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Abstract

In this paper, we propose a shape from shading (SFS) approach
to recover both the shape and the reflectance properties of symmet-
ric objects using a single image. The common constraint of constant
or piece-wise constant albedo for lambertian surfaces is relaxed to ar-
bitrary albedo. The proposed method can be categorized as a linear
shape from shading method, which linearizes the reflectance function
for symmetric objects using the symmetry cues of the shape and the
albedo, and iteratively computes the depth values. Estimated depth
values are then used to recover pixel-wise surface albedo. To show the
usefulness of the proposed method, we present experimental results for
both synthetic and real images.

1 Introduction

The problem of estimating shape of an object from its shading was first introduced
by Horn [4]. He defined the mapping between the shading and the surface shape in
terms of the reflectance function I, , = R(pg,y, ¢z,y) Where I, , is image intensity,
p = 82% and ¢ = agmy,y, z being the height of the object and (z,y) are pro-
jected spatial coordinates of the 3D object. For simplicity, many researchers have
used orthographic projection and Lambertian model for defining this mapping.
Lambertian model is a diffuse reflectance model, where reflectance properties of
a surface are defined in terms of the surface albedo and the angle between the
surface normal and the light source direction. The standard reflectance function

using Lambertian surface is given by
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minant. Once the mapping function is defined, recovering the shape ((p,q) or Z)




is a task of estimating the unknowns of the model which are the surface albedo
p, and the surface gradients (p,q). With only the image intensities known and
due to the nonlinear nature of the reflectance function, estimating both the depth
and the albedo is ill-posed. For this reason, a common practice is to assume a
constant surface albedo, which approximates surface as uniform region. However,
for the real objects, uniform surface assumption is not correct, i.e. rendering the
reconstructed shape with a different light source direction will not be realistic. In
addition, it is concluded in a recent survey [14] that, due to simplistic model of
constant albedo approximation, the depth estimates for real images are very poor.

There are mainly four different categories of SFS approaches: minimization,
propagation, linearization and local methods. To overcome the short-coming of
a constant albedo approximation different approaches apply different set of con-
straints. Minimization based methods use variational calculus to minimize an
energy functional over the image, which is a combination of brightness and one or
more of the following constraints: smoothness [5], integrability [3] and image gra-
dient similarity [16]. A recent minimization based method proposed in [6] directly
solves the shape by assuming the depth of the deepest surface point is known
under constant albedo approximation. In contrast, propagation based methods
propagate the known solution on the singular points [1] or the boundaries [4] to
the whole surface. Local approaches assumes that any constraint imposed on the
object (such as spherical approximation [10], etc) is valid only for the local patch,
rather than the complete image. Linearization based approaches provides solution
by linearizing the nonlinear reflectance function [11, 13]. A complete survey of
most of these approaches can be found in [14].

The methods cited above try to solve the SFS problem by constraining the
solution on the surfaces. Another possible approach is to constrain the type of
objects. Recently, Shimshoni et al. [12] and Zhao and Chellappa [15] provided a
shape from shading approach for symmetric objects. In [12], authors used geomet-
ric and photometric stereo to reconstruct 3D shape of quasi-frontal face images. In
contrast, in [15] the authors used the symmetry constraints on depth and albedo
to obtain another mapping function without the albedo term. The mutual solution
of reflectance functions are then used to find the depth value of a point. However,
both of these methods still constrain the albedo to be piece-wise constant, which
is not realistic for the real surfaces that have arbitrary albedo fields.

Based on the definitions for symmetric surfaces, we propose a linear shape from
shading algorithm for symmetric objects with arbitrary albedo field. Proposed
method is based on linearizing the new symmetric reflectance function, which does
not include the surface albedo information. We then use the linearized symmetric
reflectance map to iteratively approximate the depth map Z, , of the object. The
recovered depth map is then used to estimate the albedo using (1).

The organization of the paper is as follows: in the next section, we will briefly
describe the shape from shading and introduce the new reflectance function, which
is based on the symmetry costraint. We will derive the iterative method for re-
covering the depth, which is followed by the discussion on obtaining the arbitrary
albedo surface for the symmetric objects. In section 4, we will demonstrate exper-
iments on synthetic and real images. Finally, conclusions are drawn.



