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Abstract

This paper presents a novel representation for human actions which encodes the variations in the shape and motion of the performing
actor. When an actor performs an action, at each time instant, the outer object boundary is projected to the image plane as a 2D contour.
A sequence of such contours forms a 3D volume in the spatiotemporal space. The differential geometric analysis of the volume surface
results in a set of action descriptors. These descriptors constitute the action sketch which is used to represent the human actions. The
action sketch captures the changes in the shape and motion of the performing actor in an unified manner. Since the action sketch is
obtained from the extrema of the differential geometric surface features, it is robust to viewpoint changes. We demonstrate the versatility
of the action sketch in the context of action recognition, which is formulated as a view geometric similarity problem.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The analysis of the human actions in a video stream is
an active research area in the Computer Vision community.
Over the past decade, the action content in a video clip has
been analyzed by using different techniques, such as the
Hidden Markov Models [1], Finite State Machines [2],
Neural Networks and Context Free Grammars [3]. Despite
the success achieved by using these approaches, their main
limitation is the requirement of a controlled environment,
such as a fixed camera viewpoint and controlled actor
motion. This limitation stems from the features used in
the action analysis. Thus the important question of ‘‘Which
features are suitable to represent an action?’’ remains unre-
solved. Considering an action as a space-time construct,
important events during an action can be best described
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by the instants when the motion and posture of the actor
change.

There are various approaches to represent human
actions. A common form of action representation is to
use a set of motion trajectories. The motion trajectories
can be analyzed to find the instants that characterize the
action, such as the changes in the speed and direction of
a hand. In [4], Rao et al. extract the spatiotemporal curva-
ture minima and maxima of a single motion trajectory (spe-
cifically the hand trajectory). In their approach, the minima
and maxima in the curvature values correspond to sudden
changes in the speed and direction of the tracked body
part. Gritai et al. [5] use 13 motion trajectories obtained
by tracking the body landmarks, such as the head, arms
and legs. When compared to the use of a single trajectory,
multiple trajectories provide a stronger constraint. More-
over, the relative positions of the these trajectories implic-
itly represent the actor’s posture during an action.

Another possible action representation is to use a set of
motion features extracted from the bounding box enclosing
the actor. These features include but are not limited to the
optical flow of each pixel or the affine motion of a bound-
geometric approach to representing the human actions, Comput.
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ing box around the object. In [6], Polana and Nelson gen-
erate the statistics of the normal flows computed in consec-
utive frames to represent an action. Efros et al. [7] use the
optical flow for the same purpose. For representing the
facial expressions, Black and Yacoob [8] analyze the varia-
tions of the affine motion parameters computed from the
bounding boxes around the eyes, eyebrows and mouth.
Similarly, Yang et al. [9] use the relative position between
the head and hands, along with the affine motion of each
hand region to represent the American sign language ges-
tures. Instead of the optical flow, Zelnik-Manor and Irani
[10] use the magnitude of the temporal image gradient at
various scales for representing the human actions. In [12],
Hsu and Harashima proposed to extract the motion dis-
continuities by analyzing the spatiotemporal energy com-
puted from the responses of the 3D steerable filters. In
their approach, the motion discontinuities are assumed to
occur only on the object boundaries.

In addition to the motion templates, the appearance of
the actor, in the form of the edge maps, shape templates
or skeletal models, has also been used to represent the
actions. Bobick and Davis [13] model the changes in the
actor’s posture by generating temporal templates from a
set of tracked silhouettes. The moments computed from
these templates are then used to represent the actions.
For recognizing the American Sign Language, Starner
and Pentland [14] use the appearance templates defined
by the bounding boxes enclosing the hand regions. In
[15], Cutler and Davis use the color similarity computed
in a bounding box enclosing the actor to find the period-
icity of the human motion. Instead of using the color
observations, Mori et al. [16] use a sequence of shape his-
tograms generated from the edges inside the bounding
box. Sullivan and Carlsson [17] also use the edge maps,
however, instead of a histogram, they use a voting matrix
indexed by the gradient angles of both edge maps. Syeda-
Mahmood et. al. [18] use the local 2D shapes (contour
parts) in the spatial coordinates around a set of points
placed on the contours enclosing the object region. The
stack of such contours is referred to as the generalized
cylinder. The skeletal representation, which models the
actor’s posture [19], is obtained by applying the medial
axis transform to the actor silhouette at a given time
instant. From a set of skeletons, the characteristic infor-
mation of the action is extracted by analyzing the changes
in the relative orientations between the skeleton segments
over time.
Fig. 1. (a) A sequence of object contours for a falling pers
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In this paper, we propose a novel action representation
that simultaneously exploits the changes in the object shape
and motion in a unified manner. The proposed action rep-
resentation is generated in two steps: the creation of a con-
tinuous volume from the object silhouettes or contours,
and the extraction of the action descriptors from this vol-
ume. The first step assumes that the object tracking has
already been performed, and a sequence of object silhou-
ettes or contours is extracted (see Fig. 1a). Using the con-
tours, we generate a spatiotemporal volume by
establishing point correspondences. The resulting volume
is referred to as the ‘‘action volume’’. Since the action vol-
ume is continuous in the spatiotemporal space (see
Fig. 1b), we can synthesize an action at different execution
rates by discretizing the volume at different sampling rates.
The second step extracts descriptors of an action by analyz-
ing the differential geometry of the volume surface using
Weingarten mapping. This analysis results in labeling the
patches on the volume surface as peaks, pits, valleys and
ridges. However, it is well known that computing the differ-
ential quantities is sensitive to noise. Hence, prior to eval-
uating the differential geometry, we smooth the action
volume using the level set formalism. This process results
in reliable computation of the differential features related
to:

• the convex or concave parts of the (spatial) object
contours,

• The minima or maxima of the spatiotemporal curvature
of the motion trajectories.

The existence of the concavity or convexity in the object-
contour as well as the existence of the curvature minima or
maxima on the motion-trajectory are preserved with the
changes in the viewpoint. Thus, the proposed action
descriptors are robust to viewpoint changes. The set of
action descriptors is referred to as the action sketch.

