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Abstract— Videos are composed of many shots that are causedprovides the chapters that correspond to the different sub-
by different camera operations, e.g., on/off operations and switch- themes of the movies. In television videos, segmentation
ing between cameras. One important goal in video analysis is to can be used to separate the commercials from the regular
group the shots into temporal scenes, such that all the shots in | broadcast tati b
a single scene are related to the same subject, which could beprogram_s. n_neV\{s roadcas programs, segmen ation can be
a particu|ar physica| Set’[ing’ an On_going action or a theme. In used to Ideﬂtlfy different news stories. In home VldeOS, scene
this paper, we present a general framework for temporal scene segmentation may help the consumers to logically organize the
segmentation in various video domains. The proposed method is videos related to the different events (e.qg., birthday, graduation,
formulated in a statistical fashion and uses the Markov chain weddings, or vacation (e.g. city tours, sightseeing)).

Monte Carlo (MCMC) technique to determine the boundaries S d of the vid h The vid h
between video scenes. In this approach, a set of arbitrary scene cenes are composed of the video shots. e video shots

boundaries are initialized at random locations and are automat- are caused by different camera operations, e.g., turning the
ically updated using two types of updates: diffusion and jumps. camera on/off, the switching between cameras, and other video
Diffusion is the process of updating the boundaries between editing techniques. Consider this: a tourist is recording a video
adjacent scenes. Jumps consist of two reversible operations: thearound a monument. He wants to have different views of the
merging of two scenes and the splitting of an existing scene. The monument. Therefore, he takes one sequence from the frontal
posterior probability of the target distribution of the number of . : J a .
scenes and their corresponding boundary locations is computed View and shuts the camera off. Then, he walks to the side of
based on the model priors and the data likelihood. The updates of the monument and records another sequence. In this case, the
the model parameters are controlled by the hypothesis ratio test entire scene is composed of two shots, which are generated
in the MCMC process, and the samples are collected to generate by the operations (on/off) of a single camera. On the other
the final scene boundaries. The major advantage of the proposed hand. | . TV he sh d
framework is two-fold: (1) it is able to find the weak boundaries and, .'n movies or programs, the shots are generate
as well as the strong boundaries, i.e., it does not rely on the from different cameras and are appended one after another to
fixed threshold; (2) it can be applied to different video domains. constitute the story lines. A scene sometimes can be composed
We have tested the proposed method on two video domains: of a single shot. For instance, in the example described above,
Home Videos and Feature Films, and accurate results have beenthe tourist could have the camera on all the time and keeps
obtained. - . .
recording the video. In this case, the scene and the shot are the
Index Terms— Video scene segmentation, Markov chain Monte ggme. However, more often, scenes are composed of multiple
Carlo. shots, such as movies or TV programs. Hence, a single shot
is insufficient to reveal the semantic meaning of the video
I. INTRODUCTION content. For example, in feature films, how could one answer a
) ) ) _ query related to a suspense scene based only on the content of
Videos are often constructed in the hierarchical fashiog:single shot? These types of scenes can only be identified with
[Frame}[Shot}—[Scene}-[Video]. The lowest level con- e shots showing the increasing tension in the video. In
tains the individual frames. A series of continuous frames Wither domains. more often the semantic concepts are difficult
consiste_nt background setting_s constitute a shot. A scenePhe determined by using only a single shot, since they are
a story is a group of semantically related shots, which afgroduced to viewers over time. Thus, a meaningful result can

coherent to a certain subject or theme. At the highest levglyy he achieved by exploiting the video scenes, which are the
the entire video is composed of multiple scenes, which resyiterconnections of the shot contents.

in the complete storyline. Scenes are the semantic units of
the video, and temporal scene segmentation is defined as a
process of clustering video shots into temporal groups, subh Related Work

that the shots within each group are related to each othefgeyeral temporal segmentation methods have been devel-
with respect to certain aspects. This is an important agged for different types of videos. Hanjagtal.[11] proposed
fundamental problem in video processing and understandiggmethod for detecting boundaries of the logical story units
and it provides more meaningful and complete informatiof movies. In their work, inter-shot similarity is computed
for the video content understanding compared to the shot-leyglsed on the block matching of the key-frames. Similar shots
analysis. Scene segmentation has many applications in varigys |inked, and the segmentation process is performed by
domains. For example, in the feature films, scene segmentali@fhnecting the overlapping links. Rashestdl. [23] proposed

