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Abstract—We propose a tracking method which tracks the complete object

regions, adapts to changing visual features, and handles occlusions. Tracking is

achieved by evolving the contour from frame to frame by minimizing some energy

functional evaluated in the contour vicinity defined by a band. Our approach has

two major components related to the visual features and the object shape. Visual

features (color, texture) are modeled by semiparametric models and are fused

using independent opinion polling. Shape priors consist of shape level sets and

are used to recover the missing object regions during occlusion. We demonstrate

the performance of our method on real sequences with and without object

occlusions.

Index Terms—Contour tracking, shape priors, occlusion handling, level sets.
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1 INTRODUCTION

THE most common approach to track objects is to first detect them

using background subtraction and, then, establish correspondence

from frame to frame to find the tracks of the objects [1], [2]. Despite

its popularity, background subtraction can only be applied to

imagery acquired by “stationary cameras” and it provides “coarse

object silhouettes” which are not suitable for high level vision

tasks, such as fine level action recognition, where detailed analysis

of the shape deformation during an action is required. An

alternative approach to background subtraction is to find the

transformation of the object from frame to frame which is modeled

using simple geometric models, e.g., ellipse or rectangle. In [3],

Comaniciu et al. use the mean-shift approach to compute the

translation of a circular region. They model the object appearance

by weighed histograms. Similarly, Jepson et al. [4] compute the

affine motion of the object using a probabilistic appearance model

that captures the stable object features, object shape, and deals with

outliers. Although good tracking performances are achieved, these

trackers only track the centroid or the orientation of the object.

Tracking of the complete object can be achieved by employing

the active contours, which were introduced by Kass et al. [5]. The

objective of active contours is to get a tight contour enclosing the

object by minimizing an energy functional:

Eð�Þ¼
Z 1

0

EinternalðvÞþEimageðvÞds;

where s is the arc length of contour �, Eimage signifies the energy

based on the image observations, and Einternal prevents gaps and

rapid bending. In practice, Eimage is commonly defined in terms of

the image gradient,rI, [5], [6], [7] [8]. Specifically, Caselles et al. [6]

set Eimage to gðjrIjÞ, where g was a sigmoid function. Later, the

same functional was adopted by Paragios and Deriche [7]. They

initialized the object contour in every frame using the background

subtraction. Tracking using image gradient is not suitable for

textured images, where boundary between the object and back-

ground becomes ambiguous. To overcome this limitation, Zhu and

Yuille [9] propose a region-based energy which is minimized using

gradient descent. An offline merging step is applied to reduce

oversegmentation. The same energy is reformulated using the

region descriptors by Jehan-Besson and Barland [10]. In the same

context, Paragios and Deriche [11] combine energy terms used in

[6] and [9].

Rigid body motion models can also be coupled with the contour

energy functionals. In [12], Yezzi et al. combine the Mumford-Shah

distance with 2D transformation and compute the contour

transformation between two different views. Similarly, Rittscher

and Blake [13], use affine motion for contour tracking. In contrast

to [12], they train the tracking algorithm with possible affine

deformations. In general, rigid-body motion models are not

suitable for tracking nonrigid objects, e.g., humans and animals.
Nonrigid object motion can be modeled in terms of optical flow

ðu; vÞ, which is derived from the brightness constraint. In [8],
Bertalmio et al. compute u and v iteratively using two energy
functionals: one for contour evolution and the other for intensity
morphing. At each iteration, the contour is evolved with the speed
computed by projecting the temporal gradient onto the contour
normal. Mansouri [14] uses a probabilistic form of the brightness
constraint, where the color prior is defined by a Gaussian
distribution. He computes optical flow by maximizing P ðItþ1jItÞ.
Brightness constraint requires very small variation in the intensities
and is not suitable for images with high dynamic intensity ranges.