We demonstrate the proposed action representation in
the context of action recognition. Two videos of the same
action can be considered as two different views of the same
scene related by the epipolar geometry. The epipolar geom-
etry requires correspondences between the action descrip-
tors in both views are known. For this purpose, we use a
graph theoretical approach where the correspondences
are established using the maximum matching of a bipartite
graph. Once the point correspondences are established, the
epipolar geometry between the two actions is evaluated by
on and (b) the corresponding spatiotemporal volume.

geometric approach to representing the human actions, Comput.



Fig. 2. (a and b) The contour points around the hand region in two
consecutive frames. (c) The points in (b) superimposed on the points in (a).
The points in green color denote the wrong associations due to the nearest
neighbor criterion. (d and e) The contour points around the leg region in
two consecutive frames. (f) The points in (d) superimposed on the points in
(e). As shown, due to the leg motion, the boundary between the legs
disappear, such that the green points in frame t have no correspondences
in frame t + 1.
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computing the symmetric epipolar distance. The accumu-
lated symmetric epipolar distances are then used as the
matching score between the two actions.

The organization of the paper is as follows: in the next
section, we discuss the generation of the action volume
from a noisy sequence of object contours. Section 3
describes the extraction of the action sketch from an action
volume (Section 3.1), the effect of noise on the proposed
representation (Section 3.2), and its relationship to various
types of object motions (Section 3.3). In Section 4, we dis-
cuss the effect of the changes in the viewpoint on the action
sketch (Section 4.1), and propose a recognition scheme
based on the epipolar geometry (Section 4.3). The experi-
ments demonstrating the performance of the proposed
approach on 30 actions is given in Section 5. Subsequently,
we conclude in Section 6.

2. Generating the action volume

The spatiotemporal volume, which is commonly gener-
ated by stacking a sequence of video frames, has been
widely used in the computer vision community [10,11,29].
In our representation, instead of stacking the video frames,
we stack only the object contours (boundaries) and gener-
ate a volume from this stack. Generating a volume from a
set of object silhouettes has been investigated in [20] specif-
ically for the walking action. In their approach the authors
fit a manually generated walking volume, that is comprised
of two surfaces (the right and left body parts), to a
sequence of silhouettes. Due to the use of a manually gen-
erated volume, this approach requires the object moves
parallel to the camera. The main limitation of using manu-
ally generated volumes is that generating a different volume
for different actions observed from different viewpoints is
not practical. In this paper, we propose to generate the vol-
ume automatically for any action viewed from any viewing
direction.

The contour of an object can be extracted and tracked
by means of background subtraction [21] or contour track-
ing [22]. In this paper, we use the contour tracking
approach discussed in [22], which provides us with a set
of closed object contours Ct (see Fig. 1a).

Given a sequence of object contours, which provides a
dense point cloud in the three-dimensional spatiotemporal
coordinates, is a difficult task and an ongoing research in
computer graphics [24,25]. In general, the volume genera-
tion methods in literature require proximal surface points.
This requirement, however, is not satisfied in the domain of
the human actions, where the sudden motion of an actor
may cause the surface points to be distant. To address this
problem, we propose a surface reconstruction technique
tailored for the domain of human actions and provide a
qualitative comparison with the marching cubes method,
which is a baseline surface reconstruction method. Given
a point cloud, the marching cubes method approximates
isosurfaces by estimating the local geometry from neigh-
boring points [23].
Please cite this article in press as: A. Yilmaz, M. Shah, A differential
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2.1. Point association in consecutive contours

We simplify the isosurface generation to point matching
between two consecutive contours Ct and Ct+1. Associating
two point sets obtained from the contours of a non-rigid
object is still an open problem. An obvious difficulty arises
due to the points in one set that do not have correspon-
dences in the other set. In such cases, 1–M (one-to-many)
or M–1 (many-to-one) mappings become important. An
intuitive approach to find point matches is to use the near-
est neighbor criterion [26]. However, as shown in Fig. 2a–c,
associating the points to their nearest neighbors results in
an incorrect topology. Another possible approach is to
compute the rigid motion between two consecutive con-
tours [27]. However, this approach cannot handle a large
amount of 1–M mappings. Point matching can also be
achieved by using a local shape similarity metric. Sullivan
and Carlsson [17] defined the local shape at a given point
by its tangent direction. For the same purpose Mori and
Malik [16] used the shape histograms for each point in
the object’s edge map, which includes the points inside
the object boundary. Neither of these features are discrim-
inative, therefore, they may miss points or establish incor-
rect correspondences (see [16, Fig. 2] and [17, Fig. 3]).

We propose a graph theoretic approach to find the
matching points, which is similar in spirit to the work of
[16] and [28]. Let L and R be two point sets corresponding
to Ct and Ct+1, respectively. We define a bipartite graph
G(V,G) with |V| = |L| + |R| vertices, where |Æ| is the cardinal-
ity of the set (see Fig. 3a).

The weight of each edge from a vertex in L to a vertex in
R is defined by the spatial proximity, the angular distance
of the normal directions, and the similarity of the shape
of the corresponding vertices (see Fig. 3b). The combina-
tion of these three constraints assures that the vertex asso-
ciations are spatially as close as possible, and the geometry
and orientation of vertices are similar such that the prob-
lems shown in Fig. 2 are not observed. Let ci = [xi,yi, t]T

and cj = [xj,yj, t + 1]T be the vertices in L and R, respec-
tively. We compute the spatial proximity between the cor-
responding vertices by:

di;j ¼ kci � cjk2: ð1Þ
geometric approach to representing the human actions, Comput.



