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Abstract— Videos are composed of many shots that are caused
by different camera operations, e.g., on/off operations and switch-
ing between cameras. One important goal in video analysis is to
group the shots into temporal scenes, such that all the shots in
a single scene are related to the same subject, which could be
a particular physical setting, an on-going action or a theme. In
this paper, we present a general framework for temporal scene
segmentation in various video domains. The proposed method is
formulated in a statistical fashion and uses the Markov chain
Monte Carlo (MCMC) technique to determine the boundaries
between video scenes. In this approach, a set of arbitrary scene
boundaries are initialized at random locations and are automat-
ically updated using two types of updates: diffusion and jumps.
Diffusion is the process of updating the boundaries between
adjacent scenes. Jumps consist of two reversible operations: the
merging of two scenes and the splitting of an existing scene. The
posterior probability of the target distribution of the number of
scenes and their corresponding boundary locations is computed
based on the model priors and the data likelihood. The updates of
the model parameters are controlled by the hypothesis ratio test
in the MCMC process, and the samples are collected to generate
the final scene boundaries. The major advantage of the proposed
framework is two-fold: (1) it is able to find the weak boundaries
as well as the strong boundaries, i.e., it does not rely on the
fixed threshold; (2) it can be applied to different video domains.
We have tested the proposed method on two video domains:
Home Videos and Feature Films, and accurate results have been
obtained.

Index Terms— Video scene segmentation, Markov chain Monte
Carlo.

I. I NTRODUCTION

Videos are often constructed in the hierarchical fashion:
[Frame]→[Shot]→[Scene]→[Video]. The lowest level con-
tains the individual frames. A series of continuous frames with
consistent background settings constitute a shot. A scene or
a story is a group of semantically related shots, which are
coherent to a certain subject or theme. At the highest level,
the entire video is composed of multiple scenes, which result
in the complete storyline. Scenes are the semantic units of
the video, and temporal scene segmentation is defined as a
process of clustering video shots into temporal groups, such
that the shots within each group are related to each other
with respect to certain aspects. This is an important and
fundamental problem in video processing and understanding,
and it provides more meaningful and complete information
for the video content understanding compared to the shot-level
analysis. Scene segmentation has many applications in various
domains. For example, in the feature films, scene segmentation
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provides the chapters that correspond to the different sub-
themes of the movies. In television videos, segmentation
can be used to separate the commercials from the regular
programs. In news broadcast programs, segmentation can be
used to identify different news stories. In home videos, scene
segmentation may help the consumers to logically organize the
videos related to the different events (e.g., birthday, graduation,
weddings, or vacation (e.g. city tours, sightseeing)).

Scenes are composed of the video shots. The video shots
are caused by different camera operations, e.g., turning the
camera on/off, the switching between cameras, and other video
editing techniques. Consider this: a tourist is recording a video
around a monument. He wants to have different views of the
monument. Therefore, he takes one sequence from the frontal
view and shuts the camera off. Then, he walks to the side of
the monument and records another sequence. In this case, the
entire scene is composed of two shots, which are generated
by the operations (on/off) of a single camera. On the other
hand, in movies or TV programs, the shots are generated
from different cameras and are appended one after another to
constitute the story lines. A scene sometimes can be composed
of a single shot. For instance, in the example described above,
the tourist could have the camera on all the time and keeps
recording the video. In this case, the scene and the shot are the
same. However, more often, scenes are composed of multiple
shots, such as movies or TV programs. Hence, a single shot
is insufficient to reveal the semantic meaning of the video
content. For example, in feature films, how could one answer a
query related to a suspense scene based only on the content of
a single shot? These types of scenes can only be identified with
multiple shots showing the increasing tension in the video. In
other domains, more often the semantic concepts are difficult
to be determined by using only a single shot, since they are
introduced to viewers over time. Thus, a meaningful result can
only be achieved by exploiting the video scenes, which are the
interconnections of the shot contents.

A. Related Work

Several temporal segmentation methods have been devel-
oped for different types of videos. Hanjalicet al. [11] proposed
a method for detecting boundaries of the logical story units
in movies. In their work, inter-shot similarity is computed
based on the block matching of the key-frames. Similar shots
are linked, and the segmentation process is performed by
connecting the overlapping links. Rasheedet al. [23] proposed
a two-pass algorithm for scene segmentation in feature films
and TV shows. In the first pass, potential scene boundaries of
the video are initially detected based on the color similarity
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constraint,Backward Shot Coherence (BSC). Over-segmented
scenes from the first pass are then merged in the second
pass, based on the analysis of the motion content in the
scenes. Sundaramet al. [25] used the audio-visual features
of the video in the movie scene segmentation. First, two
types of scenes, audio scenes and video scenes, are detected
separately. Then, the correspondences between these two sets
of scenes are determined using a time-constrained nearest-
neighbor algorithm. Adamset al. [1] proposed the “tempo”
for the segmentation of the movies. The “tempo” of a shot is a
combination of the shot length and the motion content of shot.
The dramatic story sections or events in the movie are detected
by finding the zero-crossings of the “tempo” plot. Yeunget
al. [28] proposed a graph-based representation of the video
data by constructing a Shot Connectivity Graph. The graph is
split into several sub-portions using the complete-link method
of hierarchical clustering such that each sub-graph satisfies a
color similarity constraint. These methods are based on the
“film grammar”, which is a set of production rules of how the
movies or TV shows should be composed. For instance, in
action scenes, the shots are generally short, and their motion
content is high. On the other hand, the shots are long and the
visual appearance is smooth in drama scenes. However, these
heuristics are not applicable to the other types of videos. For
instance, home videos are recorded in a completely “free”
style. Shooters are not trained with recording techniques,
and often no obvious format or pattern exists in the video.
Furthermore, since the rules in the production of films and
TV shows are different, the methods for these two domains of
videos cannot be used interchangeably.