In this paper, we present a Bayesian framework for contour

tracking formulated as a variational calculus problem. Proposed

contour energy functional contains two energy terms: the image

energy Eimage and the shape energy Eshape. Image energy, which is

partly motivated by [9] (use of the conditional probabilities) and

[14] (relation to the brightness constraint), is based on color and

texture observations and is evaluated in a band around the

contour. The shape energy is based on the past contour observa-

tions and preserves the shape of the object during partial and full

occlusions. Recently, Cremers et al. [15] proposed a shape energy,

which requires training by modeling a set of contours using

principal component analysis. Here, we propose an online shape

model which is learned from nonrigid contour deformations

during the course of tracking. Tracking is achieved by evolving the

contour, which is represented using level sets, by minimizing

energy in the gradient descent direction.

The paper is organized as follows: In Section 2, we give details

of the appearance models used, derive the proposed energy

functional, discuss the contour representation and energy mini-

mization, and propose an occlusion handling mechanism. Experi-

mental results, a comparative discussion on the proposed method,

and conclusions are sketched in Sections 3, 4, and 5, respectively.

2 PROPOSED METHOD

Object tracking can be treated as two-class discriminant analysis of

pixels, where the classes correspond to the object, Robj, and the

background, Rbck, regions. The performance of discriminant

analysis depends on the object features, energy functional, energy

minimization technique, and the contour representation chosen. In
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this section, we will address these issues and additionally propose

a solution to handle occlusions.

2.1 Appearance Features

During the last two decades, two classes of features have been

widely considered for tracking and segmentation purposes: color

and texture. We believe an ideal tracking approach should use

both of these features. This is evident from Fig. 1, where we show

the importance of color and texture for two sequences along the

trajectory of a contour point. In the first sequence (Fig. 1a, left),

both features contribute to tracking (Fig. 1a, right), whereas in the

second sequence (Fig. 1b, left), color contributes more than the

texture (Fig. 1b, right).

Therefore, in our approach, we use both of these features. In

particular, for color, since in our experiments, we achieved the

same qualitative tracking results with RGB, HSV, and YIQ color

spaces, we chose the RGB space. Color prior is defined by

multivariate kernel density estimation using the Epanechnikov

kernel, which is chosen for its property to provide minimum error

between the data and its estimate. The texture features, which are

obtained from the sub-bands in the steerable pyramid representa-

tion [16], are modeled using a mixture of two Gaussians.

Fusion of color and texture models produces a semiparametric

statistical model. Using this model, pixels can be clustered as the

object or the background by the “independent opinion polling”

strategy, which evaluates pixel probabilities prior to membership

assignment:

P ð�jxÞ ¼
Q

� P�
ðxjR�ÞP ð�ÞP

�

Q
� P�

ðxjR�ÞP ð�Þ ;

where �; � 2 fobj; bckg and � 2 fcolor; fsteerable subbandsgg. It can
be observed that the discriminant features will be emphasized,

otherwise, they will be suppressed (see Figs. 1a and 1b).

2.2 Tracking Energy Functional

Let the image be I ¼ Robj [Rbck. The likelihood of observing the

boundary (contour), �, is equal to the likelihood of partitioning the

space P ð�Þ ¼ P ’ðIÞ ¼ fRobj; Rbckg
� �

, where ’ is the partitioning

operator [9]. Thus, posteriori contour probability P ð�Þ can be used

interchangeably with a posteriori partitioning probability. Con-

straining P ð�Þ with the current image, It, and the previous

boundaries, �
~tt ¼ �1 . . . �t�1, the tracking energy becomes

P� ¼ P ’ðRtÞjIt;�~tt
� �

. Using Bayes’ rule, probability of the contour

is approximated as:

P� � P ItjRt
obj;�

~tt
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
object!PRobj

ðItÞ

P ItjRt
bck;�

~tt
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

background!PRbck
ðItÞ

P ’ðRtÞj�~tt
� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

shape!Pt
S

: ð1Þ

The first two terms in (1) can be computed using the observed

features and the object and background priors. The last term in (1)

represents the object shape learned over time.

