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Abstract 

We present a model-based approach to recover the rigid 
and non-rigid facial motion parameters in video 
sequences. Our face model is based on anatomically 
motivated muscle actuator controls to model the 
articulated non-rigid motion of a human face. The model 
is capable of generating a variety of facial expressions by 
using a small number of muscle actuator controls. We 
estimate rigid and non-rigid parameters in two steps. 
First, we use a multi-resolution scheme to recover the 
global 3D rotation and translation by linear least square 
minimization. Then, we estimate the muscle actuator 
controls using the Levenberg-Marquardt minimization 
technique applied to a function, which is constrained by 
both optical flow and the dynamics of the deformable 
model. We present the results of our system on both real 
and synthetic images. 
 

1. Introduction 

A realistic analysis of 3D facial motion requires the 
recovery of both 3D global motion vectors and local 
motion parameters. One of the fundamental problems in 
this regard is the description of local motion parameters. 
Most of the current systems designed to solve this 
problem use “Facial Action Coding System”, FACS [10] 
for describing non-rigid facial motions. Despite its wide 
use, FACS has the drawback of lacking the expressive 
power to describe different variations of possible facial 
expressions [11].  

In this paper, we propose a system that can capture 
both rigid and non-rigid motions of a face. Our approach 
uses a realistic parameterized muscle model proposed in 
[1], which overcomes the limitations of the FACS and 
provides realistic generation of facial expressions as 
compared to the other physical models. The muscle model 
is motivated by the non-rigid motion of face, the physics 
of facial muscles and the skin. We use the face model 
described in [2], which is composed of 850 polygons and 
18 synthetic muscles. First we conform the generic face 
model onto the face using deformations based on 
anthropometrical statistics [3][4]. Then we recover the 
motion parameters in two steps: (1) we use a multi- 

resolution (pyramid) scheme to recover global 3D rotation 
and translations; (2) we estimate the contraction of 
muscles, which are constrained by the optical flow 
equation, by using the Levenberg Marquardt method for 
three disjoint regions. These regions are defined such that 
the muscles in one region do not affect other regions. 

The organization of the rest of the paper is as follows. 
In next section, a brief review of previous research is 
presented. We describe our model in section 3. The 
detailed analysis of global and local motion estimation is 
presented in sections 4 and 5 respectively. The 
implementation details are given in section 6. Finally, we 
will conclude by demonstrating experimental results. 

2. Previous Research 

Approaches for analyzing and synthesizing rigid and 
non-rigid human face motion differ by the choice of 
model selection and description of expressions. 

Terzopoulos and Waters [1] used an anatomical model 
for describing the face. Their model encodes specialized 
knowledge about facial expressions, anatomical structure 
of the muscle and histology of biomechanics. Their 
algorithm proceeds by deforming the conformed face 
mesh for generating synthesized facial expressions using 
nine manually initialized snakes for frontal views. Use of 
active contour limits recovering the facial expressions in 
the presence of occlusions due to out of plane rotations. 

DeCarlo and Metaxas [5] defined a partial 3D face 
model with parametric representation to facilitate the 
motion due to facial expressions. They have constrained 
their system by the optical flow equation, anthropometric 
statistics and the edge information for overcoming optical 
flow problems on boundaries. Use of parameters for gene-
rating facial expressions from partial face model limit abi-
lity to generate deformations other than predefined ones. 

In [7], Koch described a parametric model for 3D 
shapes where the parameters are approximated by an 
analysis through synthesis approach. Similar to [5], the 
system updates the shape and rigid motion information 
iteratively by minimizing the reconstruction error in 2D 
using spatiotemporal derivatives. In contrast to [1] and 
[5], this approach isn’t capable of estimating local motion.  

Huang and Goldgof [8] proposed a generic adaptive 
model, where the number of nodes of the mesh is updated  
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Figure 1: Muscle Model. 

using external forces. Their model differs from previous 
models by its ability to adapt its structure according to 
objects’ non-rigid motion by adjusting both the number of 
number of nodes and the individual vertex motion for 
minimizing the error. 