There is a particular interest in the story segmentation of
the news broadcast videos. Hoashiet al. [13] has proposed
an SVM-based news segmentation method. The segmentation
process involves the detection of the general story boundaries,
in addition to the special type of stories, e.g., finance report
and sports news. Finally, the anchor shots are further ana-
lyzed based on the audio silence. Hsuet al. [14] proposed
a statistical approach based on the discriminative models.
The authors have developed theBoostME, which uses the
Maximum Entropy classifiers and the associated confidence
scores in each boosting iteration. Chaisornet al. [4] used
Hidden Markov Models (HMM) to find the story boundaries.
The video shots are first classified into different categories.
The HMM contains four states and is trained on three features:
type of the shot, whether the location changes (true or false)
and whether the speaker changes (true or fase). These methods
were developed based on the unique characteristics of the
news video. The video shots are commonly classified into
news program related categories, e.g., anchor person, weather,
commercials and lead-in/out shots. These categories are not
available in other domains of videos, such as home videos or
feature films. Furthermore, the news segmentation methods
usually involve the special treatment on the anchor person
shots, which exist only in news videos.

B. Proposed Approach

In this paper, we propose a general framework for the
temporal video segmentation by using the Markov chain

Monte Carlo (MCMC) technique. Many of the previously
developed methods are based on the fixed global thresholds,
which are not desirable in many cases. Moreover, due to the
fixed thresholds, these methods are likely to generate either
over-segmentation or under-segmentation. Also, these methods
may use some special knowledge about a particular domain,
which may not be appropriate for other domains. For example,
there is no obvious video structure in home videos. Due to that,
it is not easy to generalize these methods to other domains.
In contrast, we do not use any fixed threshold or utilize any
structure information of the video. Instead, we have developed
an iterative method to evaluate the segmentation parameters,
including the number of the scene segments and their cor-
responding locations. In our formulation, if the number of
the segments changes, the dimension of the vector containing
the boundary locations also changes. The solution space for
these two parameters is too complex for the direct analytical
computation. Therefore, these two parameters are estimated
in a statistical fashion using the Markov chain Monte Carlo
(MCMC) technique.

Markov chain Monte Carlo (MCMC) technique has been
used in several applications in the fields of image processing,
video content analysis and computer vision in the past few
years. Gemanet al. [6] were the first ones to apply the
MCMC technique in the image analysis using the Gibbs
sampler. The MCMC technique involving the jump and dif-
fusion method was introduced by Grenanderet al. [8], and
Green [7] further proposed the reversible jumps. It has been
applied in sampling and learning by Zhuet al. [33]. For 1-
D signal segmentation problems, Phillipset al. has discussed
the change-point problem in [22]. Dellaertet al. [5] proposed
an EM-based technique for solving the structure-from-motion
(SFM) problem without known correspondences. The MCMC
algorithm [12] with symmetric transition probabilities was
used to generate the samples of the assignment vectors for
the feature points in each frame. Senegas [24] proposed a
method for solving the disparity problem in stereo vision. The
MCMC sampling process was applied to estimate the posterior
distribution of the disparity. Tuet al. [27] and Hanet al.
[10] have applied the data-driven Markov chain Monte Carlo
(DDMCMC) to the optical and range image segmentations.

Our proposed Markov chain contains three types of updates:
shifting of boundaries, merging of two adjacent scenes and
the splitting of one scene into two scenes. Due to these
updates, the solution can jump between different parameters
spaces, (the dimension of the parameter vector can change),
as well as diffuse inside the same space, (the elements in
the parameter vector are changed without changing the vector
dimension). We assume that each shot in the video has a
likelihood of being declared as the scene boundary. Shots with
higher likelihoods coincide more with the true boundaries.
Initially, two segments are assumed, and they are separated by
a randomly selected shot. Then, in each iteration of the updates
in the MCMC process, several shots are declared as the
scene boundaries. Their likelihoods are accumulated, while the
likelihoods of other shots are kept the same. Several Markov
chains are executed independently to avoid the possible mis-
detections caused by a single chain, and the samples from
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all of the chains are collected for the computation of the
shot likelihoods. Finally, the shots with the highest likelihoods
in their neighborhoods are declared as the scene boundary
locations. One advantage of using the sampling technique is
that both the weak and strong boundaries can be detected
without defining any specific threshold. We have tested the
proposed framework on two video domains, home videos and
feature films, and very accurate and competitive results have
been obtained.

