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Abstract

In this paper, we propose a robust approach for tracking targets in forward looking infrared (FLIR) imagery taken from an airborne moving

platform. First, the targets are detected using fuzzy clustering, edge fusion and local texture energy. The position and the size of the detected

targets are then used to initialize the tracking algorithm. For each detected target, intensity and local standard deviation distributions are

computed, and tracking is performed by computing the mean-shift vector that minimizes the distance between the kernel distribution for the

target in the current frame and the model. In cases when the ego-motion of the sensor causes the target to move more than the operational

limits of the tracking module, we perform a multi-resolution global motion compensation using the Gabor responses of the consecutive

frames. The decision whether to compensate the sensor ego-motion is based on the distance measure computed from the likelihood of target

and candidate distributions. To overcome the problems related to the changes in the target feature distributions, we automatically update the

target model. Selection of the new target model is based on the same distance measure that is used for motion compensation. The experiments

performed on the AMCOM FLIR data set show the robustness of the proposed method, which combines automatic model update and global

motion compensation into one framework.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Detection and tracking of moving or stationary targets in

FLIR imagery are challenging research topics in computer

vision. Though a great deal of effort has been expended on

detecting and tracking objects in visual images, there has

been only limited amount of work on thermal images in the

computer vision community.

The thermal images are obtained by sensing the radiation

in the infrared (IR) spectrum, which is either emitted or

reflected by the object in the scene. Due to this property, IR

images can provide information which is not available in

visual images. However, in contrast to visual images, the

images obtained from an IR sensor have extremely low

signal to noise ratio (SNR), which results in limited

information for performing detection or tracking tasks. In

addition, in airborne forward looking infrared (FLIR)

images, non-repeatability of the target signature, competing

background clutter, lack of a priori information, high ego-

motion of the sensor and the artifacts due to the weather

conditions make detecting or tracking targets even harder.

To overcome the shortcomings of the nature of the FLIR

imagery, different approaches impose different constraints

to provide solutions for a limited number of situations. For

instance, many target detection methods require that the

targets are hot spots which appear as bright regions in the

images [1,2,3]. Similarly, several target tracking algorithms

require one or both of the following assumptions to be

satisfied: (1) no sensor ego-motion [4] and (2) target features

do not drastically change over the course of tracking [3,5,6].

However, in realistic tracking scenarios, neither of these

assumptions are applicable, and a robust tracking method

must successfully deal with these problems. To the best of

our knowledge, there is no such published method that

provides a solution to both of these problems in one

framework.

In this paper, we present an approach for real-time

target tracking in FLIR imagery in the presence of high

global motion and changes in target features, i.e. shape and

intensity. Moreover, the targets are not required to have

constant velocity or acceleration. The proposed tracking

algorithm uses the positions and the sizes of targets

determined by the target detection scheme. For target

detection, we apply steerable filters and compute texture

energies of the targets, which are located using a

segmentation-based approach. Once the targets are

detected, the tracking method employs three modules to
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perform tracking. The first module, which is a modified

version of Ref. [7], is based on finding the translation

vector in the image space that minimizes the distance

between the distributions of the model and the candidate.

The distributions are obtained from the intensity and local

standard deviation measure of the frames. The local

standard deviation measure is obtained in the neighbor-

hood of each pixel in the frame and provides a very good

representation of frequency content of the local image

structure. Based on the distance measure computed from

the target feature distributions, the other two modules

compensate for the sensor ego-motion and update the

target model. The global motion estimation module uses

the multi-resolution scheme of Ref. [8] assuming a planar

scene under perspective projection. It uses Gabor filter

responses of two consecutive frames to obtain the pseudo-

perspective motion parameters.

The remainder of the paper is organized as follows:

Section 2 discusses the recent literature on detecting and

tracking targets in FLIR imagery. In Section 3, the target

detector which is used to initialize the tracking algorithm

with the position and the size of the target is described.

Section 4 presents a discussion on the tracking problems and

gives the details of the tracking algorithm which uses the

two modules (1) automatic target model update (Section

4.3), (2) the sensor ego-motion compensation (Section 4.4).

The implementation details are outlined in Section 4.5.

Finally, experimental results for the proposed tracking

method are presented in Section 5 and conclusions are

drawn in Section 6.

2. Related work

In this section, we examine some of the representative

works reported in the literature on detecting and tracking

targets in FLIR imagery. In general, existing methods on IR

images work for a limited number of situations due to the

constraints imposed on the solution.