Let there be two subregions R�
obj and R�

bck defined in the contour

neighborhood, such that R�
obj � Rt

obj and R�
bck � Rt

bck. Due to the

artifacts (holes inside the object) and noise (quantization errors),

contour probability in (1) can be defined in terms of the subregions

R�
obj and R�

bck using P� � P 0
� ¼ PR�

obj
ðItÞPR�

bck
ðItÞPt

S . In the remainder

of the paper, we replace P� with P 0
�. The maximum a posteriori

(MAP) estimate of the object contour in the tth frame, b�t�t, is found

by maximizing the probability P 0
� over the subsets � � �, where �

is the space of all object contours. The MAP estimate can be written

in terms of the subregions:

b�t�t ¼ argmax
���

Y
x1

�Y
x2

PR�
obj
ðItðx2ÞÞ

Y
x3

PR�
bck
ðItðx3ÞÞPt

S

�
;

where x1 2 �, x2 2 Robj and x3 2 Rbck. Converting this to energy

minimization by considering the negative log-likelihood of the

probabilities, we have:

E ¼
Z
x1

� Z Z
x2

�objðx2Þdx2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
EA

þ
Z Z
x3

�bckðx3Þdx3

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
EB

� logPt
S

�
dx1; ð2Þ

where x1 2 �, x2 2 Robjðx1Þ, x3 2 Rbckðx1Þ, and

��ðxÞ ¼ � logPR�
ðItðxÞÞ : � 2 fobj; bckg:

For the sake of implementation, we choose the subregion R�ðxiÞ
as a set of square regions of size 2m� 2m centered on xi. Let s be

the contour arc length. For each contour position ðfðsÞ; gðsÞÞ, the
pixels inside the square region are defined using the parametric

curve functions f and g by x ¼ ~xxþ fðsÞ and y ¼ ~yyþ gðsÞ. The

region membership using the new notation is defined through an

indicator function, 1��ðxÞ ¼ 1
1þexpð�MðxÞÞ , where M is the region

mask. Changing the contour variables ðx; yÞ to arc length s, we

have the following energy: EAðsÞ ¼
RRm

�m �Aðx; yÞ1�objfx; ygJdxdy,
where Jacobian J is introduced due to the change of variables, and

because of the translation J ¼ 1. Once EB is written similarly, (2)

results in the following functional:

1532 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 11, NOVEMBER 2004

Fig. 1. Left image: trajectory of a contour point, right image: plots of weights as a

function of frame number. (a) Both color and texture weights are high at different

times and contribute to tracking. (b) The weight of color is higher than texture and

contributes the most.



E ¼
Z l

0

�
�
ZZ m

�m

logPRobj
ðIðxÞÞ1�objd~xxd~yy

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�obj)posteriori object log likelihood

�

ZZ m

�m

logPRbck
ðIðxÞÞ1�bckd~xxd~yy

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�bck)posteriori background log likelihood

� logPt
S

zfflffl}|fflffl{S)shape �
ds;

ð3Þ

where l is the contour length, x ¼ ðx; yÞT and 1�bck ¼ 1� 1�obj. Note

that ��obj � �bck is related to the color observations and is called

the “image energy,” Eimage and S is related to the object shape and

is called the “shape energy,” Eshape.

2.3 Energy Minimization and Contour Representation

Object tracking is achieved by evolving the contour in each frame,

such that the final energy given in (3) is minimized. The first order

necessary condition in this regard is to find the derivative of the

parametric energy functional, which is associated with the Euler-

Lagrange equations of the functional given in (3):

�E

�x
¼ �

� Z Z m

�m

�
��objðxÞ ��bckðxÞ

�
dx� S

�
_yy; ð4Þ

�E

�y
¼
� Z Z m

�m

�
��objðxÞ ��bckðxÞ

�
dx� S

�
_xx; ð5Þ

where _yy ¼ @y
@s and _xx ¼ @x

@s for contour parameter s.