The rest of this paper is organized as follows: Section II
proposes the MCMC algorithm and presents the computations
of the transition probabilities and the posterior probability.
Sections III-A and III-B deal with the applications of the
general framework on the segmentations of the home videos
and the feature films, respectively. Section IV presents the
discussions of the proposed work on other video domains.
Finally, Section V provides the conclusion and discussions of
the proposed framework.

II. PROPOSEDFRAMEWORK

By the problem definition, given the shots in the video,
scene segmentation of the video is a process of grouping the
related shots into clusters. In each scene, the shots are related
to each other in terms of the correspondingcentral concept.
The central conceptsare different in various contexts. For
instance, in home videos, thecentral conceptsometimes refers
to the same physical environmental setting, e.g., shots related
to the same historical monument, or sometimes it refers to the
same event, e.g., shots related to a birthday party or a wedding
ceremony. In the news programs, thecentral conceptrefers to
a specific story topic, e.g., shots related to a political reporting,
a weather forecast or a sports reporting. In the feature films,
central conceptrefers to the same sub-themes of the story
line, e.g., shots related to an action scene or a suspense scene.
Different scenes are distinguished by their differences with
respect to thecentral concept, and the scene boundaries are the
locations where the intrinsic properties of thecentral concept
change.

Based on this, we propose a statistical solution for the
two model parameters, the number of the scenes and their
corresponding boundary locations. The boundary locations
are considered as the change-points of thecentral concept,
and the problem is formulated as a change-point problem.
In a typical change-point problem, the random process has
different controlling parameters over time. The goal is to find
the points where these parameters change. A simple example
of a change-point problem is shown in Fig.1. In this example,
600 observations are generated from five different uniform
distributions. The change-points are the locations where the
distribution mean changes (the steps in the plot). In our
application of the temporal scene segmentation, the controlling
parameters become thecentral concept, and the steps in the
posterior mean plot become the scene boundaries in the video.
To estimate the boundaries locations, the Markov chain Monte
Carlo (MCMC) technique is used. In the iterative process of
MCMC, the posterior probability of the model parameters is
computed based on the model priors and the data likelihood
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Fig. 1. An example of the change-point problem. There are five
segments containing over the 600 observations that are generated by
the uniform distributions with different parameters. The red plot is
the posterior mean of the segments, and the locations of the steps
are the change-points in the data, i.e., the places where the mean
changes.

of the video. The samples are collected based on the ratio
tests involving the posterior probabilities and the transition
probabilities. In the rest of this section, we first introduce the
overall MCMC algorithm. Then, a detailed description of the
different types of update proposals is presented. Finally, we
describe the computation of the posterior probability.

A. General MCMC Algorithm

We use a hierarchical Bayesian model in the Markov chain
Monte Carlo process. We assume that the model set{Mk, k ∈
Φ} is a countable set, wherek is the number of the detected
scenes, andΦ = {1, 2, · · ·} is a set of all the possible scene
numbers. ModelMk has a parameter vectorθk, which contains
thek−1 scene boundary locations (Note: since the first scene
always takes the first shot as its starting boundary, it is ignored
in our estimation process). Lety denote the video features
selected for the data likelihood computation. Based on the
Bayes rule, the posterior probability of the parameterk and
θk given y is:

p(k, θk|y) ∝ p(y|k, θk)p(θk|k)p(k), (1)

wherep(k) is the prior probability for the number of scenes,
p(θk|k) is the conditional prior for the boundary locationsθk

given k, andp(y|k, θk) is the likelihood of the data given the
parametersk andθk. Since the boundary vector,θk, implicitly
determinesk, the above equation can be further simplified as,

p(k, θk|y) ∝ p(y|θk)p(θk|k)p(k). (2)

In the rest of this paper, we use the shorter termπ(x) =
p(k, θk|y) to denote this target posterior, withx = {k, θk}
considered as a combined parameter vector ofk andθk.

The general Metropolis-Hasting-Green algorithm [7] is well
suited for our task, where the dimension of the parameter
vector,x, may change during the updates. It is described as
follows:
• Initialize the model parametersx0.
• At each iterationi, perform the following actions:

1) GenerateThα from Uni[0, 1].
2) Create a new parameterx′i−1 from some trial distri-

bution based only onxi−1 with a proposal transition
(diffusion or jump).
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Fig. 2. Graphical representation of three types of the updates. The
top row shows the scenes before updates, and the bottom row shows
the update results.

3) Calculate the ratioα(xi−1, x
′
i−1) as,

α(xi−1, x
′
i−1) = min

{
1,

π(x′i−1)q(x
′
i−1, xi−1)

π(xi−1)q(xi−1, x′i−1)

}
.

(3)
4) Update xi = x′i−1, if α > Thα. Otherwise, set

xi = xi−1.

In this algorithm,q(x, x′) is the transition probability from
x to x′. The transition probability from one state to another
depends on the type of the updates. It should satisfy the
reversibility property. Therefore, the proposed updates should
also be reversible to ensure this property.

