory repairing
was tested as two objects were observed by an EO and IR camera, as

shown in Fig. 9. Both objects were continuously viewed in the EO
camera, but Object 2 repeatedly exited and reentered the FOV of the

IR camera, as shown by the fragmented trajectory. Using the
trajectory repairing algorithm, the object was successfully reasso-

ciated. A final experiment was carried out using more than two

cameras, where remote controlled cars were observed by moving
camcorders (Sony DCR-TRV 740). Three moving cameras at various

zooms observed a scene with two remote controlled cars. Fig. 10c
shows the final, correct assignment of correspondence established by

our approach. Fig. 10d shows the associated directed graph. The
intersequence homographies were estimated and all three mosaics

were registered together to create the concurrent mosaic, as shown in

Fig. 10a. Fig. 10b shows the tracks of both objects, overlaid after
blending each mosaic.

4 CONCLUSION AND DISCUSSION

In this paper, a method to associate objects across multiple
airborne cameras was presented. We make two fundamental
assumptions about the data: 1) that the altitude of the aerial vehicle
upon which the camera is mounted is significantly high with
respect to the ground, that a planar assumption is viable, and
2) that at least one object is seen simultaneously between every pair
of cameras for at least five frames. Given these assumptions and
taking as input the timestamped trajectories of objects observed in
each camera, we estimate the intercamera transformations, the
association of each object across the views, and “canonical”
trajectories, which are the best estimate (in a maximum likelihood
sense) of the original object trajectories up to a 2D projective
transformation. To that end, we describe an extension to the
reprojection error for multiple views, providing a geometrically
and statistically sound means of evaluating the likelihood of a
candidate correspondence set. We formulate the problem of
maximizing this joint likelihood function as a k-dimensional
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Fig. 8. First UAV Experiment—two cameras, six objects. (a) The EO video. (b) The IR video. Since we are using only motion information, association can be performed

across different modalities.

Fig. 9. Repairing broken trajectories. Due to rapid motion of the camera, the object corresponding to the blue trajectory exited and reentered the field of view of the

IR camera several times. On the other hand, the same object in the EO camera remained continuously visible. The trajectories were successfully reassociated.

Fig. 10. Concurrent visualization of three sequences. (a) Concurrent mosaic before blending. (b) Blended concurrent mosaic with the track overlayed. Matching in three

sequences. (c) Matching of the tripartite graph. (d) The corresponding directed graph.
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matching problem and use an approximation that maintains

transitive closure. The estimated solution is verified using a strong

global constraint for the complete set of associations across all

cameras. Using simulations, we tested the sensitivity of the

proposed approach to noise strength, the number of cameras, the

number of frames viewed, and the “collinearity” of the trajectories.

We demonstrated qualitative results on several real sequences,

including the standard VIVID data set and the ARDA VACE data,

for multiple cameras and between IR and EO video.
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