Similar to [5], Li et al. described a rigid and non-rigid 
model motion using expression parameters assuming 
perspective projection and using the optical flow 
constraint equation [9]. In contrast to [5], non-rigid moti-
on parameters are modeled using the affine motion model, 
which gives them more flexibility to generate different 
expressions. A synthesis feedback is used to reduce the 
error accumulated due to motion estimation in tracking. 

Our approach is partly motivated by the research 
conducted by [1], [5] and [9]. In contrast to [1], while 
utilizing the muscles contraction parameters as our local 
deformation model, we are using the optical flow 
constraint similar to [5]. Our model differs from [5] in 
two ways. First, we are using muscle parameters to define 
local motion, which is more a natural way as compared to 
using predefined facial actions; second, we are following 
a two step methodology to calculate rigid and non-rigid 
motions which minimize the error due to higher 
dimension of the parameter space. 

3. Anatomic Model 

Local non-rigid motion of the face is caused by both the 
contractions of the muscles surrounding the face and the 
rotation of the jaw for opening the mouth. In [2], to 
simulate the behavior of muscle, Waters formalized 
structure of muscle as given by Figure 1. Every muscle is 
defined by its head (H), tail (T), zone start (ZS), zone end 
(ZE), and muscle zone (θ). Given a 3D vertex X, we can 
calculate the angle α, between the vectors |XT| and |HT|, 
and the distance of the point to the muscle zone start, k. 

The mathematical representation of the structure 
shown in Figure 1 is formulated as 
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where subscript i means ith muscle, λi is the muscle 
contraction value and ai, bi and ci are given by 
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where 

   
 (a) (b) 
Figure 2: (a) Wire frame model (left); muscles super-
imposed (middle); texture map (right), (b) Division of 
face into three regions. 
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In equation 3, in contrast to original representation of 
Waters, we have used sigmoid function, 
 ( ) 1)1( −−+= xexδ  (4) 

to approximate the step function with a continuous 
function for computing valid derivatives. Given a 3D 
vertex, the muscle contraction parameter λi is the only 
variable in the equation, i.e. equation 1 can be rewritten as  
 )( iifXX λ+=′  (5) 

We model the effect of each muscle contraction on a 
single vertex by linear combination of flow vectors, 

 [ ] [ ] [ ]∑
=

+=′′′
k

i

T
iiii

TT cbaZYXZYX
1

λ  (6) 

where k is the number of muscles. 
For opening the jaw, instead of muscle actions, we 

rotate the jaw vertices of the face mesh by angle β around 
x-axis, X’=RβX. The effect of jaw rotation on the jaw 
vertices, which were moved due to muscle contractions, is 
an additive factor, and it has no effect on other vertices. 
Following this observation, a preliminary division of the 
face will be the jaw region and the rest of face. The new 
location of the jaw vertex due to jaw rotation is, 
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For the other region, we simply set β=0, so that the 
rotation matrix is the identity matrix, which will result in 
equation 5. The model, muscles superimposed and texture 
map from the Claire sequence is shown in figure 2a. We 
only use the texture of head in our system because the 
texture of the neck is not always available due to clothing.  

4. Global Motion Estimation 

Object motion in 3D is defined in terms of rotational 
and translational velocities, TRXX +=′ . Since frame-to-
frame rotation is small, the rotation matrix, R, can be 
approximated using Euler angles. We apply perspective 
projection to project 3D space to a 2D image plane. It can 
easily be shown that the 2D optical flow is given by 
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where u and v are the flow vectors in the x and y 
directions respectively, Ω1, Ω2 and Ω3 are the rotational 
velocities and V1, V2 and V3 are the translational 
velocities. We use optical flow constraint fxu+fyv+ft=0 
where fx and fy are spatial derivatives and ft is temporal 
derivative. We estimate the 3D rotational and translational 
velocities using a linear least squares fit by substituting 
equations 8 and 9 into optical flow constraint equation.  