Before going into the detailed description of the updating
process, we first present the notations for the variables. Let
k be the current number of detected scenes,T be the total
number of shots in the video,Sm be them-th scene with shots
{s1

m, s2
m, · · · , snm

m }, wherenm is the number of shots in scene
Sm, S′m be them-th scene after update,L(y|θk) be the data
likelihood of the entire video,L(ym|fm) be the likelihood of
sceneSm given the corresponding featuresfm. Finally, kmax

is the maximum number of the scenes allowed.
The proposal updates contain two parts, diffusion and

jumps. Diffusion is defined as the update without changing
the structure of the parameter vectorx. It traverses within
the same sub-space. On the other hand, jumps do change the
structure and traverse across different sub-spaces. In our case,
the diffusion is the shifting of the boundaries between the
adjacent scenes. There are two types of jumps: the merging of
two adjacent scenes and the splitting of an existing scene. Fig.2
shows the graphical representations of the updates. In many
applications ([10],[7],[27]), two more updates were proposed:
diffusion on the segment model parameter(s) and the change
of the segment models. The segment model parameters are
the ones that control the generation of the sample data, e.g.,
posterior means in Fig.1. In our application of the video scene
segmentation, based on the underlying assumption that each
segment is coherent to itscentral concept, there is often only
one scene model for a single video domain. Thus, changing
between models is not needed in this case. Furthermore, in
some cases like home videos, the data size (number of shots
in our case) is small. The maximum likelihood estimator is
adequately effective to compute the parameter(s). Therefore,
the model parameter diffusion steps can also be dropped.

Let ηk, bk and dk denote the probabilities of choosing
shifting, merging and splitting, respectively. They satisfy
ηk + bk + dk = 1. Naturally, η1=b1=0 and dkmax=0. We
use the similar computation proposed in [7], wherebk+1 =
c ·min{1, p(k)/p(k+1)} anddk = c ·min{1, p(k+1)/p(k)},
with constantc such thatbk + dk ≤ C, ∀k = 1, · · · , kmax.
This results inbk+1p(k + 1) = dkp(k).

B. Stochastic Diffusions

The diffusions involve the shifts of the scene boundaries
between adjacent video scenes. The update is carried out as
follows:
• A number m is randomly drawn from the discrete

uniform distribution [1, k − 1], such that the boundary
betweenSm andSm+1 is updated.

• The new boundaryst is drawn from a 1-D normal
distribution with the mean at the original boundarys1

m+1

in the range of[s1
m, s

nm+1
m+1 ]. The updated sceneS′m

contains shots of{s1
m, · · · , st−1}, and the updated scene

S′m+1 contains{st, · · · , snm+1
m+1 }.

Assume the number of the current scenes isk and the
current parameter vector isx = {k, θk}. Then, the probability
for selecting sceneSm is 1/(k − 1). Since the potential shift
is drawn from a normal distribution around the original scene
boundaryt̂, this drawing probability for the new boundaryt
is computed as,

p(t) =
1√

2πσ2
exp(−∆t2

2σ2
)
(
I
[s1

m,s
nm+1
m+1 ]

(t)
)
, (4)

where ∆t = t − t̂, and σ is the standard deviation of the
movement (in our experiment,σ = 2). The indicator function
I(t) controls the shift, such that the new boundary is within
the correct range. The normal distribution is assumed since the
new boundary is not expected to deviate from the old boundary
too far. In summary, the forward transition probability for the
shift update isq(x, x′) = ( 1

k−1 )p(t).
During this entire update, the total number of scenes,k, is

not changed, and the new boundary remains in the original
range [s1

m, s
nm+1
m+1 ]. The reverse transition is the process of

shifting from the new boundaryt back to the original boundary
t̂. Thus, the relationship betweenq(x, x′) and its reverse
versionq(x′, x) is equal due to the symmetrical property of
the normal distribution.

C. Reversible Jumps: Merge and Split

For the jump updates, the transition during a merge is
related to the transition of a split, since merge and split are a
pair of reversed updates. Let us consider the splits first. The
number of scenes is increased by1 by splitting a sceneSm =
{s1

m, · · · , snm
m } into two new scenesS′m = {s1

m, · · · , t − 1}
and S′m+1 = {t, · · · , snm

m }, where t is the new boundary.
The process contains two portions: selecting a sceneSm and
selecting a new boundary between its old boundaries. The
selection of the new boundary in the split process can be
performed assuming the uniform distributions [7]. However,
to achieve better performance, the data-driven technique is
often used ([10] and [27]) to propose the jump transitions.
We assume uniform probability for selecting sceneSm. The
new boundaryt is chosen, such that it provides the maximum
likelihoods for the two new scenes,

t = arg max
(
L(S′m|f ′m) + L(S′m+1|f ′m+1)

)
, (5)

whereL(S′m|f ′m) andL(S′m+1|f ′m+1) are the likelihoods of
the new scenesS′m and S′m+1 given their corresponding
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Fig. 3. Prior distribution (Poisson) of the model parameterk, the
number of scenes in the video. The mean of the distribution,λ, is
pre-assigned as 2.5, andkmax is 8.

features. If we consider the video scenes are independent
events in the time series, the proposal probability for a split
can be expressed in the following form,

q(x, x′) =
1
k
L(S′m|f ′m)L(S′m+1|f ′m+1). (6)