For detection of FLIR targets, many methods rely on

the ithot spot technique, which assumes that the target IR

radiation is much stronger than the radiation of the

background and the noise. The goal of the target

detectors is then to detect the center of the region with

the highest intensity in the image, which is called the

ithot spot. The hot spot seekers use various spatial filters

to detect targets in the scene. Takken et al.[2] developed

a spatial filter based on least mean square (LMS) to

maximize the signal to clutter ratio for a known and fixed

clutter environment. Chen et al. [1] modeled the

underlying clutter and noise after local demeaning as a

whitened Gaussian random process, and developed a

constant false alarm rate detector using the generalized

maximum likelihood ratio.

Temporal filters like Triple Temporal Filter (TTF),

Infinite Impulse Response (IIR) and Continuous Wavelet

Transform (CWT) have been widely used. Lim et al.[9]

have presented a multistage IIR filter for detecting dim

point targets. Tzannes[10] presented a Generalized Like-

lihood Ratio Test (GLRT) solution to detect small (point)

targets in a cluttered background when both the target

and clutter are moving through the image scene.

Similar to the target detection methods, target tracking

approaches also impose constraints on the solution, such

as no sensor ego-motion or no target modal change.

However, even with these assumptions, the tracking

performance of most methods is not convincing. Below,

we will briefly summarize commonly cited methods

which have attempted to deal with these problems.

To compensate the global motion, Strehl and Aggar-

wal [5] have used a multi-resolution scheme based on the

affine motion model. The affine model has its limitations

and for FLIR imagery, which is obtained from an

airborne sensor; it is unable to capture the skew, pan and

tilt of the planar scene.

Similarly, Shekarforoush and Chellappa [3] first

compensate for the sensor ego-motion to stabilize the

FLIR sequence, then detect very hot or very cold targets.

The stabilization and tracking is based solely on the

goodness of the detection and the number of targets, i.e.

if the number of targets is not adequate, or there is

significant background texture, the system is not able to

detect sufficient number of targets. Therefore stabilization

fails to correctly register the image.

Braga-Neto and Goutsias [6] have presented a method

based on morphological operators for target detection and

tracking in FLIR imagery. Their tracker is based on the

assumptions that the targets do not vary in size, they are

either very hot or very cold spots, and sensor ego-motion

is small. However, these assumptions contradict the

nature of airborne FLIR imagery.

Davies et al. [4] proposed a multiple target tracker

system based on Kalman filters for small targets, which

uses the output of the Daubechies wavelet family for

FLIR imagery. The method assumes constant acceleration

of the target, which is not valid for maneuvering targets.

In addition, the method works only for sequences with

no global motion.

In this paper, we propose a solution for tracking targets

in airborne FLIR imagery, which is motivated by the need

to overcome some of the shortcomings of the existing

tracking techniques. In contrast to the previous methods

on tracking targets in FLIR imagery, we relax the

constraints on motion smoothness, brightness constancy

and provide a robust target tracking algorithm, which

minimizes a multi-objective functionconstructed using

intensity and local standard deviation distributions. The

tracking algorithm discussed in this paper requires an

initialization of the target bounding box in the frame

where the target first appears. Section 3 describes this

target detection step.
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3. Target detection

Detection of targets in the FLIR sequences is a hard

problem because of the variability of the appearance of

targets due to atmospheric conditions, background, and

thermodynamic state of the targets. Most of the time, the

background forms similar shapes to those of the actual

targets, and the targets become obscured.

Since the theme of this research is target tracking, we

perform an initial target detection similar to Ref. [11]. In our

implementation, we focused only on hot targets, which

appear as bright spots in the scene, having high contrast with

the neighboring background. This initial step uses the

intensity histogram and partitions the intensity space, while

assigning ambiguous regions according to fuzzy c-means

clustering. Then, a merging phase is employed which fuses

the edge information and brightness constraints [12]. The

segmentation results of these initial steps are shown in

Fig. 1.

Once the regions are segmented using the outlined

method, a confidence measure for each candidate region is

computed as the product of two sigmoid functions:

Ci ¼
1

ð1 þ e2l1ðmf 2m1ÞÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
target brightness

£
1

ð1 þ e2l2ðmf 2mb2m2ÞÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
contrast with background

ð1Þ

where mf and mb, respectively, are the means of the

foreground and the background of the ith target, l1 and l2

control the slope of the sigmoids and m1 and m2 are the

offsets of the sigmoids. If a target region is bright with a

high contrast with its neighborhood, then Eq. (1) assigns a

confidence close to 1, otherwise the confidence will be close

to 0. Regions with high confidence are selected as possible

targets.