Fig. 3. (a) The set of vertices (the nodes on the object contour) and the edges in two consecutive frames from the tennis sequence, (b) the local contour
neighborhoods in two consecutive frames used in defining the weights for the matching between the vertices i and j. The resulting vertex matchings between
the contours of (c) the falling, (d) dance, and (e) tennis stroke actions.
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The distance between the normal vectors ~ni and ~nj, which
respectively correspond to ci and cj, is obtained by consid-
ering the angle ai;j ¼ arccos ð~ni �~njÞ. Let Ti,j = ci � cj be the
translation and

Ri;j ¼
cos ai;j sin ai;j

� sin ai;j cos ai;j

� �
;

be the rotation of the vertex ci from the frame at time t to
the frame at time t + 1. The similarity of the shape between
the vertices ci and cj is defined in the neighborhoods Ni and
Nj after compensating Ti,j and Ri,j:

ni;j ¼
X
xj2Nj

kx̂i � xjk2; ð2Þ

where x̂i ¼ Ri;jxi þ Ti;j, and xi 2 Ni is the vertex corre-
sponding to xj (note that |Ni| = |Nj|). We assume these three
measures are distributed by zero mean normal distribu-
tions: di,j � N(0,rd), ai,j � N(0,ra) and ni,j � N(0,nd). The
association hypothesis (wi,j from ci to cj) is tested by means
of the joint probability computed from these three
distributions:

wi;j ¼ exp �
d2

i;j

r2
d

 !
exp �

a2
i;j

r2
a

 !
exp �

n2
i;j

r2
n

 !
: ð3Þ

The distribution parameters rd, ra and rn control the con-
tribution of the distance between the vertices, the angle be-
tween the normals and the degree of the shape variation
respectively. In our experiments, we fix: rd = 15, ra = 0.5
and rn = |Ni|.

We solve the point correspondence problem by comput-
ing the maximum matching of a bipartite graph with the
weights wi,j. A matching of a graph is a set of edges such
that no two edges share a common vertex. The maximum
matching provides 1–1 (one-to-one) mappings from L to
R such that

P
i

P
jwi;j is maximized [30]. Prior to the match-

ing, the edges with low confidences, due to the non-rigid
object motion, are pruned. Upon establishing the corre-
spondences, the spatial relations between the points are
usually not maintained. For instance, the following match-
ings ci fi cj and ci�2 fi cj+3 can not hold simultaneously.
Following this observation, we apply a post process which
Please cite this article in press as: A. Yilmaz, M. Shah, A differential
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iteratively prunes the outliers and creates new associations
that are 1–M or M–1. Fig. 3c–e show the final vertex
matchings for three different actions. In Fig. 4, the action
volumes generated for the tennis stroke, dance and walking
actions are shown.

To see the effectiveness of the proposed method, we gen-
erated a volume for the falling action using both the
marching cubes and the proposed method. For fairness,
we smooth both volumes using the same method with the
same parameters. In order to qualitatively compare the
results, we computed the differential geometric properties
defined by the Gaussian and mean curvatures of the vol-
ume surfaces. In Fig. 5, we show zoom-in views for the
same part from two volumes where the actor motion and
shape significantly change. Due to the sudden motion of
the actor, the neighboring points are distant from each
other. As shown in Fig. 5b, the marching cubes method
cannot handle the sudden changes in object motion, hence
generates an ambiguous action sketch. In our experiments,
3D Delaunay triangulation also had poor performance
around the body parts with sudden motion.

2.2. The properties of the action volume

The action volume generated from the point matches
between the contours can be considered a manifold,
B(x,y, t), such that a continuous surface can be approxi-
mated by computing the surface equations for each small
surface patch. An important advantage of this approxima-
tion is its ability to provide the contour at any given time
instant t, such as the contours at time t = 2.3 or 10.7. Since
the action volume is generated from a set of contours,
instead of using the three dimensional (x,y, t) representa-
tion, we can define a 2D parametric representation by con-
sidering the arc-length s of the contour and the time t:

B ¼ f ðs; tÞ ¼ ½xðs; tÞ; yðs; tÞ; t�: ð4Þ
In this representation arc-length encodes the object shape
and the time encodes its motion, such that, fixing the s

parameter generates 2D motion trajectories of any point
on the object boundary. Similarly, fixing the t parameter
generates the object contours at time t.
geometric approach to representing the human actions, Comput.



Fig. 4. The volumes for (a) the dance, (b) tennis stroke and (c) walking actions.

Fig. 5. For comparing the differential surface geometry, we generated the action volume using both the marching cubes method and the proposed method.
The same level of smoothing is applied for both methods. The figures display part of the volume surface where sudden motion and shape changes occur.
The different colors on the volumes represent the value of the curvatures (red, high; blue, low). (a) Proposed method accurately estimates the Gaussian and
mean curvatures. (b) The marching cubes method gives incorrect isosurfaces, hence, the Gaussian and mean curvatures are not correct. We use a standard
implementation of the marching cubes method available from the visualization toolkit at www.vtk.org. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this paper.)
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Assuming the pace of the actor does not drastically
change,1 several discrete approximations of the action vol-
ume can be generated by using different samplings in time.
In Fig. 6, we show an example to demonstrate this property
for the dance sequence where a synthetic dance clip is gen-
erated by randomly selecting 20 frames from among 40
frames. As seen from the figure, although 50% of the obser-
vations are missing, the volumes look very similar. How-
ever, we should note that this property is only valid for
1 For instance, for an atomic walking action, we assume the pace of the
first step is equal to the pace of the second step.

Fig. 6. The impact of the temporal sampling. The action volumes for (a)
the dance sequence with 40 frames and (b) the synthetic dance sequence
with 20 frames, which is generated by randomly removing frames from (a).

Please cite this article in press as: A. Yilmaz, M. Shah, A differential geometric approach to representing the human actions, Comput.
Vis. Image Understand. (2007), doi:10.1016/j.cviu.2007.09.006
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the atomic actions. For instance, this property is satisfied
for two walking cycles, but it is invalid for the video clips
which may contain different number of walking cycles.
3. The action sketch

In the field of psychology, the changes in the direction
and/or the speed of the body parts have been successfully
used to characterize a human action [31]. In this formaliza-
tion, the body part accounts for the shape of the object,
and the direction/speed pair accounts for the motion of the
object. For instance, grabbing an object with a hand can be
characterized by the position of the fingers at various time
instants corresponding to ‘‘the hand reaches the object’’,
‘‘the fingers grab the object’’, and ‘‘the hand recedes with
the object’’.