Contour evolution is directly related with the representation

chosen. There are several contour representations, such as the

marker-string, the volume fluid and the level set. Among these, we

chose the level set due to its numerical stability and flexibility to

split and merge regions [17]. In level sets, the contour is implicitly

represented on a fixed grid � : R2 � R ! R1, whose values are the

distances from the contour, and the inside and outside the contour

are defined by �ðxÞ < 0 and �ðxÞ > 0, respectively. Evolution is

obtained by updating the grid, or formally, ��þ1 ¼ �� þ F ðxÞjr��j,
where � is the iteration number and F is the speed in the contour

normal direction ~nn. After combining (4) and (5) by setting~vv ¼ ðx; yÞ
and~nn ¼½� _yy _xx�T , level set update becomes �E

�~vv ¼ �ð�obj þ �bck þ SÞ~nn,
which results in the following speed:

Fx;y ¼ ��obj þ �bck � S; ð6Þ

where x0 ¼ ðxþ i; yþ jÞ. In our implementation, an object is

considered to be either occluded or unoccluded during tracking.

Unless an occlusion occurs, where the object shape is dramatically

distorted, we set S ¼ 0 in (6), and do not compute the shape-based

speed. Thus, the negative and the positive terms in (6) correspond

to shrinking and expansion forces, respectively, such that when the

contour hypothesis is correct, the motion of the contour will be 0.

Otherwise, the background (object) likelihood will be higher and

the speed will become negative (positive).

2.4 Occlusion Handling

During occlusion, visual features of the occluded objects are not
observed and the objects cannot be tracked. We propose a two
step approach to handle the occlusions. The first step detects the
occlusion, and the second step recovers the shape of the
occluded objects.

Occlusion can be detected based on both the distance between

the objects and the change of the object size. Let A and B be two

objects. For instance, if the distance between A and B is zero and

the size of A reduces dramatically, we label A as the occludee. If the

distance between A and B is high and the size of A is changing

slowly, then we infer that the camera is zooming in or out A. Let

there be N such objects with level sets �i. The Euclidean distance

Di;j from the object Oi to the object Oj can be obtained using

Di;j ¼ argmin�i �jðxÞ
� �

; i 6¼ j. Next, the average object size, Aavg
i ,

and current object size, At
i, are computed. Occlusion detection is

performed by evaluating Occi;j ¼ 1
exp �jDi;j jð Þþ1

� At
i

Aavg
i
, such that when

Occi;j < �, we conclude that an occlusion has occurred.

Fig. 2 shows an occlusion example, where two objects occlude a

tennis player. Before the occlusion (Fig. 2, leftmost image), the

contours are complete. During occlusion, evolution using only

visual features for the tennis player results in broken contours. At

this point, distances between the player and the other objects are

Dplayer;ellipse ¼ Dplayer;rectangle ¼ 0. The ratio of the player area and its

average area is
Aplayer

Aavg
player

<0:5. Thus,Occplayer;rectangle¼Occplayer;ellipse<:25,

which implies the player is occluded.
Note that, during occlusion, the missing object parts need to be

recovered. For nonrigid objects, the shape is constantly varying.

We propose to model the nonrigid changes in object shape using a

modified level set representation, which encodes the statistics of

the object motion. Each object is first scaled and then a dense level

set �0
i is maintained with the outside region set to zero (Fig. 3a).

Since �0
i is generated in the scaled space, zooming in or out the

object does not create ambiguities.
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Fig. 2. A sequence with two synthetic objects occluding a player. Left image is the first image of the sequence. The white boxes next to each frame shows extracted

objects. Note that multiple object occlusions in the second frame are correctly handled.

Fig. 3. (a) Shape level sets for the walking sequence. Shape model: (b) mean and (c) standard deviation.