In Fig. 2, we show the target candidates detected using

the scheme outlined above. However, as seen from the last

example in Fig. 2, contrast and brightness are not always

sufficient to characterize correct targets. Following this

observation, we perform an additional texture analysis step

for each target candidate and find the similarity between the

target candidate and its immediate neighborhood. Texture

of an image can be analyzed through its spectral content of

the subband signals, which are obtained by filtering the

image with filter banks. For images, an efficient way to code

spectral content is by computing the energy [13]

ei ¼
1

M·N

XM
x¼1

XN
y¼1

G2
i ðx; yÞ

where N and M are respectively number of rows and

columns of the window and Gi ¼ Fp
i I is filter response of

image I using filter Fi: To define the texture content of the

target, an energy vector is constructed E ¼ ðe1; e2;…ekÞ
T

for the target windows. Unless a camouflaged target is

present, the texture of target should be different from

neighboring regions. To utilize this, eight overlapping

windows in the neighborhood of the target are selected and

their energy vectors, E1;E2;…;E8; are computed. Selection

of overlapping windows is done by moving the target

window half way in eight directions as shown in Fig. 3.

Texture similarity of the target window and the

neighboring window can be computed by Euclidean

distance measure:

dist ¼ min
ili#8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

j¼1

ðEðjÞ2 EiðjÞÞ
2

vuut
where k is the number of filters. If dist . t,where t is a

predefined threshold then we confirm that the candidate is a

true target, otherwise we label the candidate as false

positive.

Fig. 1. First row: input images; second row: corresponding segmentation

results.

Fig. 2. Target candidates detected using the fuzzy clustering and edge

fusion.

Fig. 3. Selection of rectangular target regions for texture analysis.
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In order to obtain better categorization and to eliminate

the false positives, we analyzed the performance of the

discussed detection scheme using different texture measures

including:

– Law’s Texture Measures: They were proposed in a

feature extraction scheme based on gradient operators.

This scheme uses 25 masks which are obtained by

convolution of five 1-dimensional vectors each repre-

senting level, edge, spot, wave and ripple [14].

– Wavelets: Wavelets decomposition is obtained by

separable filter banks and every decomposition con-

tains information of a specific scale and orientation

[15]. We used different families of wavelet: Bi-

orthogonal, Haar, Daubechies and Quadrature mirror

wavelets.

– Steerable Filters: Similar to wavelets, steerable filters

are also a tool for multi resolution analysis. This is a

type of over-complete wavelet transform whose basis

functions are directional derivative operators in

different sizes and orientations [16]. We used two

different types of steerable filters: SP-3 and SP-5,

where SP-3 has 4 and SP-5 has 6 orientation

subbands.

For detailed information about these texture measures,

we refer the readers to the cited publications.

In order to obtain realistic comparison results, we

manually selected 200 target regions and 200 non-target

regions from a wide spectrum of FLIR imagery. Then, we

computed the energies of each candidate region for the

texture measures given above. The categorization per-

formance for these texture measures are shown in Table 1,

where the categorization means the target is correctly

categorized as the target and the non-target correctly

categorized as the non-target. Compared to the others,

steerable pyramid type SP-3 had the best performance

with 94% correct categorization. In addition, it can also be

seen that the performance of Law’s Texture Measures is

comparable to the steerable filters. Since Law’s Texture

Measures have low computational cost, they are a good

candidate for real-time systems.

In Fig. 4(a), we show the target candidates, and in

Fig. 4(b) we show detected targets after eliminating the false

positives using Steerable Filters.

Once the targets are detected using the described method,

we use the positions and the sizes of the targets to initialize

the proposed target tracking system, which is detailed in

Section 4.

Table 1

Correct categorization performance of different methods

Method Name Perf. (%)

Steerable Filter (SP-3) 94

Steerable Filter (SP-5) 93

Law’s texture energy filter 88

Bi-orthogonal wavelet filter 82

Haar wavelet filter 82

Daubechies wavelet filter (Daub-3) 81

Daubechies wavelet filter (Daub-2) 80

Daubechies wavelet filter (Daub-4) 80

Quadrature mirror wavelet filter (QMF-16) 80

Quadrature mirror wavelet filter (QMF-13) 79

Quadrature mirror wavelet filter (QMF-5) 79

Quadrature mirror wavelet filter (QMF-9) 76

Fig. 4. (a) Candidate target positions, (b) detected targets by eliminating the

false positives using Steerable Filters. Note that all true targets are correctly

detected.
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4. Target tracking