In our approach, the action volume encodes three quan-
tities for each point on the contour: the shape, direction of
motion and speed. Obviously these quantities are depen-
dent on the camera viewpoint, such that the action volume
will be different when the action is captured from different
viewpoints. However, the differential properties, which are
related to the shape and motion variations, are not depen-
dent on the viewpoint. These properties are implicitly
encoded on the volume surface which can be extracted by
analyzing the surface geometry. We should note that the
differential features used in this paper are different from
the differential features used in other papers which extract
the local motion [6,7,10]. In particular, the local motion
results in a dense set of features which are usually redun-
dant due to the similar motion of the pixels that belong
to the same body parts. In contrast, the proposed represen-
tation is composed of a sparse set of features that are
related to the geometry of the volume surface. These geo-
metric features are not redundant and encode the shape
and motion changes simultaneously. In the following sec-
Table 1
The surface types and their relation to the mean, H, and Gaussian, K, curvat

K > 0

H < 0

H = 0 None

H > 0
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tion, we discuss how the action descriptors can be extracted
using the differential geometry.
3.1. Finding the action descriptors

The differential geometric properties of surfaces have
commonly been considered in the context of range image
analysis. An extension of these features has also been uti-
lized for video segmentation by computing motion discon-
tinuities from the image brightness [12]. Here, we extend
these results to a new domain: human actions. The differen-
tial geometry of a surface is described by two quantities:
The Gaussian curvature K, and the mean curvature H.
Both of these curvatures are computed from the Weingar-
ten mapping defined in terms of the first and second funda-
mental forms of a surface [32]. In particular, the signs of K
and H define the surface type and the values of K and H

define the surface sharpness. There are eight types of sur-
faces: peak, ridge, saddle ridge, flat, minimal, pit, valley
and saddle valley (see Table 1). These surface types are also
known as the fundamental surface types.
3.1.1. The first fundamental form

The first fundamental form is the inner product of the
tangent vector at a given point x(s, t) and can be computed
in the direction (sp, tp) by:

I s; t; sp; tp

� �
¼ sp tp

� �T E F

F G

� 	
|fflfflfflfflffl{zfflfflfflfflffl}

g

sp tp

� �
;

ð5Þ

where E = xs Æ xs, F = xs Æ xt, G = xt Æ xt, and the subscripts
denote the partial derivatives with respect to the arc-length
and time. The g matrix is called the metric tensor of the sur-
face and has the same role as the speed function for a spa-
tiotemporal trajectory [33]. In particular, E in (5) encodes
ures

K = 0 K < 0

geometric approach to representing the human actions, Comput.



A. Yilmaz, M. Shah / Computer Vision and Image Understanding xxx (2007) xxx–xxx 7

ARTICLE IN PRESS
the spatial information, whereas F and G encode the
velocity.

3.1.2. The second fundamental form

The second fundamental form defines the variation of
the normal vector with respect to the surface position. It
is computed by the following equation:

II s; t; sp; tp

� �
¼ sp tp

� �T L M

M N

� 	
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

b

sp tp

� �
; ð6Þ

where L ¼ xss �~n, M ¼ xst �~n and N ¼ xtt �~n, ~n is the unit
normal vector, and the subscripts denote the second order
partial derivatives. In terms of encoding the motion, N in
Eq. (6) is related to the acceleration of x(s, t).

3.1.3. The Weingarten mapping

The Weingarten mapping combines the first fundamen-
tal form (5) and the second fundamental form (6) into one
single matrix S:

S ¼ g�1b ¼ 1

EG� F 2

GL� FM GM� FN

EM� FL EN� FM

� 	
: ð7Þ

The Gaussian curvature K, and the mean curvature H are
the two algebraic invariants of the Weingarten mapping
[34]. In particular, the Gaussian curvature is the determi-
nant of S:

K ¼ detðSÞ ¼ LN�M2

EG� F 2
; ð8Þ

and the mean curvature is the half of the trace of S:
Fig. 7. (a) The action volume, (b) the Gaussian and (c) mean curvatures. Diffe
interpretation of the references to color in this figure legend, the reader is refe

Fig. 8. The color coded action descriptors corresponding to various surface
valley). (For interpretation of the references to color in this figure legend, the
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H ¼ 1

2
traceðSÞ ¼ ENþGLþ 2FM

2ðEG� F 2Þ
: ð9Þ

In Fig. 7, we show the mean and Gaussian curvatures com-
puted for the falling action.

Once the Gaussian and mean curvatures are computed
for each point on the action volume, we apply a non-max-
imal suppression to |K| and |H| to extract the action
descriptors, hence the action sketch. In Fig. 8, we show sev-
eral action sketches with the action descriptors color coded
according to the fundamental surface types.
3.2. The action sketch in presence of noise

The differential quantities which are used to extract
the action sketch are known for their sensitivity to noise.
In the context of action volumes, which are generated
from the tracked object contours, the noise occurs due
to imperfect contour parts emanating from poor tracking
performance. For instance, tracking methods that rely on
the appearance will fail to provide good object regions
when the object appears similar to the background. In
this case, there will be missing or spurious object regions
and the resulting boundaries will be noisy. This effect is
shown in Fig. 10A for several sequences from the stan-
dard Human ID (HID) database of tracked individuals
[35]. The sequences shown in this figure are captured
from the same camera viewpoint, while different actors
performed walking action with different execution styles.
Due to different clothing and the background clutter, in
each sequence, different parts of the silhouettes are
missing.
rent colors represent the value of the curvature (red, high; blue, low). (For
rred to the web version of this paper.).

types. The color codes are: blue (peak), jade (saddle ridge), pink (saddle
reader is referred to the web version of this paper.)

geometric approach to representing the human actions, Comput.
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To reduce the effect of noise, we first apply a smoothing
operation on the action volume generated from the noisy
silhouettes. In the context of 3D surfaces, smoothing has
received a considerable amount of interest and numerous
approaches have been proposed for generating smooth sur-
faces which are suitable for computing the differential sur-
face properties [36–38]. In this paper, we adapt the level set
formalism discussed in [38] for generating a smooth vol-
ume. A main advantage of the level sets is its ability to pro-
vide robust numerical approximations of the finite
differences which are required for computing geometric
properties such as normal vector~n ¼ D/

jD/j and surface curva-
ture j = div

D/
jD/j. In addition, as discussed by Olver et al.