_ , __a two-pass algorithm for scene segmentation in feature films
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constraint,Backward Shot Coherence (BS@ver-segmented Monte Carlo (MCMC) technique. Many of the previously
scenes from the first pass are then merged in the secaeyeloped methods are based on the fixed global thresholds,
pass, based on the analysis of the motion content in tivdich are not desirable in many cases. Moreover, due to the
scenes. Sundaramt al. [25] used the audio-visual featuredfixed thresholds, these methods are likely to generate either
of the video in the movie scene segmentation. First, twaver-segmentation or under-segmentation. Also, these methods
types of scenes, audio scenes and video scenes, are deteuoduse some special knowledge about a particular domain,
separately. Then, the correspondences between these twowhish may not be appropriate for other domains. For example,
of scenes are determined using a time-constrained nearé®tre is no obvious video structure in home videos. Due to that,
neighbor algorithm. Adamst al. [1] proposed the “tempo” it is not easy to generalize these methods to other domains.
for the segmentation of the movies. The “tempo” of a shot isla contrast, we do not use any fixed threshold or utilize any
combination of the shot length and the motion content of shatructure information of the video. Instead, we have developed
The dramatic story sections or events in the movie are detectaditerative method to evaluate the segmentation parameters,
by finding the zero-crossings of the “tempo” plot. Yeueg including the number of the scene segments and their cor-
al. [28] proposed a graph-based representation of the videxssponding locations. In our formulation, if the number of
data by constructing a Shot Connectivity Graph. The graphtlee segments changes, the dimension of the vector containing
split into several sub-portions using the complete-link methdbe boundary locations also changes. The solution space for
of hierarchical clustering such that each sub-graph satisfiethase two parameters is too complex for the direct analytical
color similarity constraint. These methods are based on tbemputation. Therefore, these two parameters are estimated
“film grammar”, which is a set of production rules of how theén a statistical fashion using the Markov chain Monte Carlo
movies or TV shows should be composed. For instance, (MCMC) technique.
action scenes, the shots are generally short, and their motioMarkov chain Monte Carlo (MCMC) technique has been
content is high. On the other hand, the shots are long and theed in several applications in the fields of image processing,
visual appearance is smooth in drama scenes. However, thédeo content analysis and computer vision in the past few
heuristics are not applicable to the other types of videos. Rgrars. Gemaret al. [6] were the first ones to apply the
instance, home videos are recorded in a completely “freMPCMC technique in the image analysis using the Gibbs
style. Shooters are not trained with recording techniquesmpler. The MCMC technique involving the jump and dif-
and often no obvious format or pattern exists in the videfusion method was introduced by Grenand¢ral. [8], and
Furthermore, since the rules in the production of films ar@reen [7] further proposed the reversible jumps. It has been
TV shows are different, the methods for these two domains applied in sampling and learning by Zhei al. [33]. For 1-
videos cannot be used interchangeably. D signal segmentation problems, Phillipsal. has discussed
There is a particular interest in the story segmentation thife change-point problem in [22]. Dellaest al. [5] proposed
the news broadcast videos. Hoagtial. [13] has proposed an EM-based technique for solving the structure-from-motion
an SVM-based news segmentation method. The segmenta{®FM) problem without known correspondences. The MCMC
process involves the detection of the general story boundarialgorithm [12] with symmetric transition probabilities was
in addition to the special type of stories, e.g., finance reparsed to generate the samples of the assignment vectors for
and sports news. Finally, the anchor shots are further anle feature points in each frame. Senegas [24] proposed a
lyzed based on the audio silence. Hsual. [14] proposed method for solving the disparity problem in stereo vision. The
a statistical approach based on the discriminative model8CMC sampling process was applied to estimate the posterior
The authors have developed tB®ostME which uses the distribution of the disparity. Twet al. [27] and Hanet al.
Maximum Entropy classifiers and the associated confidend®] have applied the data-driven Markov chain Monte Carlo
scores in each boosting iteration. Chais@nal. [4] used (DDMCMC) to the optical and range image segmentations.
Hidden Markov Models (HMM) to find the story boundaries. Our proposed Markov chain contains three types of updates:
The video shots are first classified into different categorieshifting of boundaries, merging of two adjacent scenes and
The HMM contains four states and is trained on three featurélse splitting of one scene into two scenes. Due to these
type of the shot, whether the location changes (true or falag)dates, the solution can jump between different parameters
and whether the speaker changes (true or fase). These methpdges, (the dimension of the parameter vector can change),
were developed based on the unique characteristics of twe well as diffuse inside the same space, (the elements in
news video. The video shots are commonly classified intbe parameter vector are changed without changing the vector
news program related categories, e.g., anchor person, weattienension). We assume that each shot in the video has a
commercials and lead-infout shots. These categories are lilalihood of being declared as the scene boundary. Shots with
available in other domains of videos, such as home videoshigher likelihoods coincide more with the true boundaries.
feature films. Furthermore, the news segmentation methddgially, two segments are assumed, and they are separated by
usually involve the special treatment on the anchor persamandomly selected shot. Then, in each iteration of the updates

shots, which exist only in news videos. in the MCMC process, several shots are declared as the
scene boundaries. Their likelihoods are accumulated, while the
B. Proposed Approach likelihoods of other shots are kept the same. Several Markov

In this paper, we propose a general framework for thehains are executed independently to avoid the possible mis-
temporal video segmentation by using the Markov chaitetections caused by a single chain, and the samples from
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all of the chains are collected for the computation of the
shot likelihoods. Finally, the shots with the highest likelihoods
in their neighborhoods are declared as the scene boundary
locations. One advantage of using the sampling technique is
that both the weak and strong boundaries can be detected
without defining any specific threshold. We have tested the
proposed framework on two video domains, home videos and
feature films, and very accurate and competitive results have
been obtained.

The rest of this paper is organized as follows: Section Hg. 1. An example of the change-point problem. There are five

proposes the MCMC algorithm and presents the computatigi@gments containing over the 600 observations that are generated by

" A . ... the uniform distributions with different parameters. The red plot is
of the transition probabilities and the posterior pmbab'l'&he posterior mean of the segments, and the locations of the steps

Sections IlI-A and IlI-B deal with the applications of theare the change-points in the data, i.e., the places where the mean

general framework on the segmentations of the home vidednges.

and the feature films, respectively. Section IV presents the

d!scu35|ons .Of the prqposed work on'other v@eo dqmalno -~ the video. The samples are collected based on the ratio

Finally, Section V provides the conclusion and discussions 9 . : : - -

the proposed framework. tests myqlvmg the posterlor.proba.bllltles apd 'Fhe transition
probabilities. In the rest of this section, we first introduce the

overall MCMC algorithm. Then, a detailed description of the

Il. PROPOSEDFRAMEWORK different types of update proposals is presented. Finally, we