The reversed update of the split is the merging of two scenes
into one. The construction of the proposal probability for the
merge can be carried out similarly to the one for the split.
Again, we assume the uniform distribution for selecting scene
Sm, such that scenesSm andSm+1 are merged intoS′m. The
proposal probability for the merge transition is constructed as
follows,

q(x, x′) =
1

k − 1
L(S′m|f ′m). (7)

D. Posterior Probability

Since Poisson distribution models the number of incidents
happening in a unit time interval, we assume the number of
scenes,k, is drawn from a such distribution with meanλ. The
model prior onk is computed as,

p(k) = e−λ λk

k!
· I[1,kmax](k), (8)

where I[1,kmax](k) is an indicator function.Ik = 1, if 1 ≤
k ≤ kmax; Ik = 0 otherwise. A plot of the prior distribution
is shown in Fig.3.

If there arek segments (scenes) in the video, then there
are k − 1 scene boundaries, since the boundary for the first
scene is always the beginning of the video. The probability
of p(θk|k) is the same as the probability of selecting a subset
with sizek−1 from the remainingT −1 shots. Therefore, the
conditional prior can be defined in terms of the combinations,

p(θk|k) =
1

CT−1
k−1

=
(k − 1)!(T − k)!

(T − 1)!
. (9)

The last term to be computed is the likelihood. Let
L(y|θk) = p(y|θk) denote the global likelihood of the video
datay given the parameter vectorθk. As discussed in Section
II, each scene possesses a differentcentral concept. It is mean-
ingful to make an assumption that each scene is independently
recorded from others. Therefore, the overall likelihood can be
expressed as,

L(y|θk) =
( L∏

m=1

L(ym|fm)
) 1

L

, (10)

whereL(ym|fm) is the individual likelihood of dataym in
sceneSm, based on the feature valuesfm. The geometric
mean of the individual likelihoods is considered for the nor-
malization purpose. In order to make the ratio test meaningful,
the likelihood should be scaled to the same level during each
iteration. The definition of thecentral conceptis different
across domains. Therefore, the features selected to compute
the likelihoods are different for the different types of videos.
Here, L(y|θk) is a general representation of the likelihood
rather than a specific computation.

The target posterior probability is proportional to the prod-
uct of the model priorp(k), the conditional priorp(θk|k), and
the data likelihoodL(y|θk),

π(x) ∝ L(y|θk)p(θk|k)p(k). (11)

To determine if the proposed update in the parameter space
is accepted or rejected, we compute the ratio of the two terms:
π(x′)q(x′, x) andπ(x)q(x, x′). If the ratio,α(x, x′), satisfies
the stochastically generated threshold, the proposed update is
accepted; otherwise, the model parameters are kept the same
as in the previous iteration.

III. A PPLICATIONS AND DISCUSSIONS

In this section, we demonstrate the proposed scene seg-
mentation method on two video domains. If we examine the
generation process of the videos, we can classify them into
two categories:

• Produced Videos: This group contains the feature films,
television news programs and other television talk or
game shows. They are initially recorded in the raw format
and are later modified to produce the carefully organized
video programs with accordance to the certain video
production rules.

• Raw Videos: Compared to the previous group, this cate-
gory involves little post-modification and contains videos
that are mostly in the forms in which they were originally
recorded. Common domains in this category are home,
surveillance and meeting videos.

Due to the large variety of video domains, we have selected
two representative domains to demonstrate the effectiveness
and the generality of the proposed method, with one domain
from each of the categories described above. The home video
domain is chosen as the representative domain of theRaw
Video category, and the feature film domain is selected for
the Produced Videoscategory. In this paper, we assume the
video shots are available. In the experiment, we used a multi-
resolution method provided in [30] to detect and classify the
video shot boundaries in both home videos and feature films.

A. Home Videos

Home video is a broad term that refers to the videos
composed with a “free-style”, e.g., family videos, tour videos,
wedding tapes or ground reconnaissance videos (GRV). They
are recorded from hand-held cameras, spy cameras, cameras
mounted on ground vehicles, etc., and come in different forms.
Some are with high resolutions, while some others have low
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Scene (a) Scene (b) Scene (c) Scene (d) Scene (e)

Fig. 4. Five example home video scenes with their key-frames.
Some of them are the indoor scene (c); some are the outdoor scenes
(a,b,d,e). Scenes (a,b) were taken by the cameras mounted on the
ground vehicles, (e) was taken by a spy camera in a bag, and (c,d)
were taken by hand-held cameras.

quality. Some have full field of view, and some may be
recorded by cameras hidden in the bags (GRV), so part of
their field of view is blocked by the carrier. Some example key-
frames are shown in Fig.4. Temporal scene segmentation of
home videos provides the logical units related to the interesting
locations or events, and the output segments can be used
for the further analysis and processing of the videos, e.g.,
indexing, storage, retrieval of the video and action recognition.
Since there is no grammar involved in the production process
of the home videos, the temporal segmentation emphasizes
more on the analysis of the features derived from the video
than on the video structure. As mentioned in Section I,
this type of analysis could be threshold-based, zero-crossing
based, etc., with or without the training of the features.
Home videos are not well-controlled as other domains like
television programs. The scene boundaries sometimes are
clearly identifiable (strong boundaries), but many times they
are difficult to be determined using the same criteria for the
strong boundary detection. Due to this uncertainty in the home
videos, it is likely to create either under-segmentation or over-
segmentation using any fixed threshold, and it is not practical
to train the system for the threshold selection. On the other
hand, the proposed approach finds the boundary locations
by detecting the local peaks in the likelihood plot of the
video shots, and therefore, avoids the previously mentioned
problems.