[39], even for non-smooth surfaces like the noisy action vol-
umes, the surface evolution based on differential properties
is well-posed and stable. In a 3D level set grid, /(x), the
action volume B can be represented by the zero level set
where each grid position x encodes the closest distance
from the volume surface [38]. The smoothing operation is
performed iteratively by evolving the volume by means of
a speed function, s, evaluated at each point around the sur-
face based on the grid quantities. For the surface smooth-
ing, we define the evolution speed by the Gaussian
curvature, such that the overall curvature is minimized by
iteratively evolving the surface using (see Fig. 9 for smooth-
ing iterations):

jðx;y; tÞ

¼
/yy/tt�/yt

� �
/2

xþ /xx/tt�/xtð Þ/2
y þ /xx/yy�/xy

� �
/2

t

þ2/x/y /xx/yt�/xy/tt

� �
þ2/y/t /xy/tt�/yt/xx

� �
þ2/x/t /xy/yt�/xt/yy

� �
�������

�������
1
4

;

ð10Þ

where the single subscript for / denotes the first order deriv-
ative and the double subscripts denote the second order
derivative of / with respect to corresponding variables x, y

and t.
In Fig. 10B, we show the smooth volumes obtained by

applying the curvature flow given in Eq. (10). After the
smoothing step, we compute the differential geometric
properties for each sequence, which include the Gaussian
and mean curvatures as shown in Fig. 10C.

To quantitatively assess the sensitivity of these differen-
tial measures, we define a metric based on the proximity of
the surface patches and the similarity of their curvatures
evaluated for the entire volume:
Fig. 9. The smoothing an initial action volume (a) using the level set method.
smooth volume.
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s ¼
X

xi2Bi;xj2Bj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�ðji�jjÞ>R�1

j ðji�jjÞ e�ðxi�xjÞ>R�1
x ðxi�xjÞ

2pjRjj
1
2jRxj

1
2

vuut ; ð11Þ

where Bi and Bj denote the two action volumes; the first
exponential term measures the curvature similarity and
the second exponential term measures the proximity. Rear-
ranging this equation, one can show that the similarity
measure given in Eq. (11) is associated with the Bhatta-
charyya coefficient which is related to the Bayes error un-
der the assumption that the curvatures and the Euclidean
distances around each surface point are normally distrib-
uted [40]. The similarity results are plotted in Fig. 11 for
different actions. In the plots, we have chosen the sequence
in Fig. 10a as the reference volume and computed the sim-
ilarity of this action volume against other walking exam-
ples shown in Fig. 10b–g, and two other volumes
generated from actions different from the walking action.
As shown in the figure, the similarity computed using Eq.
(11) between pairs of action volumes (a) as well as between
pairs of action sketches (b) are distinctively similar for the
same action type and are different for different actions. It is
clear to see that the level set smoothing reduces the effect of
noise and the extracted action sketches are robust. An
important observation at this point is ‘‘If both the volume
and sketch based measures give similar results, why don’t
we simply use the volume alone for action recognition?’’.
For action sequences captured from the same viewpoint,
the volume based measure is adequate, however, since the
volumes from different viewpoints are different, it will fail
to characterize an action. As discussed in Section 4.1, this
is not the case for the action sketch.

3.3. Analysis of the action descriptors

The action sketch encodes both the motion and shape
of the performing actor simultaneously. For instance,
‘‘closing the fingers while forming a fist’’ (see Fig. 12a)
generates different descriptors compared to ‘‘waving a
hand’’ (see Fig. 12b). In the first case, the hand contour
changes dramatically giving rise to different surface
types; e.g. saddle valleys and pits. In the latter case,
the hand shape does not change, however, its motion
(change of speed and direction) results in ridges and sad-
dle ridges.

In order to define the relationship between the descrip-
tors in the sketch with the object motion and shape, we
(b–d) The intermediate iterations. (e and f) Two different views of the final

geometric approach to representing the human actions, Comput.



Fig. 10. The noisy silhouettes from the standard HID database [35]. We have selected seven sequences corresponding to different individuals with different
durations. (A) The silhouettes of different individuals, (B) associated volume after the level set smoothing, (C) the Gaussian (left) and mean (right)
curvatures color coded on the surface (red, high; blue, low). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this paper.)

A. Yilmaz, M. Shah / Computer Vision and Image Understanding xxx (2007) xxx–xxx 9

ARTICLE IN PRESS
consider three basic types of contours: concave, convex and
straight. The other contour shapes are a combination of
these basic contour types. Depending on the object motion,
these contour types may generate the following action
descriptors:

• A straight contour generates a ridge, a valley or a flat
surface,

• A convex contour generates a peak, a ridge or a saddle
ridge,
Please cite this article in press as: A. Yilmaz, M. Shah, A differential
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• A concave contour generates a pit, a valley or a saddle
valley.

In order to illustrate the effect of motion on the surface, let
us first consider the rigid motion, i.e., there is no shape
deformation. In this setting, there are three possibilities:

• No motion: The object contour stays stationary,
• Constant speed: The object contour moves in one direc-

tion with a constant speed,
geometric approach to representing the human actions, Comput.
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Fig. 11. The similarity of the sequence HID1 shown in Fig. 10a to the other sequences in the same figure using the respective volumes and the action
sketches. (a) The similarity is computed using Eq. (11) for the entire volume and (b) the action sketch. Note that both the volume and the sketch effectively
match the reference HID1 sequence to other HID sequences.

Fig. 12. (a) The contours of a hand forming a fist and (b) the resulting action volume. (c) The contours of a waving hand and (d) the resulting action
volume.

Fig. 13. The motion of a hand resulting in different action descriptors. (a) The hand stays stationary and generates a ridge. (b) The hand decelerates in fl
direction and accelerates in › direction generating a saddle ridge. (c) The hand first decelerates in › direction and accelerates in fl direction generating a
peak.
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• Deceleration and acceleration: The object contour moves
in one direction while decelerating its speed, then comes
to a full stop which is followed by an acceleration in the
opposite direction.

In Fig. 13, we show the volumes generated from a
sequence of hand contours. Note that in this example,
only the ‘‘concave contour’’ segment of the hand is used
to generate the action descriptors, hence, the resulting
descriptors are only ridges, saddle ridges and peaks
depending on the direction of the motion. Next, we sum-
marize and give examples for the hand motion that give
rise to various action descriptors assuming an affine cam-
era model.