By the problem definition, given the shots in the Videoqescribe the computation of the posterior probability.

scene segmentation of the video is a process of grouping the ,

related shots into clusters. In each scene, the shots are relite€neral MCMC Algorithm

to each other in terms of the corresponditentral concept ~ \We use a hierarchical Bayesian model in the Markov chain
The central conceptsare different in various contexts. ForMonte Carlo process. We assume that the mode{ &8¢, & <
instance, in home videos, titentral concepsometimes refers ®} is a countable set, whereis the number of the detected
to the same physical environmental setting, e.g., shots relagggnes, an@® = {1,2,---} is a set of all the possible scene
to the same historical monument, or sometimes it refers to thembers. ModelM;. has a parameter vect@y, which contains
same event, e.g., shots related to a birthday party or a weddihg* — 1 scene boundary locations (Note: since the first scene
ceremony. In the news programs, ttentral conceptefers to always takes the first shot as its starting boundary, it is ignored
a specific story topic, e.g., shots related to a political reporting, our estimation process). Let denote the video features

a weather forecast or a sports reporting. In the feature filnfglected for the data likelihood computation. Based on the
central conceptrefers to the same sub-themes of the stofgayes rule, the posterior probability of the parameteand
line, e.g., shots related to an action scene or a suspense scén@iveny is:

Different scenes are distinguished by their differences with

respect to theentral conceptand the scene boundaries are the p(k, Okly) o< p(ylk, Ox)p(Or|k)p(k), 1)

locations where the intrinsic properties of tbentral concept wherep(k) is the prior probability for the number of scenes,

change. p(0y|k) is the conditional prior for the boundary locatiofis

Based on this, we propose a statistical solution for ”lﬁyen k, andp(y|k, 6;,) is the likelihood of the data given the
two model parameters, the number of the scenes and theitameters and6),. Since the boundary vectdt,, implicitly

corresponding boundary locations. The boundary locatiofgiermines:, the above equation can be further simplified as,
are considered as the change-points of ¢katral concept

and the_problem is formulated as a change-point problem. p(k, Ouly) o p(y|0k)p(0r|k)p(K). )

In a typical change-point problem, the random process has

different controlling parameters over time. The goal is to findh the rest of this paper, we use the shorter tertw) =

the points where these parameters change. A simple exaniie x|y) to denote this target posterior, with = {k, 6}

of a change-point problem is shown in Fig.1. In this exampléonsidered as a combined parameter vecto ahd 6.

600 observations are generated from five different uniform The general Metropolis-Hasting-Green algorithm [7] is well
distributions. The change-points are the locations where tfi@itéd for our task, where the dimension of the parameter
distribution mean changes (the steps in the plot). In oYfctor,z, may change during the updates. It is described as
application of the temporal scene segmentation, the controllifRjlows:

parameters become tlentral conceptand the steps in the o Initialize the model parameters,.

posterior mean plot become the scene boundaries in the video. At each iterationi, perform the following actions:

To estimate the boundaries locations, the Markov chain Monte 1) Generatel'h,, from Uni[0, 1].

Carlo (MCMC) technique is used. In the iterative process of 2) Create a new parametef_; from some trial distri-
MCMC, the posterior probability of the model parameters is bution based only om;_, with a proposal transition
computed based on the model priors and the data likelihood (diffusion or jump).

Posterior Mean

®

DataVaues

o

Sample Data
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H B. Stochastic Diffusions
The diffusions involve the shifts of the scene boundaries

between adjacent video scenes. The update is carried out as
Fig. 2. Graphical representation of three types of the updates. Th§llows:

top row shows the scenes before updates, and the bottom row shows . .
the update results. o« A number m is randomly drawn from the discrete

uniform distribution[1, k£ — 1], such that the boundary
betweenS,, and S, is updated.

3) Calculate the ratia(z;_,, ) ,) as, o The new boundarys’ is drawn from a 1-D normal
distribution with the mean at the original boundaty , ,
, _ m(zh_)g(x}_y, xi—1) in the range of[s},, s.m%']. The updated scens,,
@i-1,@;y) = miny 1, (@i )a(@1, 7, _q) [ contains shots ofs},,---,st~!}, and the updated scene
), S!. .1 contains{s’, -, snmi!
4) Updatez; = z)_,, if @ > Th,. Otherwise, set Assume the number of the current scenestignd the
T = Tiq. current parameter vector is= {k, 6, }. Then, the probability

In this algorithm, ¢(z, ) is the transition probability from for selecting scené,,, is 1/(k —1). Since the potential shift

x to 2. The transition probability from one state to anothd? drawn from a normal distribution around the original scene
depends on the type of the updates. It should satisfy tReundaryt, this drawing probability for the new boundaty

reversibility property. Therefore, the proposed updates shotfgcomputed as,

also be reversible to ensure this property. 1 A#2
Before going into the detailed description of the updating p(t) = Wf%ﬁp(—ﬁ)(I[S%lysmy](t)) (4)

process, we first present the notations for the variables. Let X

k be the current number of detected sceriBshe the total where At = ¢ —t, and o is the standard deviation of the
number of shots in the vided,,, be them-th scene with shots movement (in our experiment, = 2). The indicator function
{s}  s2,---, 5"} wheren,, is the number of shots in scenel(t) controls the shift, such that the new boundary is within
Sm, S!. be them-th scene after updaté,(y|6;) be the data the correct range. The normal distribution is assumed since the
likelihood of the entire videoL(y,.|f») be the likelihood of new boundary is not expected to deviate from the old boundary
scenes,, given the corresponding featurgs,. Finally, k.., 100 far. In summary, the forward transition probability for the
is the maximum number of the scenes allowed. shift update isg(z, 2’) = (:25)p(t).