Ideally, the object shape changes gradually, resulting in a small

variation in �0 over time. For each grid ðk0; l0Þ in �0, the shape

variation is modeled by a single Gaussian, G�0 ðk0; l0Þ, and the model

parameters (Figs. 3b and 3c) are updated until an occlusion is

detected. We initialize the shape model with the initial contour

with outside regions having zero means. For every frame, if no

occlusion is observed, the Gaussian parameters in �0 are updated

accordingly. Lower probabilities in this model indicate the

presence of the object region, whereas higher probabilities indicate

the object boundary. Setting Pt
S ¼ G�0 in (2) relates to maximizing

the likelihood of observing the object boundary. After removing

constant terms, we evolve the contour to recover the object shape

by setting �obj and �bck to 0 in (6), such that:

F ðk; lÞ ¼
ð�0

k0 ;l0 � �k0 ;l0 Þ2

	2k;l
þ log 	k;l; ð7Þ

where �k;l, 	k;l are the Gaussian parameters. As can be observed,
F ðk; lÞ in (7) is an expansion force which recovers the missing
object parts. In Fig. 2, we demonstrate the robustness of the
approach on a synthetic sequence, where a player is occluded by
two objects.

3 EXPERIMENTS

We have tested our algorithm on various sequences, some of which

are standard sequences used by other researchers. Most of the

time, the contours of the tracked objects are very tight. During

tracking, object priors are computed online by reevaluating the

object and the background changes. The tracking algorithm is

initialized with the boundaries of the objects in the first frame and,

for each frame, subband analysis of the steerable pyramids is

performed using the Gabor wavelets in four directions. We chose a

10� 10 analysis patch for each filter. The selection of band size in

(6),m, is not sequence dependent and is fixed to 6 for all sequences.

For the video sequences and more results, we refer the reader to

http://www.cs.ucf.edu/~vision/projects/contour_tracking.

3.1 Single Object Sequences

Fig. 4a demonstrates the performance of tracking on the standard

tennis sequence, in which the camera pans and tilts as the player

performs strokes. The visual features do not change drastically

throughout the sequence. The contour is perfectly tracked (even

the pony tail of the player is tracked!). Note that the racket is not

tracked due to the fast racket motion. These results show improved

tracking performance compared to other work.

In another experiment, we tested the adaptivity of the approach

to color and texture changes. Throughout the sequence the camera

zooms, pans, and tilts as shown in Fig. 4b. Note that sometimes the

object color and texture is similar to the background. For color and

texture weighting, please see Fig. 1a. Nevertheless, the object

contour is perfectly tracked. In Fig. 4c, we present tracking of a

walking person in a low quality surveillance sequence. Both the

object and the background textures are similar, and the color

feature is sufficient to track the person (see Fig. 1b).

3.2 Occluding Object Sequences

We demonstrate the tracking of the occluded objects in Fig. 4d.

Notice the white regions inside the person wearing dark clothes.

Occluded person’s contour is correctly recovered and both persons

are tracked before, during and after the occlusion. Ambiguous

head regions of both persons are correctly located. It should be

noted that many state-of-the-art tracking methods either only

estimate the centroid of the object during the occlusion or do not

deal with it at all [7], [14]. In our case, we are able to track the

complete object contour during occlusion.

3.3 Infrared Sequences

Aerial infrared (IR) imagery has a very low quality, which is

affected by the atmospheric conditions. This results in frequent

variation in image intensities, requiring an adaptive feature

modeling mechanism. In Figs. 4e, 4f, and 4g, we present the

performance of our method on IR sequences from the AMCOM

dataset. The proposed method successfully models very small

objects (10 to 15 pixels in area) and robustly tracks them regardless

of the blurred object boundaries. In Fig. 4e, note that the window of

the vehicle (dark region) toward the end of the sequence is tracked

as a part of the vehicle (despite its similarity to the background). In

Fig. 4f, background priors are updated throughout the sequence.