3.3.1. The peak surface

This action descriptor is generated from a sequence of
‘‘convex’’ contours. A typical example of a peak is given
in Fig. 13c, where the hand moves first in the direction nor-
mal to the contour then stops and moves in the opposite
direction.

3.3.2. The pit surface

This is similar to the peak surface, but it is defined for a
sequence of ‘‘concave’’ contours. It is generated when the
contour first moves in the direction normal to the contour,
then stops, and moves in the opposite direction.

3.3.3. The ridge surface

The ridge surface is generated in two different ways
based on the motion and shape pair. The first possible
way is when a ‘‘convex’’ contour moves in some direction
with a constant speed (including no motion case). In
Fig. 13a, we give an example of a ridge surface generated
from a sequence of hand contours with no motion. The sec-
ond possible way is when a ‘‘straight’’ contour moves first
in some direction, then comes to a stop, and then moves in
the opposite direction.
3.3.4. The saddle ridge surface

Similar to the ridge surface, a saddle ridge is generated
by the motion of the convex contours. An instance of the
saddle ridge is shown in Fig. 13b, where the hand first
moves in the direction opposite to the normal of the con-
tour, then comes to a full stop, and moves in the opposite
direction.
Table 2
Various surface types and their relations to the curvature of the trajectory an

Contour curvature Maximum Minimum
Trajectory curvature Maximum Minimum

Please cite this article in press as: A. Yilmaz, M. Shah, A differential
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The discussions for the action descriptors related to the
ridge and saddle ridge can be extended to the valley and
saddle valley. The difference between the two is that the
contour is concave for the latter. The strength of the con-
tour concavity or convexity and the magnitude of the con-
tour motion is encoded by the values of the Gaussian and
mean curvatures. For the peak and pit surfaces, the mean
curvature encodes the shape of the object (concave:
H < 0, convex H > 0) and the Gaussian curvature controls
the bending of the temporal surface in the time direction,
such that when K > 0, the object moves in the normal direc-
tion of the contour while for K < 0 it moves in the opposite
direction to the contour normal. Similar arguments hold
for the action descriptors defined by the saddle valley and
the saddle ridge surfaces. However, for the valley and the
ridge surfaces, the object shape and motion can be encoded
by either the mean or the Gaussian curvature. Depending
on the type of surface, the curvatures can also be used to
compute the motion direction and speed at any contour
point.
4. Recognizing the actions from different viewpoints

Action recognition using the proposed representation
can be considered as a 3D object recognition but in the spa-
tiotemporal space. In this line of thought, we first discuss
how a change in the viewpoint affect the proposed repre-
sentation, and then we sketch a matching strategy based
on the scene geometry for computing a similarity score
between two different actions.
4.1. On the effect of viewpoint change

In our representation, the effect of the viewpoint is
directly related to the building blocks of the action volume:
the object contours and the trajectories of the points on the
contour. For each action descriptor in the action sketch
(the minima or maxima of K and H on the action volume),
the underlying curve defined by the object contour and the
point trajectories will have a concavity or a convexity (see
Table 2).

In this section, we seek an answer to the following ques-
tion: ‘‘What happens to the minima and the maxima of
contour and trajectory curvatures when the same action
is viewed from another viewpoint?’’ We first discuss the
d the contour

Maximum Maximum
Zero Minimum

geometric approach to representing the human actions, Comput.
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effect of viewpoint on the contour, and then extend it to the
trajectory.

The object contour C at time t is parameterized by its
arc-length (Eq. (4)). For the two-dimensional spatial con-
tour, the Gaussian and mean curvatures simplify to a single
2D curve curvature:

j ¼ x0y 00 � y 0x00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y 02

p 3
¼ x0TBx00

ðx0Tx0Þ3=2
; ð12Þ

where B ¼ 0 1
�1 0

� 	
, x = f(s), y = g(s), x0 ¼ of

os, y0 ¼ og
os and

s is the contour arc-length.
Let the action be viewed by two different cameras, such

that we have two views of the contour, CL and CR, at time
t. Using the affine camera model, the world coordinates X

are projected to the image coordinates x by xL = AX + TL

and xR = CX + TR, where the subscripts denote the left
and right cameras [41]. Thus, the contour curvatures in
2D are related to the world coordinates by:

jL ¼
X0TATBAX00

X0TATAX0
� �3=2

; ð13Þ

jR ¼
X0TCTBCX00

X0TCTCX0
� �3=2

: ð14Þ

In these equations, ATBA = |A|B and CTBC = |C|B, where
|Æ| is the determinant. Dividing Eq. (13) by Eq. (14) we have:

jL

jR
¼ jAjjCj

ðX0TCTCX0Þ3=2

ðX0TATAX0Þ3=2
: ð15Þ

Let a = |C|/|A|, and by converting X to the left image coor-
dinates, the relation between the curvature of the contours
in the left and the right images is given by:

jR ¼ a
X0L

T
X0L

X0L
T
DX0L

;

 !3=2

jL; ð16Þ

where D = A�1TCTCA�1. This relation shows that the
curvature of a point on the right contour, CR, is directly
proportional to the curvature on the left contour, CL.
Due to this relation, the minima and maxima of the cur-

vature of CL are still the curvature minima and maxima

of CR. In Fig. 14, we show the same object contour
from various viewing directions along with several of
the corresponding curvature maxima and minima in
each view.
Fig. 14. The projections of the 3D contour on the image plane using the affi
contours denote the corresponding minima and maxima points.
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The effect of the viewpoint changes to the 2D trajectory
of a point has been previously discussed in the context of
action recognition [4], and it was shown that the minima
and the maxima of the curvature is invariant to the viewing
angle. Briefly, trajectory of a point can be viewed as a 3D
object in the spatiotemporal space, hence, two views of the
this trajectory are related to each other by means of a linear
transformation for an affine camera model as discussed
above. This relation results in the observation that the min-
ima and maxima of the spatiotemporal curvature on both
views are preserved.