The proposal updates contain two parts, diffusion andDuring this entire update, the total number of sceress
jumps. Diffusion is defined as the update without changirigPt changed, and the new boundary remains in the original
the structure of the parameter vecter It traverses within range[s,,, s,"']. The reverse transition is the process of
the same sub-space. On the other hand, jumps do changesttiéiing from the new boundaryback to the original boundary
structure and traverse across different sub-spaces. In our casd,hus, the relationship betweeq(z,z’) and its reverse
the diffusion is the shifting of the boundaries between théersiong(z’,z) is equal due to the symmetrical property of
adjacent scenes. There are two types of jumps: the mergingfe# normal distribution.
two adjacent scenes and the splitting of an existing scene. Fig.2
shows the graphical representations of the updates. In mahy Reversible Jumps: Merge and Split

applications ([10],[7],[27]), two more updates were proposed: g4 the jump updates, the transition during a merge is

diffusion on the segment model parameter(s) and the changfyieq to the transition of a split, since merge and split are a

of the segment models. The Se@!me”t model parameters ﬁéﬁ' of reversed updates. Let us consider the splits first. The
the ones that control the generation of the sample data, €, \her of scenes is increased by splitting a scenss,, —
posterior means in Fig.1. In our application of the video sce -, 5™} into two new scenes’, = {sl ...t — 1}

e m m m? 9

. . . gl 5"
segmentation, based on the underlying assumption that e%ﬁlg Sy = {t,--,stm}, wheret is the new boundary.

segment is coherent to its_entral gonceptthe_re is often only The process contains two portions: selecting a scépeand

one scene model for a single video domain. Thus, changiggiecting a new boundary between its old boundaries. The
between mod.els is not needed in this case. Furthermore,Sg]ecﬁon of the new boundary in the split process can be
some cases like home videos, the data size (number of shQt&,meq assuming the uniform distributions [7]. However,
in our case) is small. The maximum likelihood estimator ig, achieve better performance, the data-driven technique is
adequately effective to compute the parameter(s). Therefoggan, sed ([10] and [27]) to propose the jump transitions.
the model parameter diffusion steps can also be dropped. \y,s assume uniform probability for selecting scefig. The

Let 7, by and dj, denote the probabilities of choosingney, houndary is chosen, such that it provides the maximum
shifting, merging and splitting, respectively. They satisfyqlihoods for the two new scenes
e + bx + dp = 1. Naturally, n;=b;=0 and d, _=0. We

use the similar computation proposed in [7], Wﬁéml = t = arg maz (L(S. | £.) + L(S’ / 5
ooy, Proposed i [T, where: © g maz(L(Splf) + LSpalfn))s )
with constantc such thatb, + d, < C, Vk = 1,- -+, kpae. WherelL(S],|fr,) andL(S}, ,,|f},,.) are the likelihoods of
This results inb,1p(k + 1) = dip(k). the new scenesS;, and S;,,, given their corresponding
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K= 8 where L(y.|fm) is the individual likelihood of datay,, in
A=25 scenes,,, based on the feature valugs,. The geometric
mean of the individual likelihoods is considered for the nor-
malization purpose. In order to make the ratio test meaningful,
the likelihood should be scaled to the same level during each
Number of Scenes () iteration. The definition of thecentral conceptis different

Fig. 3. Prior distribution (Poisson) of the model parameterthe across c_iomains. Th_erefore, the feat_ures selected to pompute
number of scenes in the video. The mean of the distributioris  the likelihoods are different for the different types of videos.
pre-assigned as 2.5, attgha. is 8. Here, L(y|0;) is a general representation of the likelihood
rather than a specific computation.

The target posterior probability is proportional to the prod-

features. If we consider the video scenes are independggf of the model priop(k), the conditional priop(6y|k), and
events in the time series, the proposal probability for a spifie data likelihoodL(y|6;)

can be expressed in the following form,

. Model Prior for k|

m(x) o< L(y|0r)p(0x |k)p(k). (11)

! 1 ! / ! !/
q(z,2") = L LS| fr ) LS s 1 i g1)- ©6) To determine if the proposed update in the parameter space
The reversed update of the split is the merging of two sceniesaccepted or rejected, we compute the ratio of the two terms:

into one. The construction of the proposal probability for the(x')q(z’, ) andw(z)g(x, ). If the ratio, a(x, z'), satisfies
merge can be carried out similarly to the one for the splithe stochastically generated threshold, the proposed update is
Again, we assume the uniform distribution for selecting scemecepted; otherwise, the model parameters are kept the same
Sm, such that sceneS,,, andS,, 1 are merged int&’,. The as in the previous iteration.
proposal probability for the merge transition is constructed as

follows, [1l. APPLICATIONS AND DISCUSSIONS
1 In this section, we demonstrate the proposed scene seg-
(2.2') = = L(S|F7) @) | | - -
NLL) = 1= PmlIm)- mentation method on two video domains. If we examine the
generation process of the videos, we can classify them into
D. Posterior Probability two categories:

Since Poisson distribution models the number of incidentse Produced VideasThis group contains the feature films,

happening in a unit time interval, we assume the number of television news programs and other television talk or

scenesk, is drawn from a such distribution with mean The game shows. They are initially recorded in the raw format
model prior onk is computed as, and are later modified to produce the carefully organized

video programs with accordance to the certain video
production rules.