We can categorize target tracking approaches into two

classes. The first class is the correspondence based

approaches, where the moving objects are detected in each

frame and then the correspondences between the detected

targets in the current and the previous frames are

established. In contrast, the second class of approaches

require target detection only in the first frame, and a target

model, e.g. target template or intensity distribution, is

extracted and used in performing tracking in the subsequent

frames. There are several ways to generate a target model

and perform tracking. A very commonly used approach

among researchers is to compute the correlation between the

target template and the potential target regions in the next

frame and find the best match. However, the search involved

in such correlation based methods is very time consuming

and they are prone to errors due to changes in the target

model.

Here, we follow the ‘mean-shift tracking’ approach

which was proposed by Comaniciu et al. [7]. This method

relies on the intensity distributions generated from the target

region and computes the translation of the target center in

the image space. However, due to the nature of target in

closing sequences of FLIR imagery, our system differs from

Ref. [7] in two aspects:

–In addition to two-dimensional kernels used to define

the density of target in spatial domain, one-dimensional

kernel density estimates are used in generation of smooth

feature distributions. This is required to have a more

realistic distribution model for small targets that appear in

closing FLIR sequences.

–We fuse the information obtained from local standard

deviation of the target region by computing its kernel

density estimate. Due to target’s low contrast with the

background, this modification is necessary for FLIR

imagery.

The local standard deviation of a pixel xi in the image is

computed from its neighborhood defined by M using

SðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lMl2 1

X
xi[M

ðIðXiÞ2 IðXÞÞ2

vuut ð2Þ

where I : Np !NY is the imaging function, xi are the

spatial location and lMl denotes number of pixels in the

neighborhood. In our experiments we select M as a 5 £ 5

window. In Fig. 5, we show the standard deviation image

generated using Eq. (2). As can be seen, the target regions

are clearly emphasized.

4.1. Tracking model

There are different appearance models for targets in

general. For instance, in template matching methods the

appearance remains constant and is only good for tracking

in very short durations but it performs poorly for longer

durations [17], which generally occur in FLIR imagery.

Here we use a Bayesian model to cope with small variations

in appearance of FLIR targets. Our appearance models are

probability density functions (pdf) of both the intensity

values and the local standard deviations and are estimated

using a kernel density estimation [18]:

fKðmÞ ¼
1

nhd

Xn

i¼1

Kðxi 2 mÞ ð3Þ

where m is the center of a d-dimensional kernel, n is the

number of points inside the kernel and h is bandwidth of the

kernel. In the simplest case, kernel density estimation can be

generated with a uniform kernel, where the resulting itpdf

will be the histogram of data. Other possible kernels include

Gaussian kernel, Triangular kernel, Bi-weight kernel,

Epanechnikov kernel, etc. Among these kernels, in the

continuous domain the Epanechnikov kernel yields the best

minimum mean integrated square error between two kernel

densities [18].

For images, construction of pdfs using density estimation

does not incorporate spatial relation of the intensities. To

incorporate the spatial relation, the kernel density esti-

mation is defined by cascading two Epanechnikov kernels.

The first kernel is used to define spatial relation of the

feature through Euclidean distance of its spatial position

from the target centroid; ie. we place a two-dimensional

kernel centered on the target centroid and kernel values are

used as spatial weights. Two-dimensional Epanechnikov

kernel, which captures spatial relationship, is given by

K2ðxÞ ¼

2

ph2
ðh2 2 xTxTÞ xTxT , h2

0 otherwise

8><
>:

where h is the radius of the kernel [7]. The second kernel is

used as a weighing factor in the feature histogram; i.e. we

place a one-dimensional kernel centered on the feature

value and kernel values are used as weights. One

dimensional Epanechnikov kernel is given by

K1ðxÞ ¼

3

4ph3
ðh2 2 x2Þ x , h

0 otherwise

8><
>:

Fig. 5. Left: input image; right: standard deviation image.
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such that
Ðh
2h K1ðxÞdx ¼ 1: Using the cascaded kernels,

density estimate of feature u for a target can be estimated

from

PðuÞ ¼

Xn

i¼1

K1ðIðxiÞ2 uÞK2ðxi 2 mÞ

C
ð4Þ

where C is the normalization constant, C ¼
Pn

i¼1 K2ðm 2

xiÞ and the bandwidths, h1 and h2 for both kernels are

specified separately. Fig. 6 shows density estimation of an

target computed using Eq. (4)

Section 4.2 gives details on how we utilize the

information obtained from two modalities: intensity and

the local standard deviation (Fig. 6).