4.2. Discussion

Observing the same curvature minima and maxima of
the contour and the trajectory from different viewpoints
does not apply in cases of an accidental alignment. The
accidental alignment happens when a point on a contour
moves perpendicular to the viewpoint, such that its trajec-
tory is mapped to a single point in the image plane. This
condition may also occur when a corner or a curvature
maxima on the contour is mapped to a non-corner point
in the image plane.

Due to the articulated motion of the body parts, it may
happen that some parts of the contour related to action
descriptors get occluded (self occlusion) in a particular
view. Hence, the action descriptors corresponding to the
occluded parts may not be visible. Thus, it is only meaning-
ful to discuss the existence of the curvature minima and
maxima for the parts of the contours which are visible in
both views. In Fig. 15a–e, we illustrate this with an example
where a walking person is viewed from five different view-
ing angles. In several views, the right arm is occluded and
results in missing action descriptors. However, the remain-
ing object parts are available in all the views and provide
adequate number of action descriptors to uniquely repre-
sent the action.

4.3. Recognizing actions

Two video sequences of the same action can be consid-
ered as two views of the same scene, such that there exists a
geometric relation between the two views. Following this
observation, we use the epipolar geometry for action recog-
nition. The epipolar geometry inherently provides invari-
ance to viewpoint changes for action recognition [18,42–
44]. Under the epipolar geometry constraints, two different
ne camera model from various viewing angles. Different numbers on the

geometric approach to representing the human actions, Comput.



Fig. 15. The walking action captured from five different viewpoints: the first row shows one frame from each viewpoint, the second row shows associated
contours and the third row shows the corresponding action volumes. (a) 30�, (b) 60�, (c) 90�, (d) 145�, and (e) 180�.
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views of an action are related to each other by the funda-
mental matrix:

xB yB 1ð ÞF
xDi

yDi

1

0
B@

1
CA ¼ 0; ð17Þ
Fig. 16. A subset of possible associations (peak with peak, valley with
valley etc.) of the action descriptors between the walking and the exercise
actions are shown.
where, in our context, the points XB and X Di correspond to
the location of the descriptors in the action sketch. The
fundamental matrix maps the points X Di in one view to
the epipolar lines UB ¼ FX Di in the other view, such that
the matching point XB lies on the epipolar line UB. In order
to recover the geometry between two actions, the corre-
spondences between two action sketches need to be estab-
lished. In the context of actions, Syeda-Mahmood et al.
[18] use the shape properties of a manually chosen feature
point on the action cylinder to search for corresponding
feature points. However, use of the shape alone may create
ambiguity due to non-rigid object motion. In this paper, we
formulate the problem of establishing the correspondences
between two action sketches as a graph theoretic problem.
In this formalism, the vertices of the graph are the action
descriptors, V, from the action sketches corresponding to
action volumes B and Di, where a = {B,Di}. The edges
go from one partite set B to the other partite set Di. The
weight of each edge is based on the convex combination
of the spatiotemporal proximity, di(k, l) and the geometric
similarity, gi(k, l):

wiðk; lÞ ¼ gdiðk; lÞ þ ð1� gÞgiðk; lÞ: ð18Þ
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The spatiotemporal proximity between the kth and lth ac-
tion descriptor that belong to the action sketches, B and Di,
is defined by the following measure:

diðk; lÞ ¼ e
�
kX k�X lV Di

ðsl ;tlÞk2

r2
d : ð19Þ

This measure assures that the action descriptors are not
distant from one another. The similarity of the underlying
geometry between the action descriptors is defined in terms
of differential geometric features which measure the con-
cavity and convexity of the local surface around the
descriptor. The differential geometric features we used for
this purpose are the Gaussian and mean curvatures:

giðk; lÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
�ðKðkÞ�KiðlÞÞ2

r2
K e

�ðHðkÞ�HiðlÞÞ2

r2
H

r
; ð20Þ
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Fig. 17. The action sketches superimposed on the action volumes generated from the video sequences of human actors. The numbers denote the action
labels used in Table 3.

14 A. Yilmaz, M. Shah / Computer Vision and Image Understanding xxx (2007) xxx–xxx

ARTICLE IN PRESS
where the square root provides the geometric mean of these
quantities.2 Use of these differential features guarantees not
only the similarity of the underlying object contours but
2 In our experiments, we have chosen rK ¼ 10, rH = 10 and g = .3 to
emphasize the geometric similarity.
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also the similarity of speed and acceleration of the action
descriptor. For instance, the peaks will be associated with
the peaks, and the valleys will be associated with the val-
leys, etc.

The maximum matching of the action graph provides
only 1–1 correspondences between the action descriptors.
In some occasions, some action sketches in one partite
geometric approach to representing the human actions, Comput.



Table 3
The recognition results for various actions

# Matching action #

Input action
Dance 1 Dance 20
Hand down 2 Stand up 29
Walking 3 Walking 11
Kicking 4 Kicking 9
Walking 5 Walking 11
Stand up 6 Stand up 29
Surrender 7 Surrender 17
Hands down 8 Hands down 2
Kicking 9 Kicking 4
Falling 10 Falling 30
Walking 11 Walking 11
Walking 12 Sit down 23
Sit down 14 Sit down 23
Walking 15 Walking 11
Running 16 Running 28
Surrender 17 Surrender 17
Tennis stroke 18 Tennis stroke 26
Walking 19 Walking 11
Dance 20 Dance 1
Sit down 23 Sit down 23
Walking 24 Walking 11
Tennis stroke 26 Tennis stroke 18
Stand up 27 Stand up 29
Running 28 Running 16
Stand up 29 Hands down 8
Falling 30 Falling 10

The italics are used to represent the correct matches and boldface is used
to represent the incorrect matches. Each row consisted of the input action
and the matching action along with their index to the volumes given in
Fig. 17.
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set may not have any correspondence in the other due to
self occlusions. In Fig. 16, we show a set of possible match-
ings between the walking and the exercise sketches whose
weights are above some confidence level.