P SAN
p(k) =e k! Tt s (K), (8) « Raw VideosCompared to the previous group, this cate-
where I, ;... 1(k) is an indicator functionZ;, = 1, if 1 < gory involves little post-modification and contains videos
k< kmar’; I'k‘ = 0 otherwise. A plot of the prior distribution that are mostly in the forms in which they were originally
is shown in Fig.3. recorded. Common domains in this category are home,

If there arek segments (scenes) in the video, then there Surveillance and meeting videos.
are k — 1 scene boundaries, since the boundary for the firstDue to the large variety of video domains, we have selected
scene is always the beginning of the video. The probabilitwo representative domains to demonstrate the effectiveness
of p(0x|k) is the same as the probability of selecting a subsend the generality of the proposed method, with one domain
with sizek — 1 from the remainingl’ — 1 shots. Therefore, the from each of the categories described above. The home video
conditional prior can be defined in terms of the combinationdpmain is chosen as the representative domain ofRbes
) 1T — B! Video category, and the feature film domain is selected for
p(6|k) = — = (k= DNT — )-. Q) the Produced Videogategory. In this paper, we assume the
C,f,f (T—1)! video shots are available. In the experiment, we used a multi-
The last term to be computed is the likelihood. Lenigsolution method prov_ided in [30] to Qetect and classify.the
L(y|6x) = p(y|6r) denote the global likelihood of the videoVideo shot boundaries in both home videos and feature films.
datay given the parameter vectéf,. As discussed in Section
Il, each scene possesses a diffei@anritral conceptlt is mean- A. Home Videos

ingful to make an assumption that each scene is independentlyjome video is a broad term that refers to the videos
recorded from others. Therefore, the overall likelihood can Rgmposed with a “free-style”, e.g., family videos, tour videos,

expressed as, wedding tapes or ground reconnaissance videos (GRV). They
I 1 are recorded from hand-held cameras, spy cameras, cameras

L(y|0x) = ( H L(ymlfm)> L7 (10) mounted on _grou_nd vehicleg, etc., and come in different forms.

i} Some are with high resolutions, while some others have low
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Scene(d)  Scene(e) shots 1
1)

Scene (b)

Sce @]

Fig. 4. Five example home video scenes with their key-frames.
Some of them are the indoor scene (c); some are the outdoor scenes @3)
(a,b,d,e). Scenes (a,b) were taken by the cameras mounted on the
ground vehicles, (e) was taken by a spy camera in a bag, and (c,d)
were taken by hand-held cameras. 19 (4)

)

shots

Fig. 5. Visual similarity map of the shots in a testing video. The

; . ; righter cell represents the higher similarity. The shots in the same
quality. Some have full field of view, and some may b§ ne possess higher similarity comparing across scenes. The bright

: . C
recorded by cameras hidden in the bags (GRV), so part mgcks on the diagonal gives ideas of the temporal scenes. The figure
their field of view is blocked by the carrier. Some example keyphows the intermediate results for one iteration, where the red scenes

P . ~(}Lsand 2) are not matched with correct boundaries, and the blue
frames_are showr_1 in Fig.4. '_I'empo_ral scene segm_entat|onsjg nes (3 and 4) are the correct detections.
home videos provides the logical units related to the interesting
locations or events, and the output segments can be used
for th.e further analys_|s and processing of the videos, ‘©-Qhereb is the individual bin in the histogram.
indexing, storage, retrieval of the video and action recognition.
Since there is no grammar involved in the production proce,
of the home videos, the temporal segmentation emphasié%%l
more on the analysis of the features derived from the vidjg

0

than on the video structure. As mentioned in Section

Instead of using all the frames in the shot, we extract
key-frames as the representation of the shot, and further
ysis is performed based on the key-frames only. It is
mmon to select a single key-frame for each shot. However,
r the shots with long durations and with high activity content,
mglltiple key-frames form better representation. Several key-
rame selection approaches have been proposed in the past
w years ([9][11][23][32]). In this paper, we use the method
§1[8posed in [23]. Assume there are a totahdfames in shot

clearly identifiable (strong boundaries), but many times th the procedure for selecting the key-frames is described as
are difficult to be determined using the same criteria for t 8,||0WS'

strong boundary detection. Due to this uncertainty in the home . ]

videos, it is likely to create either under-segmentation or over-+ Include the middie frame into the key-frame g€ as

segmentation using any fixed threshold, and it is not practical the first key-frames;

to train the system for the threshold selection. On the others Fori=1:n, do _ ,

hand, the proposed approach finds the boundary locations If m“x(Hi?””te""(fiv”i)) <Th, Vrj € K

by detecting the local peaks in the likelihood plot of the Include f; into K as a new key-frame.

video shots, and therefore, avoids the previously mentionedn this algorithm,T'h is the threshold for selecting a new

problems. key-frame, and we use the histograms of the key-frames as
1) Feature Selection:In the context of temporal scenetheir representation.

segmentation, a variety of features have been exploited. The) Likelihood ComputationWe define the visual similarity

commonly used features include color, motion content, shoétween two shots in terms of the Bhattacharya distance.

length, etc. Since the home videos are taken in a “free styl@he Bhattacharya distance between two histogramand h-

the patterns for the motion content and the shot length agedefined asip(hy, hy) = _m(zbea”bm ,/hl{hg)_ The

not distinctive across different scenes. Usually the shots in thg ;5 similarity between shots, ands; is as follows:
same temporal scene are coherent with respect to the same !

environment. There are visual similarities that exist among
these shots. On the other hand, the shots from different scenes
should be visually dis_tinctive. Therefpre, we _havg focused Ohere k™ K., k" € K, , andC is a constant. After
efforts on the_anaIyS|s of the color information n the S.hOt%' mputif‘fg the vilsuarfsimilaritg/ between all pairs of shots in the
We use the histograms to represent the color information 9heo a similarity map is generated. One such map is shown in
the video frames. The color histogram for each frame is ﬂly? ’ '

) . . . o 0.5. In this map, the brighter cell represents higher similarity
three-dimensional histogram in the RGB space with eight b'(}glue. The shots that are in the same temporal scene form a
in each dimension. Leh; be the histogram for framg;.