4.2. Methodology

Assume that the target first appeared in the 0th frame,

and m0 denotes its center. To track the target in the

succeeding frames, kernel density estimates of each itbin for

both the intensity QI and the standard deviation QS images

are computed using Eq. (4).

Using the target model defined in Section 4.1, one possible

way to find the target position in the current frame is to search

neighboring regions for a distribution similar to the model

computed for different scales of two-dimensional kernel in

the neighboring regions [19]. Although such an approach is

more stable to changes in the target features compared to

template matching based methods, it is still computationally

expensive. We will rather locate the target position directly

by minimizing the distance between the model and the

candidate and model pdfs [7], which is defined by

dðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 rðmÞ

p
ð5Þ

where rðmÞ is the modified Bhattacharya coefficient which

fuses the information obtained from two different modalities:

intensity and local standard deviation. Considering Eq. (5),

the modified Bhattacharya coefficient can also be interpreted

as the likelihood measure between the model and the

candidate distributions, and is given by

pðmÞ ¼
Xb

u¼1

l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PIu

ðmÞQIu

q
|fflfflfflffl{zfflfflfflffl}

intensity based

þ ð1 2 lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSu

ðmÞQSu

q
|fflfflfflffl{zfflfflfflffl}

stdv: based

0
BB@

1
CCA ð6Þ

where b is the number of bins common to both the intensity

and standard deviation distributions and l [ ½0; 1� is the

parameter which balances the contribution of intensity and

local standard deviation features. Expanding the likelihood

to Taylor series around previous target position m0 gives

rðmÞ ¼ rðm0Þþ
1

4C

Xn

i¼1

K2ðm2xiÞ

Xb

u¼1

K1ðIðxiÞ2uÞ

ffiffiffiffiffiffiffiffiffiffiffi
QIu

PIu
ðm0Þ

s
þ
Xb

u¼1

K1ðSðxiÞ2uÞ

ffiffiffiffiffiffiffiffiffiffiffi
QSu

PSu
ðm0Þ

s !

ð7Þ

where SðxiÞ denotes the normalized standard deviation

measure computed using Eq. (2). Discarding the constant

terms in Eq. (7), the likelihood of each pixel belonging to the

target can be defined by the following function [7]:

ci ¼
Xb

u¼1

K1ðIðxiÞ2 uÞ

ffiffiffiffiffiffiffiffiffiffiffi
QIu

PIu
ðm0Þ

s

þ
Xb

u¼1

K1ðSðxiÞ2 uÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
QSu

PSu
ðm0Þ

s
ð8Þ

where i ¼ 1…n: In order words, ci denotes the concen-

tration of the target in the spatial kernel defined by K2:

Here we assume c is normalized such that
Pn

i¼1 ci ¼ 1:

Starting from the center of a differentiable kernel like K2;

an upclimbing scheme can be used to maximize the

concentration of the target, and the gradient of the density

estimate which is given in Eq. (3), 7̂f ; will point to the

new kernel center at every iteration [20,21]. Translating

the image origin to kernel center, such that m ¼ 0; The

mean-shift vector is given by

m
1
¼ m

0
þ

4

ph4

Xn

i¼1

cixi ð9Þ

where m1 is the new target position.

The scheme outlined above can be used for tracking

targets whose features remain constant throughout the

sequence. However, in general, targets don’t have a constant

brightness or contrast and the feature distributions generated

from the target can change. In Section 4.3, we propose a

solution to overcome this shortcoming.

4.3. Target model update

During the course of tracking, model based tracking

methods often suffer from abrupt changes in target model.
Fig. 6. Source image (top); density estimate from cascaded kernels of Eq.

(4) (bottom).
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The simplest way to change the target model is to

periodically update the feature distributions. However, due

to low contrast of the target with its background, the update

may not necessarily occur when the target is correctly

localized. Another straight forward solution is to change the

target model using a constant threshold on the similarity

metric used in tracking. For instance, for correlation based

methods, the model can be updated if the correlation of the

model with the target is higher than the threshold. Similarly,

for the method outlined in Section 4.2, the model can be

updated if the distance calculated in Eq. (5) is lower than a

threshold [22]. The basic problem with using a constant

threshold is to select the right value for all the sequences, i.e.

a particular threshold may work very well for one sequence,

but it may fail for others.