Given the correspondences between the action descrip-
tors, the similarity between two actions can be computed
algebraically or geometrically using the relation given in
Eq. (17). The geometric score is based on the Euclidean dis-
tances of both XB to UB and X Di to U Di and measures the
quality of the recovered geometry. In contrast, the alge-
braic matching score is related to the quality of the homo-
geneous system of equations which are used to compute the
fundamental matrix using the least squares fit (A>A)f = 0,
where

A ¼½xDi xB; yDi
xB; xB; xDi yB; yDi

yB; yB; xDi ; yDi
; 1�;

f ¼½F 1;1;F 1;2;F 1;3;F 2;1;F 2;2;F 2;3;F 3;1;F 3;2;F 3;3�:

The details on how to construct A can be found in Hart-
ley’s paper [45]. Typically, due to the homogeneous sys-
tem of equations, the rank of (A>A) is eight unless all
the points (action descriptors) lie on one plane when
the rank is less then eight (degenerate cases). Following
the results given in [44], we compute the symmetric epi-
polar distances. The symmetric epipolar distance mea-
sures the average distance of each feature point in the
left camera view (one action view) to the epipolar line
generated from the corresponding feature point in the
right (other action view) camera view using the estimated
fundamental matrix:

dðX Di ;X BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X>Di

UB

jUBj

� �2

þ X>B U Di

jUDi j

� �2
s

; ð21Þ

where |Æ| denotes norm 2. Once Eq. (21) is evaluated for all
the matching points, a matching score between actions B

and Di is computed by:

sðB;DiÞ ¼
P

Ni
dðX Di ;X BÞ

Ni
; ð22Þ

where Ni denotes the number of matching points. Normal-
ization by Ni in our context is required due to varying num-
ber of feature point correspondences between the actions.
Finally, the action which gives the minimum geometric er-
ror argmaxi s (B,Di) is declared as a match.

5. Experiments

In order to test the performance of the proposed
approach, we collected a set of thirty action sequences cap-
tured from different viewpoints. Each action class has at
least two or more samples performed by different male
and female actors. The video sequences include dancing
(two sequences, one actor), falling (two sequence, two
actors), tennis strokes (two sequences, one actor), walking
(seven sequences, three actors), running (two sequences,
two actors), kicking (two sequences, two actors), sitting-
down (two sequences, one actor), standing-up (three
Please cite this article in press as: A. Yilmaz, M. Shah, A differential
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sequences, two actors), surrender (two sequences, two
actors), hands-down (two sequences, two actors), aerobics
(four sequences, two actors) actions.

From the input video, we first track the contours of the
objects using [22], and generate an action volume (Section
2). For each action volume, the level set based smoothing
is performed to compute reliable differential geometric
features. The collection of these features provides the
action sketch (Section 3). In Fig. 17, we show the com-
plete set of action sketches superimposed on the action
volumes. To analyze the recognition performance, we
chose ten sequences representing different actions (model
set) and used the remaining sequences as the test set. In
order to compute a matching action for all the action
sequences, we change the model set dynamically. For
instance, for the two kicking action sequences K1 and
K2, we generate two different model sets. The first model
set includes K1 whereas the second includes K2. These
selections test the matching of K1 against the model set
K2 and vice versa. Once the model set is generated, an
input action is matched against the actions in the model
set by computing the distance measure discussed in Sec-
tion 4.

In Table 3, we summarize the matching results by tabu-
lating the matching action for each action video. Each row
geometric approach to representing the human actions, Comput.



Fig. 18. Selected frames from some of the misclassified actions which appear similar. (a) The hands down action, and (b) the stand up action. In particular
an instance of the hands down action in (a) is recognized as (b), and an instance of the stand up action (b) is recognized as (a).
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of the table shows the input action, its corresponding index
in Fig. 17 and the matching action from the database and
its index in Fig. 17. As seen from the table, except for three
actions which are printed in boldface, all matches are cor-
rect. The incorrect matches include one instance of hands-
down, walking and stand-up actions. These incorrect
matches are mainly due to the similarity of the input
actions to the incorrectly matched actions or due to the
confusion of the input actions with the model actions in
the database. In particular, the hands down action involves
the ‘‘standing up’’ action, and additionally there are other
action descriptors that originate from the motion of both
hands (see Fig. 18a and b). The walking action is captured
from 180� and is confused with the model walking action
which is fronto-parallel.

We want to emphasize the importance of using both the
shape and the motion of the object. This is evident in the
hands down action. For instance, if we were modeling
the trajectory of only one hand, we would end-up with a
line shaped trajectory which is not a characteristic of the
action. However, the shape variation around the knees
(due to standing up) helps to identify the action.
5.1. A discussion on the implementation

The extraction of the proposed representation is per-
formed in three steps. First, we associate the points on
the consecutive object contours, which is followed by a
level set smoothing step. The resulting correspondences,
once smoothed out, generate piecewise continuous surface
patches, which are used to analyze the differential surface
geometry. Due to one step being an input to the following
step, our current implementation of the system requires
offline processing of stored action clips. This requirement
results in an increased computational complexity, hence, a
poor realtime realization for applications such as real-
time surveillance. However, the locality of the establishing
correspondences and the level set smoothing can be
exploited to implement an online version of the method
Please cite this article in press as: A. Yilmaz, M. Shah, A differential
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which can run in parallel to the object tracking. In partic-
ular, starting from the first few instances of tracked object
contours or silhouettes that belong to a long action clip,
one can associate control points on consecutive contours
and perform piecewise smoothing of the resulting corre-
spondences using the level set approach. The analysis of
geometric surface features can be performed once the
piecewise action volume is available. This speed-up will
result in recognition of an action delayed only by the
duration of the action.

6. Conclusions

The recognition of human actions requires detecting fea-
tures corresponding to important changes in the actor
shape and motion. In order to facilitate simultaneous use
of both quantities, we propose to analyze the action as a
3D object in the spatiotemporal space. The proposed
approach considers the action as a 3D volume, which is
generated by stacking a sequence of tracked 2D object sil-
houettes or contours. Given an action volume, the features
representing the action are extracted by analyzing the dif-
ferential geometric properties computed from the volume
surface. The differential geometric surface properties reveal
the type of motion a body part is going through as well as
the related non-rigid shape deformation due to that
motion. A collection of the differential geometric properties
constitute the action sketch, which is robust to changes in
the camera viewpoint. Finally, two action sketches are
matched against each other using the geometry between
the views. The experiments performed on thirty videos
demonstrate the versatility of the proposed representation.
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