Furth define the hist it tion bet bright block along the diagonal in the similarity map. If the
urthermore, we define the histogram Intersection be Wegﬁ]ots[sa, .-+, 8] are clustered into sceng,,, the likelihood
framesf; and f; as,

for this scene is computed as:

based, etc., with or without the training of the feature
Home videos are not well-controlled as other domains li
television programs. The scene boundaries sometimes

Sim(si,s;) = max(C — dp(ky,, KY)), (13)

Sj

HistInter(f;, fj) = Z min(hﬁ;’, h?), (12)

be Allbins L(ym|fm) = avg (M(a tba: b)), (14)
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Y,

L Final Boundary Locationg = 5
g local maxima O = o
2 o) '80‘
> B S
= 8 O
o X--
8. 3 Iterations

~(a). Plot of the posterior probability

" shots

Fig. 6. The overall votes of the shots declared as the scene bound: % oS
from multiple independent Markov chains. The red circles repres = @ ..
the shots that are declared as the final scene boundary locati
which correspond to the local maxima in the overall vote plot. | ter ati ong——

(b). Plot of the model prior, p(K).

ich i imilari - i Fig. 7. (a). The plot of the posterior probability of the parameter
which is the average similarity value of the sub-block in tf estimation during a single Markov chain (run). As demonstrated in the

similarity mapM starting from rowa to row b. It is intuitive  figure, after certain iterations, the posterior reaches to a “confidence”
that the correct segmentation of the video gives the diago level and stays there with minor fluctuations. It should be noted that

blocks to reach the maximum likelihood. To compute tt if the data size (number of shots in our application) is small, the
) process reaches this level quickly. (b). The plot of the model prior

overall likelihood, substitute Eq.14 into Eq.10. Up to thifor the number of the scenes, where the model mean, is set
point, the overall likelihoodL(y|fx), the conditional prior to be 3.5. The horizontal axis in both plots represents the number

p(0x|k) and the model priop(k) are determined. Therefore of iterations. At the end of the process, plot (a) gives the posterior
. probability of the parameters given the video data, and plot (b) gives
the acceptance for the proposal updates are decided by the information on the number of scenés.

ratio test described in the MCMC algorithm.

3) System PerformanceThe proposed method has bee ' 7 e 7 iR :
tested on four home videos with 23 scenes. These scenes ; i ; 2 -
recorded with various environmental settings. Each scen i e B B
composed of multiple video shots. Some of them are indc i ‘Ewm uEn R g
scenes (Scenes (c,e) in Fig.4), while others are outdoor sct " ] 5 : -
(Scenes (a,b,d) in Fig.4). Furthermore, the videos were ta R R, o QR 1 = T (10)34
in different styles. Some scenes were recorded from the he [Terariond

held cameras (Scenes (a,c,d) in Fig.4). Some were recorde 5 on of a simolified MCMC i ) W
; ; T ig. 8. Demonstration of a simplifie iteration process. We
spy camera hidden in the bag (Scene (e) in Fig.4), and Ot_h r\%w ten updates during a single run. The red boxes represent the
were recorded by the camera mounted on the ground Veh'tifected scenes that do not match with the true boundaries, while
(Scene (b) in Fig.4). the blue boxes show the detected scenes matched with the ground
: : uth. The sample video contains 19 shots, which are initially split
It is We”_ known that samples generated from a smgll to two arbitrary scenes (1). After a series of updates, including shift
Markov chain may not result in the accurate solution. Rathgs), merge (2,7,9) and split (3,4,5,8,10), the final detected scenes (10)
the solution generated from a single chain may be in tieatch with the true boundary locations. As illustrated in the figure,

neighborhood of the true solution. To overcome this probler{rﬂg Z?rﬁﬂgﬁtsr;:gentually Ylocked” with the bright diagonal blocks in
we independently execute multiple Markov chains. The results

from each individual chain provide the votes for the shots that

have been declared as the scene boundaries. After certain rypgnes. Sceng is declared as matched if one of the detected
the shots with the locally highest votes represent the final SCefi®ness; has the same starting shot.

boundaries. Fig.6 shows the overall votes of the scene shot§yo accuracy measures are used to measure the system
being declared as scene boundaries from all runs, and the ormance: precision and recall,

circles represent the local maxima, which correspond to the

true boundaries. Even though one single chain may not provide Precision — {7 Recall — {7 (15)

the correct result, there is an issue of the posterior probability A B

reaching the “confidence” level. This is referred as the “burvhere X is the number of the correct matches between the
in" period. As shown in Fig.7, after certain iterations, thgystem detections and the ground truth sceress the total
posterior probability reaches a level and stays there with omyimber of the system detections;is the total number of the
minor fluctuations. For this particular testing video, the “burrground truth references. The detailed precision/recall measures
in” time is short due to the small size of the data (humber @ffe shown in Table I. If the matches in all of the videos are
shots). A simplified version of the iteration process is showreated equally important, the overall precision and recall are
in Fig.8. 0.840 and 0.913, respectively.