1) Feature Selection:In the context of temporal scene
segmentation, a variety of features have been exploited. The
commonly used features include color, motion content, shot
length, etc. Since the home videos are taken in a “free style”,
the patterns for the motion content and the shot length are
not distinctive across different scenes. Usually the shots in the
same temporal scene are coherent with respect to the same
environment. There are visual similarities that exist among
these shots. On the other hand, the shots from different scenes
should be visually distinctive. Therefore, we have focused our
efforts on the analysis of the color information in the shots.
We use the histograms to represent the color information of
the video frames. The color histogram for each frame is the
three-dimensional histogram in the RGB space with eight bins
in each dimension. Lethi be the histogram for framefi.
Furthermore, we define the histogram intersection between
framesfi andfj as,

HistInter(fi, fj) =
∑

b∈Allbins

min(hb
i , hb

j), (12)

(1)

(2)

(3)

(4)

1 19

19

1
shots

sh
ot

s

Fig. 5. Visual similarity map of the shots in a testing video. The
brighter cell represents the higher similarity. The shots in the same
scene possess higher similarity comparing across scenes. The bright
blocks on the diagonal gives ideas of the temporal scenes. The figure
shows the intermediate results for one iteration, where the red scenes
(1 and 2) are not matched with correct boundaries, and the blue
scenes (3 and 4) are the correct detections.

whereb is the individual bin in the histogram.
Instead of using all the frames in the shot, we extract

the key-frames as the representation of the shot, and further
analysis is performed based on the key-frames only. It is
common to select a single key-frame for each shot. However,
for the shots with long durations and with high activity content,
multiple key-frames form better representation. Several key-
frame selection approaches have been proposed in the past
few years ([9][11][23][32]). In this paper, we use the method
proposed in [23]. Assume there are a total ofn frames in shot
s, the procedure for selecting the key-frames is described as
follows:

• Include the middle frame into the key-frame setKs as
the first key-frameκ1

s;
• For i = 1 : n, do

If max(HistInter(fi, κ
j
s)) < Th, ∀κj

s ∈ Ks

Includefi into Ks as a new key-frame.

In this algorithm,Th is the threshold for selecting a new
key-frame, and we use the histograms of the key-frames as
their representation.

2) Likelihood Computation:We define the visual similarity
between two shots in terms of the Bhattacharya distance.
The Bhattacharya distance between two histogramsh1 andh2

is defined asdB(h1, h2) = −ln
( ∑

b∈allbins

√
hb

1h
b
2

)
. The

visual similarity between shotssi andsj is as follows:

Sim(si, sj) = max(C− dB(κm
si

, κn
sj

)), (13)

where κm
si
∈ Ksi , κn

sj
∈ Ksj , and C is a constant. After

computing the visual similarity between all pairs of shots in the
video, a similarity map is generated. One such map is shown in
Fig.5. In this map, the brighter cell represents higher similarity
value. The shots that are in the same temporal scene form a
bright block along the diagonal in the similarity map. If the
shots[sa, · · · , sb] are clustered into sceneSm, the likelihood
for this scene is computed as:

L(ym|fm) = avg
(
M(a : b, a : b)

)
, (14)
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Fig. 6. The overall votes of the shots declared as the scene boundaries
from multiple independent Markov chains. The red circles represent
the shots that are declared as the final scene boundary locations,
which correspond to the local maxima in the overall vote plot.

which is the average similarity value of the sub-block in the
similarity mapM starting from rowa to row b. It is intuitive
that the correct segmentation of the video gives the diagonal
blocks to reach the maximum likelihood. To compute the
overall likelihood, substitute Eq.14 into Eq.10. Up to this
point, the overall likelihoodL(y|θk), the conditional prior
p(θk|k) and the model priorp(k) are determined. Therefore,
the acceptance for the proposal updates are decided by the
ratio test described in the MCMC algorithm.

3) System Performance:The proposed method has been
tested on four home videos with 23 scenes. These scenes were
recorded with various environmental settings. Each scene is
composed of multiple video shots. Some of them are indoor
scenes (Scenes (c,e) in Fig.4), while others are outdoor scenes
(Scenes (a,b,d) in Fig.4). Furthermore, the videos were taken
in different styles. Some scenes were recorded from the hand-
held cameras (Scenes (a,c,d) in Fig.4). Some were recorded by
spy camera hidden in the bag (Scene (e) in Fig.4), and others
were recorded by the camera mounted on the ground vehicles
(Scene (b) in Fig.4).