The model can be automatically updated using sequence-

specific information about the rate of change of target

features, which can be computed using the distance measure

given in Eq. (5). In our implementation, the target model

refers to the distributions of the target intensity and the local

standard deviation measures. The rate of change for target

intensity and local standard deviation differs from one

sequence to another. To utilize sequence-specific changes of

the target features over time, the distribution of the distance

(see Fig. 7 an example distribution) is modeled by the

Gaussian distribution. The Gaussian distribution par-

ameters, mean m and standard deviation s; are updated at

each frame using:

mk ¼
ðk 2 1Þmk21 þ dk

k
ð10Þ

s2
k ¼ s2

k21 þ ðmk 2 mk21Þ
2 þ

dk 2 mk

k 2 1
ð11Þ

where k denotes the current frame number. The decision

whether to update the model is made based on the current

value of the distance dk; i.e. if dk , mk 2 2sk then target

model is updated. This scheme guarantees that the model is

updated if the target distribution change is within the

acceptable range for a particular sequence. For instance, for

a sequence where the target distribution changes very

rapidly, such that the mk and sk are high, the acceptable

range for model update will be wide.

In Fig. 8, distances between the model distribution and

the distribution for the new target position computed with

and without model update are shown. In Fig. 8(a), big jumps

in the distance plot are due to the intensity change of the

target for some parts of the sequence. These problems are

corrected by model update as shown in Fig. 8(b). More

results are given in Section 5.

One limitation of the mean-shift based tracking is that at

least some part of the target in the next frame should reside

inside the kernel [7]. However, targets in airborne FLIR

imagery have high motion discontinuities due to sensor ego-

motion. In Section 4.4, we describe the proposed approach

to overcome the tracking problems due to sensor ego-

motion.

4.4. Sensor ego-motion compensation

FLIR sequences obtained via an airborne moving

platform suffer from abrupt discontinuities in motion.

Because of this, the output of the tracker becomes

unreliable, and requires compensation for the sensor ego-

motion.

There are several approaches presented in the literature

for ego-motion (global) compensation. However, they are

not directly applicable to FLIR imagery due to lack of

texture and low SNR. For instance, we have noted that

motion compensation using the intensity values does not

result in good estimation of motion parameters.

Therefore, we employ images filtered by two-dimen-

sional Gabor filter kernels, which are oriented sine-wave

gratings that are spatially attenuated by a Gaussian window

[23]. Two-dimensional Gabor filters have the form

Giðx; yÞ ¼ e2p½x2=a2þy2=b2�·e22pi½u0xþv0y� ð12Þ

where a and b specify effective width and height, while u0

and v0 specify modulation of the filter [24]. In our

implementation, we used the real parts of the Gabor

responses for four different orientations. The responses of

the Gabor filters are then summed and used as the input for

the global motion compensation module. In Fig. 9, we show

a selected frame from one of the FLIR sequences along with

its Gabor response.

To compensate for the global motion, we employ the

multi-resolution framework of Ref. [25]. The compensation

Fig. 7. Histogram of distances calculated using Eq. (5), and Gaussian model fitted to the distribution.
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method uses the pseudo perspective motion model given by:

u ¼ a1 þ a2x þ a3y þ a4xy þ a5x2

v ¼ a6 þ a7x þ a8y þ a4y2 þ a5xy

where a1…a8 are motion parameters, ðx; yÞ is the position of

a point in image space and ðu; vÞ is the optical flow vector.

Pseudo perspective motion model provides a better estimate

of the motion for the planar scenes in closing FLIR

sequences compared to simpler motion models such as the

affine model, which fails to detect skew, pan and tilt in

planar scenes. Rewriting the pseudo perspective motion of

the sensor between two images in the matrix form we have:

U ¼ Ma ð13Þ

where U ¼ ðu; vÞT is the optical flow, a ¼ ða1; a2; a3; a4;

a5; a6; a7; a8Þ
T and

M ¼
1 x y xy x2 0 0 0

0 0 0 y2 xy 1 x y

 !

Optical flow can be computed using the optical flow

constraint equation given by

FT
XU ¼ 2f t ð14Þ

where FX ¼ ðfxfyÞ
T is the spatial gradient vector and f t is

the temporal derivative. Combining Eqs. (13) and (14)

results in a linear system that can be solved using the least

squares method asX
MTFXFT

XM
� �

a ¼ 2
X

ftM
TFX: ð15Þ

In Fig. 10, we show two successive frames Ik and Ikþ1; their

difference Ikþ1 2 Ik; the compensated global motion,

i.e. first frame registered onto the second frame, I0k using

Eq. (15), and the difference I 0k 2 Ikþ1: As it is clearly seen,

the frames are correctly registered.