The matches between the ground truth data and the segfo further demonstrate the effectiveness of the proposed
mented scenes are based on the matching of their startmgthod, we also compare our system output with the results
boundaries. For a given home video with scenes, let generated by one of the previously developed methods. As
{t1,t2, ..., t, } denote the starting shots of the reference sceria® most relevant technique to our scenario, we choose the
and {sy, s2, ..., s} denote the starting shots of the detecteBackward Shot Coherence (BS&)proach proposed in [23].
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TABLE |
ACCURACY MEASURES OF FOUR HOME VIDEOSINSERTION IS THE
NUMBER OF THE OVER SEGMENTATION(FALSE POSITIVES, AND

DELETION IS THE NUMBER OF THE MISDETECTIONS(FALSE NEGATIVES).

[ Measures [ clipl | clip2 T clip3 [ clip4 | /"WMW\"\f
Length 12:42 | 06:53 | 07:31 | 17:53 \Am,\/
Num. of Shot 47 16 19 25 -
Num. of Scenes 8 5 5 5 movie.
Detected Scene$ 8 5 5 7 JL.\[\
Match 7 5 5 Z A
Insertion 1 0 0 3 .. LA 1
Dele_tl(_)n 1 0 0 1 (c) Plot of the visua content in the movie.
Precision 0.875 | 1.000 | 1.000 | 0.571
Recall 0.875 | 1.000 | 1.000 [ 0.800

[ 12 (3] 14 (5]
TABLE Il \/ '\/ \/ \/ \/

COMPARISON BETWEEN THE PROPOSEIMARKOV CHAIN MONTE CARLO (d) PDFs of the 2D normal distributions of first five scenes.

(MCMC) METHOD AND THE Backward Shot Coherence (BS@B]. THE Fig. 9. (a). Representative frames of some example scenes in the
OVERALL PRECISION AND RECALL ARE COMPUTED AS EVERY SCENE IN. movie Gone In 60 Second¢b). Plot of the shot length variable; (c).

ALL VIDEOS IS EQUALLY IMPORTANT. THE LAST COLUMN SHOWS THE Plot of the visual disturbance feature. Usually, the shots with shorter

length are accompanied by higher level of visual disturbance. The

green bars represent the scene boundaries in the movie, which were
detected by the proposed method; (d). PDF plots on the 2D normal

NUMBER OF THE REFERENCE SCENES IN EACH CLIP

[Measures [ MCMC | BSC [ Reference] distribution” of the first five scenes in the movie. The distribution
Clipl Detection 8 7 8 parameters, mean and covariance, are different across the scenes.
Clip1l Match 7 4 -

Clip2 Detection 5 4 5
Clip2 Match 5 4 - . .
Clip3 Detection 5 6 5 one place. The movie scenes are composed according to the
Clip3 Match 5 4 - film grammar which is a set of rules about how the movies are
g::gj ,E’A‘:tiﬁ“on Z Z 5 produced. In a scene, the shots often exhibit similar patterns,
otal Detoction > =7 = which can be reflected by the low-level features. For example,
Total Match 71 16 - iq action scenes, the s_hot.s are generallly.short in length, and the
Total Insertion 4 8 - visual content, which indicates the activity level of the scene,
Total Deletion 2 / - changes rapidly. On the other hand, in drama scenes, the shots
Overall Precision| 0.840 0.667 - ; i ; i

re much longer, and the visual content is relativel nsistent.
Sveral Resal So1s T 0696 - are much longer, and the visual content is relatively consistent

For feature films, we use these two features computed from
the movies, shot length and visual content, to group the

The BSC approach is a two-pass algorithm, which first Ses<_amant|cally coherent shots into scenes. Letdenote the

. L ; . ngth of shots andwv, be the visual content in that shot. The

ments the video into initial scenes using the color consisten . :
L shot length represents the pace of the movie, and the visual
and then merges them based on the similarity between their : . ; .
. . ontent shows how much is going on in the shot. The visual
motion contents. In the home videos, the same recordéer ; .
- - . content is defined as,
often exhibits similar motion of the camera. Furthermore,

unlike other domains, motion content in home videos is less :

meaningful and not distinctive across the scenes. Based on the Vs = 1 (1 — HistInter(fi, fis1)), (16)
experimental observations, results obtained using both passes N P
in the BSC algorithm are the same as the results obtained u%

2

only its first pass, which generates the scene segments usl reHiStImeT(ﬁ’ f.i“) is the color histogrfam Ml
the color information. Since only the visual information i ff een the'tr? anjrﬁl+|1);th l;r?r:nesr,] i'}dv& tIrS; th% rtlrl:mb_er |
useful in our application, we compare the system performan%e rtamtes n Sh 0. 1 er ogs_?h © f 0 fentg and the V(;S.uath
between the results generated by the proposed MCMC metfGg Nt are shown in =1g.=. 1 hese two features are used in the
struction of the data likelihood.

and the BSC method for the sake of fairness. The comparis(E)CH1 - ) . .
results are shown in Table II. 2) Likelihood Computation:In the film production, the

patterns for different features are related to each other. For
instance, in action scenes, the short shots are accompanied by
B. Feature Films high degree of visual content. Therefore, the featiyesduv,

To demonstrate the genera"ty of the proposed framewoﬁtlould not be considered independent of each other. We use a
we have also tested the proposed System on three feature fn’[W@_-dimenSional normal distribution to model the features in
Gone in 60 Second®r. No - 007 and Mummy Returns a scenesy,

1) Feature SelectionBased on the definition provided by
the Webster dictionary [15], a movie scene is one of the
subdivisions of a play, or it presents continuous actions in