Fig. 4g presents robust tracking performance for two vehicles with

similar appearances.

4 DISCUSSION

The proposed method contributes to the tracking field in several

aspects. For instance, it works for mobile cameras and does not

require camera motion estimation. It adapts its priors to changing

color and texture features. It tracks the complete region of the

nonrigid objects. It can recover occluded object parts. Despite its

merits, the algorithm has limitations. For instance, complete

occlusion of similar looking objects may cause ambiguities. In

such cases, motion-based terms or terms encoding spatial

information may be required. Disregarding the shape term, when

there is no occlusion, may have disadvantages, such that for

similar objects with different shapes, contour may evolve to the

wrong one. Occlusion detection uses area and distance heuristics

and can be ambiguous at times when the object size changes due to

swift zooming, while it is close to the other objects.

In the following discussion, we will provide comparative

discussion of the proposed contour energy functional (3) which

consists of two major components the image energy and the shape

energy.

4.1 Image Energy

There is an analogy between the image energy proposed here and

energy functional proposed in [9], such that both functionals are

similar in appearance. However, they have different interpreta-

tions. The averaging operation in [9], which resembles our region-

based energy term, is only used for noise reduction (similar to a

low-pass filter) and can be removed, whereas, in our functional, it

is directly related to the contour likelihood and cannot be removed.

In addition, the proposed image energy is very general, and the

functionals used by Mansouri [14], Caselles et al. [6], and Paragios

and Deriche [11] are special cases of it. For instance, considering

only the inside of the object, dropping the plane integrals (due to

the max operation) and setting the probabilities to

P�ðxÞ ¼ max
z:kzk�m

exp � Itðxþ zÞ � It�1ðxÞð Þ2

2	2

 !
;

Eimage results in the functional proposed in [14]. Similarly, using

the Gaussian of the image gradient, e�j�Ij, for the pixel

probabilities and setting m=1, Eimage reduces to the functional in

[6]. Eimage unifies the convex combination of boundary and the

region-based functionals used in [11] through the use of the
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subregional terms defined by the contour. Due to evaluation of the

nonlinear image energy in the locality of the contour, the stability

of the solution is also increased.

The localization introduced by the band increases the stability

of the solution, and naturally generalizes boundary-based [5], [6] and

region-based [9], [11], [14] contour methods, such that, if the band
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Fig. 4. Tracking results. (a) Tennis player and (b) walking person sequence both captured by a mobile camera. (c) Surveillance sequence captured by a stationary

camera. (d) Tracking two objects during occlusion; note that the full-occlusion is correctly handled. Tracking in IR sequences, sequence (e) 14_15, (f) 16_18, and

(g) 16_08 from AMCOM data set.



size is set to 1, it becomes a boundary-based method or, if the band

covers the complete object, then it becomes a region based-method.

4.2 Shape Energy

The shape energy is not available in most of the contour tracking or

segmentation methods. A general trend among researchers is to

introduce the shape-based terms as an external energy in the

contour energy. In contrast, the proposed functional (3) naturally

introduces a shape term, which is obtained during the derivation

of the functional. Proposed shape energy is derived using Bayesian

framework by modeling the nonrigid deformation of the contour.

Compared to other shape-based contour methods which require

training [15], our algorithm learns the object shape online. Note

that offline training of the object shape models is not an easy task

and is not suitable for tracking all kinds of objects that may appear

in the scene.

5 CONCLUSIONS

We proposed a contour-based nonrigid object tracking method.

Along with color and texture models generated for the object and

the background regions, our method maintains a shape prior for

recovering occluded object parts during the occlusion. The shape

priors encode the motion of the object and are built online. The

energy functional is derived using a Bayesian framework and is

evaluated around the contour to suppress visual artifacts and to

increase numerical stability. We minimized the energy in the

gradient descent direction, which in turn maximizes the posteriori

contour probability. The results presented show the robust

tracking performance with occlusion in video acquired from

moving cameras.
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