2 SF'S for Symmetric Objects

Uniqueness of the solution to the SFS problem is not possible without additional
constraints, due to the number of unknowns and nonlinearity of the system. Ob-
taining a unique solution for SFS for constant albedo approximation was given
in [8] by propagating the known solutions at singular points to the image. Simi-
lar results are also given in [2] for boundary conditions. However, in [14], it was
shown that methods that guarantee unique solutions by propagation [1] are out-
performed by minimization methods, which do not guarantee a unique solution.
In this section, we will describe the symmetry constraint for defining an albedo
free reflectance function.

2.1 Symmetry Constraint and New Reflectance Function

For the symmetric objects, the intensity on either side of the symmetry axis pro-
vides an additional constraint to obtain a unique solution for the SFS problem.
The definition of a symmetric surface given the symmetry axis can be expressed
in terms of depth and albedo by z,, = z_s,y and p;,y, = p_s,y. Note that the
surface gradients are p, y = —p_s,y and gz,y = g—z,y. Due to the symmetry prop-
erty the number of surface unknowns are halved compared to (1).Using symmetry
definitions, the reflectance functions for either side of symmetry axis are
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where D = \/(1 +pi,+a2,)(1+ P2+ Q?). The ratio of I, and I ,, in (2)
provides a new reflectance function, which cancels the common albedo terms and
the denominators. The new albedo free reflectance function is given by
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Under the constant albedo approximation, (1) and (3) provide two equations
in two unknowns p, ¢. Since (3) is linear, we can define p in terms of ¢. Sub-
stituting this back into (1) decreases number of unknowns to two, surface albedo
(p) and one of the surface gradients (either p or ¢). In [15], Zhao and Chellappa
approximated albedo, p, by piecewise constant values and solved the system for
the other unknown. However, real objects do not exhibit constant albedo and the
proposed method can not be generalized to arbitrary albedo estimation.

In the next section, we propose a linear algorithm for symmetric objects that
estimates the depth by relaxing constant albedo to arbitrary albedo field.

3 Iterative Albedo Free Depth Calculation

The symmetry cue for the objects results in a generic albedo free reflectance func-
tion, which is given in (3). We treat symmetric reflectance function (3) as the only
constraint that provides solution for unknows Z, ,. Since a direct solution does
not exist for (3), we developed an iterative scheme, which is detailed below.



Using the discrete approximations for the surface gradients, p,,y, = Z,y —
Zyp_1,y and gz y = Zyy — Zy y—1, we modify the reflectance function (3) as:
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The solution for Z, , in (4) depends on two other unknowns, Z, 1 4 and Z, ;1.
In order to find solution to these unknowns, we expand (4) into Taylor series about
the points {Z7,, Zr , . 20, } = {20,  + AZy, Z)7) , + AZy, Z) L + AZs)
and using only the first order terms, we obtain
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Eq. (5) can be simplified by letting constants (AZ>, AZs) = (0,0). Using the
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definitions from (4) iterative depth update can be derived from (5) simply:
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After some algebraic manipulations, the gradient term of becomes
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Substituting (4) and (8) into (7) the final iterative equation for depth is given by
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3.1 Estimating Arbitrary Albedo for Symmetric Objects

For estimating the shape of an object, a common practice is to use constant albedo
for the image. An extension to this is to use piece-wise constant albedo, where
the albedo is relaxed to have different values for different segments of the image.
For the latter approach, Zheng and Chellappa [16] assume surface patches to be
locally flat and the surface normal tilt and slant to be independent of each other. In
contrast, Lee and Rosenfeld [7] assume the surface patches to be locally spherical
and use a Gaussian sphere to derive the probability density function of the surface
normal tilt and slant. Based on these assumptions both methods first solve the
slant of the light source, which is followed by estimating the albedo. However,



due to the constraints imposed on the surface, they fail on the boundary regions.
Besides, for real objects the surface assumptions is not necessarily true.

Our proposed approach for albedo estimation is a direct application of standard
reflectance function given in (1). After recovering the depth values using the
proposed method described in Sect. 3, we substitute them back in (1) and evaluate

V1+ oy — 2o-1,9)2 + (2o — Zey—1)2V/1+ P + Q2
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to obtain pixel based arbitrary albedo values p; 4.

For clarification of the proposed method, it should be noted that, in contrast to
[15], the depth estimates are found solely using the symmetric reflectance function
(4), which relaxes the albedo term in (1) to be arbitrary for symmetric objects.