It is well known that samples generated from a single
Markov chain may not result in the accurate solution. Rather,
the solution generated from a single chain may be in the
neighborhood of the true solution. To overcome this problem,
we independently execute multiple Markov chains. The results
from each individual chain provide the votes for the shots that
have been declared as the scene boundaries. After certain runs,
the shots with the locally highest votes represent the final scene
boundaries. Fig.6 shows the overall votes of the scene shots
being declared as scene boundaries from all runs, and the red
circles represent the local maxima, which correspond to the
true boundaries. Even though one single chain may not provide
the correct result, there is an issue of the posterior probability
reaching the “confidence” level. This is referred as the “burn-
in” period. As shown in Fig.7, after certain iterations, the
posterior probability reaches a level and stays there with only
minor fluctuations. For this particular testing video, the “burn-
in” time is short due to the small size of the data (number of
shots). A simplified version of the iteration process is shown
in Fig.8.

The matches between the ground truth data and the seg-
mented scenes are based on the matching of their starting
boundaries. For a given home video withn scenes, let
{t1, t2, ..., tn} denote the starting shots of the reference scenes
and {s1, s2, ..., sk} denote the starting shots of the detected

(a). Plot of the posterior probability

Po
st

er
io

r
Pr

ob
ab

ili
ty

(b). Plot of the model prior, p(k).

λ=3.5

M
od

el
Pr

io
r

Iterations

Iterations

Fig. 7. (a). The plot of the posterior probability of the parameter
estimation during a single Markov chain (run). As demonstrated in the
figure, after certain iterations, the posterior reaches to a “confidence”
level and stays there with minor fluctuations. It should be noted that
if the data size (number of shots in our application) is small, the
process reaches this level quickly. (b). The plot of the model prior
for the number of the scenes,k, where the model mean,λ, is set
to be 3.5. The horizontal axis in both plots represents the number
of iterations. At the end of the process, plot (a) gives the posterior
probability of the parameters given the video data, and plot (b) gives
the information on the number of scenes,k.
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Fig. 8. Demonstration of a simplified MCMC iteration process. We
show ten updates during a single run. The red boxes represent the
detected scenes that do not match with the true boundaries, while
the blue boxes show the detected scenes matched with the ground
truth. The sample video contains 19 shots, which are initially split
into two arbitrary scenes (1). After a series of updates, including shift
(6), merge (2,7,9) and split (3,4,5,8,10), the final detected scenes (10)
match with the true boundary locations. As illustrated in the figure,
the scenes are eventually “locked” with the bright diagonal blocks in
the similarity map.

scenes. Sceneti is declared as matched if one of the detected
scenessj has the same starting shot.

Two accuracy measures are used to measure the system
performance: precision and recall,

Precision =
X

A
, Recall =

X

B
, (15)

whereX is the number of the correct matches between the
system detections and the ground truth scenes;A is the total
number of the system detections;B is the total number of the
ground truth references. The detailed precision/recall measures
are shown in Table I. If the matches in all of the videos are
treated equally important, the overall precision and recall are
0.840 and 0.913, respectively.

To further demonstrate the effectiveness of the proposed
method, we also compare our system output with the results
generated by one of the previously developed methods. As
the most relevant technique to our scenario, we choose the
Backward Shot Coherence (BSC)approach proposed in [23].
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TABLE I

ACCURACY MEASURES OF FOUR HOME VIDEOS. INSERTION IS THE

NUMBER OF THE OVER SEGMENTATION(FALSE POSITIVES), AND

DELETION IS THE NUMBER OF THE MIS-DETECTIONS(FALSE NEGATIVES).

Measures clip1 clip2 clip3 clip4

Length 12:42 06:53 07:31 17:53
Num. of Shot 47 16 19 25
Num. of Scenes 8 5 5 5
Detected Scenes 8 5 5 7
Match 7 5 5 4
Insertion 1 0 0 3
Deletion 1 0 0 1
Precision 0.875 1.000 1.000 0.571
Recall 0.875 1.000 1.000 0.800

TABLE II

COMPARISON BETWEEN THE PROPOSEDMARKOV CHAIN MONTE CARLO

(MCMC) METHOD AND THE Backward Shot Coherence (BSC)[23]. THE

OVERALL PRECISION AND RECALL ARE COMPUTED AS EVERY SCENE IN

ALL VIDEOS IS EQUALLY IMPORTANT. THE LAST COLUMN SHOWS THE

NUMBER OF THE REFERENCE SCENES IN EACH CLIP.

Measures MCMC BSC Reference

Clip1 Detection 8 7 8
Clip1 Match 7 4 -
Clip2 Detection 5 4 5
Clip2 Match 5 4 -
Clip3 Detection 5 6 5
Clip3 Match 5 4 -
Clip4 Detection 7 7 5
Clip4 Match 4 4 -

Total Detection 25 24 -
Total Match 21 16 -
Total Insertion 4 8 -
Total Deletion 2 7 -

Overall Precision 0.840 0.667 -
Overall Recall 0.913 0.696 -

The BSC approach is a two-pass algorithm, which first seg-
ments the video into initial scenes using the color consistency
and then merges them based on the similarity between their
motion contents. In the home videos, the same recorder
often exhibits similar motion of the camera. Furthermore,
unlike other domains, motion content in home videos is less
meaningful and not distinctive across the scenes. Based on the
experimental observations, results obtained using both passes
in the BSC algorithm are the same as the results obtained using
only its first pass, which generates the scene segments using
the color information. Since only the visual information is
useful in our application, we compare the system performance
between the results generated by the proposed MCMC method
and the BSC method for the sake of fairness. The comparison
results are shown in Table II.