5. Local Motion Estimation 

Once the global motion is compensated, we estimate 
the non-rigid deformations. We use equation 7 along with 
the optical flow constraint to derive the minimization 
scheme for recovering the non-rigid motion.  Using the 
perspective projection, 2D flow vectors in image plane is 
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Combining equation 7 with equation 10 will result in the 
2D optical flow in the x direction and it is given by  
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where ai’=fai-xci and f is focal length. Similarly, equations 
7 and 11 will give 2D optical flow in the y direction, 

 ββλ sinsin’
1 2

1 f

y
fb

Z
v

k

i
ii −−= ∑

=

 (13) 

where bi’=fbi-yci.  
Substituting equations 12 and 13 to optical flow 

equation results in the error functional,  
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We use Levenberg-Marquardt for finding the unknown 
muscle contraction parameters λi, and jaw rotation angle 
β that minimizes the nonlinear function of equation 14. 
The Jacobian is given by 
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In order to improve the estimation, and using the fact 

that effect of muscles is confined to small regions, we 
divide face into 3 regions as shown in Figure 2b, and 
perform Levenberg Marquardt separately in these regions.  

6. Algorithm 

Our algorithm executes in two steps: first step 
calculates the global motion and the second step 
calculates the local motion. Let Rk, Tk be the 3D rotation 

and translation for frame k. For k=0 R0 is identity and T0 
is 0.  
First step (Global motion estimation):  
1. Create multi resolution representation (pyramid) of 

frame k and k+1.  
For Each Level (From Coarse to Fine): 
2. Estimate rigid motion parameters using least squares, 

by solving the equations from optical flow constraint. 
3. Synthesize the transformed face and calculate error.  
4. Repeat steps 2 and 3 until residual error is minimized 
Second step (Local motion estimation): Transform the 
mesh using global motion parameters and pyramid 
representation for transformed face. At each level perform 
1. Solve muscle unknowns using Levenberg-Marquardt. 
2. Synthesize the transformed face, recalculate residual.  
3. Repeat steps 1 and 2 until residual error is minimized 

7. Results: 

We applied our method to both real and synthetic 
images. Synthetic images were obtained by performing 
3D rotations and translations on the texture map. For real 
images, we used the “Claire” sequence, which consists of 
80 frames. The texture map, we used for all experiments 
is the same as shown in Figure 2a.  

We have designed two sets of experiments for 
qualitative evaluation of our system. First set of 
experiments evaluates the performance of the system for 
estimation of global motion. Figure 3 shows the 
estimation accuracy of the synthetic and real images. 

The second set of experiments deals with both global 
and local motion estimation. For each frame of the Claire 
sequence, we compute the global motion and local 
motion. For global motion, we use 2 levels of pyramids 
and 16 iterations per pyramid. Local motion is estimated 
by Levenberg-Marquardt method and iterations are 
terminated when the change of residual error per iteration 
becomes less than a threshold. 
The convergence of global estimation is shown 
graphically in Figure 4, where the normalized residual 
error value is plotted against iterations for different 
frames. Some of the frames from the sequence along with 
the synthesized frames are shown in Figure 5. Figure 6 
shows the normalized residual errors for Levenberg 
Marquardt iteration in one of the frames for three regions. 
Note that the error always decreases or remains constant. 
This is because L.M method does not update the 
parameters if error increases at some iteration. 

8. Conclusions 

A method is proposed for generating synthesized face 
images from a video sequence using the anatomic 
structure of the face. The approach is based on the 
estimation of global and local motion separately using 
different minimization schemes constrained by optical 
flow. Local motion is based on the muscle actuator 
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control values and jaw rotation, which is a natural 
approach compared to widely used FACS. The method is 
shown to produce reasonable results to obtain both global 
and local motion parameters. 
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Figure 3: Global motion estimation for synthetic (top 
row) and real (bottom row) images. Images from left to 
right: initial, to be recovered, resynthesized. 
 

 
Figure 5: Residual Error in each iteration of Global 
motion estimation plotted for different frames. 
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(c) 

Figure 6: Claire sequence: (a) initial frame and texture 
map; (b) first row: frames 1, 2, 3; second row: 
resynthesized faces using recovered facial motion; (c) 
first row: frames 4, 5, 6; second row: resynthesized 
face using recovered facial motion. 

 

 
Figure 7: Convergence of Levenberg-Marquardt 
method for different regions of head. 