4 Experiments

To illustrate the performance of the proposed depth recovery and albedo estimation
method, we first tested the algorithms on synthetic images, which include laser
range image of Mozart statue (Fig. 1la) synthetic images of sphere (Fig. 2a) and
vase (Fig. 3a). The experiments on synthetic images are performed for constant
and varying albedo surfaces. For recovering the depth, we only used symmetric
regions of the images by masking out the non-symmetric regions and initial depth
for the iterations is set to Zg = 0. The proposed method is also tested using
a number of real frontal face images, since the ground truth for the light source
directions are not known, we used the light source direction estimation method
proposed by Pentland [9].

We evaluated the performance of the methods for depth and albedo surface
estimation both qualitatively and quantitatively. For qualitative analysis, 3D plots
of the estimated depth maps and albedo surfaces are generated. Specifically for
Mozart, we generated images under different light source directions with constant
albedo (p = 1). Figures in first column of 1b,c and d show the generated images
under different lighting conditions from the Mozart range map. Corresponding
recovered depth maps and the albedo surface are given in second and third columns
respectively. Note that due to symmetry constraint we only used the face region
of the original Mozart range map. As can be observed from the recovered depth
map of the Mozart given in Figure 1, the nose is inset due to similar ri,y values
around the nose region and the cheek region.

For real face images, we initialized the depth both by Z, , = 0. For the face
image shown in Fig. 4a, the method converged in thirteen iterations. Recovered
depth for each iteration is shown in Fig. 4e. In Fig(s). 4c and d, we illuminated
the face image using different light sources using the recovered depth map and the
albedo (Fig. 4b).

We also tested the method for synthetic surfaces that have complex varying
albedo surfaces. As shown in Fig. 2b, the albedo surface for the sphere object
is generated using a cosine wave; corresponding 3D plots of the recovered depth
maps and albedo surface for the sphere image in Fig. 2c are given in Fig(s). 2d
and e respectively. Similarly, for the vase object, the albedo surface is generated



Table 1: Mean and standard deviation of error in depth Z, and mean of surface

gradlents oz =, ‘ZZ errors.

albedo light source | Depth mean | Depth stdv. | Gradient

surface (82, Sy, 82) error error mean err.
Mozart | constant (—.3,.5,1) 3.55 4.54 1.20
Sphere | variable (—.6,0,1) 5.2 8.9 0.28
Vase | variable | (=6, .2, 1) 3.02 101 074

Table 2: Mean and standard deviation of errors in albedo p.

albedo | light source | Albedo mean | Albedo stdv.

surface (Sz, 8y, 82) error error
Mozart | constant (—.3,.5,1) 0.02 0.06
Sphere variable (—.6,0,1) 0.1 0.2
Vase variable (—.6,.2,1) 0.29 0.2

using combination of sine and cosine waves (Fig. 3b). Recovered depth and albedo
surfaces for the vase image of Fig. 3c are shown in Fig(s). 3d and e respectively.
Note that for both of these examples current schemes can not recover the correct
depth maps and albedo surfaces.

For quantitative analysis, in order to be consistent with the comparison given
in survey paper on SFS [14], we tabulated the mean and standard deviation of the
depth error and mean gradient error in Table 1. In addition, mean and standard
deviation of the albedo error are tabulated in Table 2. The depth errors are
obtained from the true depth map and the normalized recovered depth map. The
range of the depth values used to construct Table 1 are 0 < Z < 38 for the vase,
0 < Z < 34 for the Mozart and 0 < Z < 30 for the sphere. Similarly albedo
errors given in Table 2 are calculated from the ground truth and the estimated
albedo values. The range for the albedo values for all objects are 0 < p < 1.
The quantitative analysis are not performed for the real images due to the lack of
ground truth for the depth. The CPU timing of the proposed method is 0.5 sec(s)
for a 128x128 symmetric image for 6 iterations.

5 Conclusion

We propose a two step algorithm to recover shape and reflectance properties for
symmetric objects. The symmetry constraints are used to obtain a new albedo free
reflectance function. The method uses Taylor series expansion of the symmetric
reflectance function to iteratively calculate the depth value at a pixel. The depth
value at each pixel is dependent only on the light source direction, intensity at
pixels on either side of the symmetry axis and the two neighboring depth values.
After the depth values are obtained, the standard reflectance function is used
to recover the pixel based albedo values, which relaxes the constant albedo ap-
proximation. Experiments on synthetic and real images show the usefulness of the
proposed approach for recovering both the shape and the albedo of the object.



(d)

Figure 1: (a) Original Mozart depth map; first column input images, second col-
umn recovered depth maps, third column estimated albedo surfaces for light source
(8z,8y,82) at (b) =(0.2,0.1,1), (c) (—0.3,0.5,1) and (d) (0.5,0.5,1)
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