Compensating for sensor ego motion in images lacking

adequate gradient information suffers from biased esti-

mation of the motion parameters. Especially for FLIR

imagery, background clutter and lack of texture increase the

possibility of estimating incorrect parameters. Based on

these observations, it is important not to perform motion

compensation for every frame. Similar to the scheme

described in Section 4.3, we compensate for the global

motion if the distance computed using Eq. (5) is dk .

mk þ 2sk; where mk is the mean and sk is the standard

deviation of di for i , k: This scheme guarantees compen-

sation for global motion if the target distribution changed

drastically for a particular sequence, such that the tracker

fails to locate the target.

Once the projection parameters, a; are computed by

solving the system of equation given in Eq. (13), we apply

Fig. 8. Distribution of the distances, (a) computed before update model, (b) after model update.

Fig. 9. (a) Sample frame from one of the FLIR sequences, (b) summation of

four Gabor responses of the frame in (a).
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the transformation to the previous target center and compute

the approximate new candidate target center using mk ¼

mk21 þ U:

We then perform mean-shift iterations in the neighbor-

hood of the new target position to increase the likelihood of

the target model and the new candidate model.

In Section 4.5, we describe the complete algorithm to

assist the reader in implementing the proposed detection and

tracking method.

4.5. Algorithm

The complete algorithm is composed of two separate

parts: the detection part, which is used once for the

initialization of the system, and the tracking part. In the

algorithm, we assume that the target first appeared at

frame 0, and the current frame is k: The model

distributions for intensity and standard deviation are

denoted by QI and QS respectively. Similarly, we denote

the candidate distributions for intensity and standard

deviation for frame k þ 1 by PI and PS; respectively.

The distance between model and candidate distributions is

referred to as dk:

4.5.1. Detection

1. Compute image intensity histogram for 0th frame and

locate peaks and valleys in the histogram.

2. Partition intensity space using thresholds at valleys;

intensity values close to valleys are considered

ambiguous.

3. Perform fuzzy c-means clustering to assign ambiguous

pixels to corresponding partitions and perform region

merging based on the edge information to eliminate the

false regions [11].

4. Apply Eq. (1)to compute confidence for target candidates

and discard targets with small confidences.

5. Use steerable filters and compute the energy vector for

each target candidate window, and the overlapping

windows in their neighborhoods (see Fig. 3).

6. Compute texture similarity measure using Eq. (2) and

discard targets that are similar to their neighborhood.

4.5.2. Tracking

For the detected targets, algorithm executes the follow-

ing steps to perform tracking at frame k:

1. For the detected targets compute QI and QS using Eq. (4).

2. Initialize target center at frame k using the previous

target center and compute distributions PI and PS:

3. Compute the modified mean-shift vector iteratively using

Eq. (8) and (9).

4. Compute distance dk (Eq. (5), and go to step 2 until the

change of dk at each iteration is close to 0.

5. If dk , mk21 2 2sk21 update QI and QS else if dk .

mk21 þ 2sk21 compensate for global motion.

6. Update the distance distribution parameters mk and sk

using Eq. (10) and (11) then return to step 2.

Since each detected target in the scene has its own

distribution model, the above tracking algorithm also

performs tracking under partial occlusion. We do not

address complete occlusions in this paper.

Section 5 describes the experimental setup of the systems

and the results obtained for various sequences.

5. Experiments

We have applied the proposed tracking method to the

AMCOM FLIR data set. The data set was made available to

us in grayscale format and has 41 sequences where each

frame in each sequence is 128 £ 128.

The proposed approach was developed using Cþþ on a

Pentium III platform and the current implementation of the

algorithm is capable of tracking at 10 fps. On all sequences,

the detection algorithm is executed until a target is detected.

For dark targets, we manually marked the target and

performed tracking. We used 64 bins to construct

distributions of the intensity and the standard deviation

measures.