(germ) = (9: 2 0n) O (o 20m)) - (a7

1
s :
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TABLE Il

the segment. Another example is the news video segmentation.
ACCURACY MEASURES FOR THREE FEATURE MOVIES

In this task, each news segment is composed of the shots

[ Measures [ Gone in 60 Seconds| Dr. No - 007 | Mummy Returns ] that are coherent to a certain news focus. Non-news segments
hir:gﬂ;f - 011521216059 011313235 01151‘1126323 include commercials, lead-infout, reporter chit-chatting, etc.
NUm-of Shot 537 577 1600 The text information, closed captions (CC) and automatic
Num. of Scenes 29 17 18 speech recognition (ASR) output, can be used as the features
Detectec Scenes 2 2 1 for constructing the posterior distribution. In this case, the
Insertion 1 3 3 semantic relations between the key-words appearing in the
Deletion 5 6 S shots can be analyzed. Shots that have the same news focus

} P s % R % AL % o= % should possess similar distributions of the key-words. The

MCMC framework can find the places where the distributions
of the key-words change to detect the scene boundaries.
where g, is the feature vectofl, v,]”. The vectorg,, is There is another temporal segmentation process on the
computed as the sample means for the entire scgpe lower-level video structure, which is commonly known as the
and G is the covariance matrix with determinaft Again, shotboundary detection. Shot level segmentation and the scene
by considering the shots to be recorded independently, #Rgmentation have their similarities and differences. A shot

likelihood in each sceng,, is, is defined as a series of continuous frames with consistent
background settings. This assumption naturally leads to the
M 1 . . .
. o color consistency constraints, and it does not refer to any
L(ym| fm) = (l_llN(gS’m)) ’ (18) high level semantic meanings. On the other hand, scene
ol

) ) ) segmentation involves more semantic coherence. For example,
We substitute Eq.18 in EQ.10, and perform the ratio test ff o me videos, shots within the same scene are coherent to

the acceptance decisions. Similar argument is applied here {ath gther in terms of the same events or the same physical
taking the geometric mean as in Eq.10. i sites. In feature films, shots in the same scene are related to the
3) System Performancewe have experimented OUr ap-game sub-theme of the movie story line. In both the cases, the
proach on three feature-length film&one in 60 Seconds .qor similarity constraint is insufficient for the segmentation.
Dr. No - 007 and Mummy RetgrnsEach movie contains 1 high-level semantics are often bridged by analyzing the
thousands of shots. The matching follows similar prOCEdub%tterns of other types of low-level features, like video pace

as used in Section IlI-A.3. However, the matching techniqug,q the visual content in the films or the narration in the news
is slightly different. In movies, there usually is not a Concretﬁrograms.

or clear boundary between two adjacent scenes due to editing
effects. Movie chapters are sometimes changed with a smooth
transition. Therefore, matching based on the boundaries is V. CONCLUSIONS

not meaningful and often returns incorrect measures. Insteady, this paper, we have presented a general statistical frame-
we use a ‘recovery” method. Suppose there is a set of figk for the temporal scene segmentation of videos. We
reference scene$l), Ty, ..., T,} and a set of the detectedy e solved the scene segmentation task by automatically
scenes{ShSQ_,...,Sk}.. A reference scend,, is said to be determining the places where thentral conceptchanges.
“recovered”, if a majority of this scene>( 50%) overlaps A target distribution of the model parameters, including the
one of the detected scenes. The "recovery” is a one-t0-0figmper of scenes and their corresponding boundary locations,
correspondence, i.e., one reference scene can only be matGhednsiructed to model the probabilities of the video shots

with at most one detected scene, and one detected scenetfgmg declared as the scene boundaries. and the solution

cover at most one reference scene. The scene matching for;the,hieved by performing the sampling from this target

movieMummy Returngs shown in Fig.10. In this example, Weistribytion using the Markov chain Monte Carlo (MCMC)
consider the chapters provided by the DVD as the ground trythynique. In the iterative process of MCMC, the posterior
scenes. The key-frames of both the ground truth scenes andgshapility is computed based on the model prior, conditional
detected scenes are pres_ented..Agam, we use the precisionapgd and the data likelihood given the parameters, and the
recall measures defined in Section I1I-A.3 for the performanef,qates are determined based on the posterior probabilities and
evaluation. Detailed results for movie scene segmentation §g transition probabilities. The method has been applied to

shown in Table Il. several home videos and three feature films, and high accuracy

measures have been obtained (Tables I, Il and I11).
IV. DISCUSSIONS

The idea of thecentral concepis also applicable to other
video domains. For example, in television talk shows, one
major distinction between the commercials and the real TV This material is based upon the work funded in part by the
talk shows is that, in the talk shows there often exists l&S. Government. Any opinions, findings and conclusions or
repeating pattern between the host and the guest, which theommendations expressed in this material are those of the
commercials do not possess. The feature to distinguish thisthors and do not necessarily reflect the views of the U.S.
central concepinvolves the number of the repeating shots iGovernment.
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Scene Matching for Movie Mummy Returns

DVD Chapters Detected Scenes} DVD Chapters Detected Scensl DVD Chapters Detected Scenes}

Tracking the Trace

Family in the Tomb

Invasion of Home

Plan on Rescue

Murder in Palace Fighting Scorpion King

Fig. 10. Matching of the scenes for the movidummy Returnsit shows the key-frames of the ground truth scenes that are obtained from
the DVD chapters and the key-frames of the detected scenes. The key-frames of the ground truth scenes are accompanied with their titles.
The matches scenes are shown with their key-frames aligned. Pairs with blank spaces are the mis-matches, i.e., insertions and deletions.
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