In this section, we show the robustness of the system

using both the model update and motion compensation

modules and present the results on sequences which have

low SNR and high global motion. In the figures, rather than

showing every 10th or 15th frame, we selected representa-

tive frames from these sequences to demonstrate motion of

the targets. The positions of the targets in the sequences

presented here are visually verified. For video sequences of

Fig. 10. (a) The reference frame Ik; (b) the current frame Ikþ1; (c) the

difference image obtained using (a) and (b), note the large bright spots due

to miss registration; (d) first frame registered onto the second frame, i.e.

global motion is compensated; (d) the difference image obtained using (b)

and (d).
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Fig. 11. Tracking results obtained by the proposed method on two sequences. In each part the first row shows results without both the global motion

compensation and the model update. The second row shows the results with global motion compensation and the model update. (a) Sequence rng15_20, frames

0, 3, 10, 25, 44 and 54. (b) Sequence rng22_08, frames 0, 20, 50, 99, 169 and 236. The correct target positions are marked by ‘ £ ’, whereas the detected target

positions are marked by circles.

Fig. 12. Tracking results for various sequences. Sequence (a) rng17_01, frames 1, 17, 35, 53, 70 and 115, (b) rng14_15, frames 1, 60, 128, 195, 237 and 271, (c)

rng19_07, frames 129, 138, 144, 159, 174 and 189.
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tracking results please visit http://www.cs.ucf.edu/~vision/

projects/MeanShift/MeanShift.html.

In Fig. 11, we present the results that demonstrate the

importance of using global motion compensation and

automatic model update for two sequences. In the figure,

first rows of parts (a) and (b) show the tracking results where

we neither update the target model nor compensate for the

global motion. The correct target positions are marked by

‘ £ ’, whereas the detected target positions are marked by

circles. Specifically in Fig. 11(a), the sensor ego-motion

causes an abrupt change in the target position and the target

is lost without global motion compensation; however as can

be seen from the second row the target is correctly located

using the global motion compensation module. In Fig. 11(b),

due to changes in target distribution over time and low SNR

of the target, (as it is clear from the first row) the tracker

loses the target when it does not perform the model update.

However, as shown in the second row the model update

Fig. 13. Target tracking results for cold targets: (a) sequence rng18_07, frames 113, 135, 181, 204, 229 and 259; (b) sequence rng18_03, frames 11, 39, 63, 91,

119, 154 and 170.

Fig. 14. Tracking results for multiple targets: (a) sequence rng16_07 frames 226, 241, 253, 274, 294 and 386; (b) sequence rng19_NS frames 208, 215, 231,

253, 267 and 274; (c) sequence rng16_18 frames 1, 20, 40, 60, 79 and 99.
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improves the performance and the target is correctly

tracked.

In Fig. 12, tracking results for sequences rng17_01 (a),

rng14_15 (b) and rng19_07 (c) are shown. The tracked

target positions are marked by circles. In all three

sequences, despite the fact that the targets look very

similar to their backgrounds, their positions are correctly

located.

In Fig. 13, tracking results for cold targets are shown.

Since the detection method only detects ithot targets, the

sizes and positions of the targets are manually initialized.

In both sequences rng18_07 (part (a)) and rng18_03 (part

(b)), the targets have very low contrast with the

background and particularly in part (b) neighboring

locations hide the target due to high gradient magnitude.

Using both the intensity and the local standard deviation

measures together improved the tracking performance for

both sequences. In particular, for sequence rng18_07 the

system was able to track the target successfully even in

presence of a very high change in the intensity levels.

To demonstrate multiple target tracking capability, we

also applied the tracking method to sequences with

multiple targets. In Fig. 14, tracking results are presented

for sequences (a) rng16_07, (b) rng19_NS and (c)

rng16_18. As seen from the results, the target are correctly

tracked. We do not address complete occlusion problems

in this paper.

6. Conclusions

We propose a robust approach for tracking targets in

airborne FLIR imagery. The tracking method requires

the position and the size of the target in the first frame.

The target detection scheme, which is used to initialize the

tracking algorithm, finds target candidates using fuzzy

clustering, edge fusion and texture measures. We employ a

texture analysis on these candidates to select the correct

targets. The experimental results for 200 target and 200

non-target regions that were manually marked show that

‘steerable filters’ have better categorization performance

compared to ‘Law’s texture measures’ and ‘wavelet

filters’. Once the targets are detected, the tracking system

tracks the targets by finding the translation of the target

center in the image space using the intensity and local

standard deviation distributions. According to the distri-

bution of the distance calculated from target model and

distributions of the new target center, the algorithm

decides whether a model update or global motion

compensation is necessary. Sensor ego-motion is compen-

sated for two consecutive frames assuming the pseudo-

perspective motion model. The results demonstrated on

sequences, which have low SNR and high ego motion,

show the robustness of the proposed approach for tracking

FLIR targets.
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