B. Feature Films

To demonstrate the generality of the proposed framework,
we have also tested the proposed system on three feature films:
Gone in 60 Seconds, Dr. No - 007andMummy Returns.

1) Feature Selection:Based on the definition provided by
the Webster dictionary [15], a movie scene is one of the
subdivisions of a play, or it presents continuous actions in

(b) Plot of the shot length in the movie. 

(a) Representative frames of example scenes in the movie

(c) Plot of the visual content in the movie. 

[1] [2] [3] [4] [5]

(d) PDFs of the 2D normal distributions of first five scenes. 

Fig. 9. (a). Representative frames of some example scenes in the
movie Gone In 60 Seconds; (b). Plot of the shot length variable; (c).
Plot of the visual disturbance feature. Usually, the shots with shorter
length are accompanied by higher level of visual disturbance. The
green bars represent the scene boundaries in the movie, which were
detected by the proposed method; (d). PDF plots on the 2D normal
distribution of the first five scenes in the movie. The distribution
parameters, mean and covariance, are different across the scenes.

one place. The movie scenes are composed according to the
film grammar, which is a set of rules about how the movies are
produced. In a scene, the shots often exhibit similar patterns,
which can be reflected by the low-level features. For example,
in action scenes, the shots are generally short in length, and the
visual content, which indicates the activity level of the scene,
changes rapidly. On the other hand, in drama scenes, the shots
are much longer, and the visual content is relatively consistent.
For feature films, we use these two features computed from
the movies, shot length and visual content, to group the
semantically coherent shots into scenes. Letls denote the
length of shots andvs be the visual content in that shot. The
shot length represents the pace of the movie, and the visual
content shows how much is going on in the shot. The visual
content is defined as,

vs =
1

Ns

Ns∑

i=1

(1−HistInter(fi, fi+1)), (16)

whereHistInter(fi, fi+1) is the color histogram intersection
between thei-th and(i + 1)-th frames, andNs is the number
of frames in shots. The plots of the shot length and the visual
content are shown in Fig.9. These two features are used in the
construction of the data likelihood.

2) Likelihood Computation:In the film production, the
patterns for different features are related to each other. For
instance, in action scenes, the short shots are accompanied by
high degree of visual content. Therefore, the featuresls andvs

should not be considered independent of each other. We use a
two-dimensional normal distribution to model the features in
a sceneSm,

N(gs, m) =
1√
2πS

exp

(
− (gs − ĝm)T G−1(gs − ĝm)

2

)
, (17)
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TABLE III

ACCURACY MEASURES FOR THREE FEATURE MOVIES.

Measures Gone in 60 Seconds Dr. No - 007 Mummy Returns

Length 01:46:09 01:30:55 01:45:33
Num. of Frames 152665 130811 151802
Num. of Shot 2237 677 1600
Num. of Scenes 29 17 18
Detected Scenes 25 20 18
Match 24 14 15
Insertion 1 3 3
Deletion 5 6 3

Precision 0.960 0.700 0.833
Recall 0.828 0.824 0.833

where gs is the feature vector[ls vs]T . The vector ĝm is
computed as the sample means for the entire sceneSm,
and G is the covariance matrix with determinantS. Again,
by considering the shots to be recorded independently, the
likelihood in each sceneSm is,

L(ym|fm) =
( nm∏

s=1

N(gs,m)
) 1

nm
. (18)

We substitute Eq.18 in Eq.10, and perform the ratio test for
the acceptance decisions. Similar argument is applied here for
taking the geometric mean as in Eq.10.

3) System Performance:We have experimented our ap-
proach on three feature-length films:Gone in 60 Seconds,
Dr. No - 007 and Mummy Returns. Each movie contains
thousands of shots. The matching follows similar procedure
as used in Section III-A.3. However, the matching technique
is slightly different. In movies, there usually is not a concrete
or clear boundary between two adjacent scenes due to editing
effects. Movie chapters are sometimes changed with a smooth
transition. Therefore, matching based on the boundaries is
not meaningful and often returns incorrect measures. Instead,
we use a “recovery” method. Suppose there is a set of the
reference scenes{T1, T2, ..., Tn} and a set of the detected
scenes{S1, S2, ..., Sk}. A reference sceneTm is said to be
“recovered”, if a majority of this scene (> 50%) overlaps
one of the detected scenes. The “recovery” is a one-to-one
correspondence, i.e., one reference scene can only be matched
with at most one detected scene, and one detected scene can
cover at most one reference scene. The scene matching for the
movieMummy Returnsis shown in Fig.10. In this example, we
consider the chapters provided by the DVD as the ground truth
scenes. The key-frames of both the ground truth scenes and the
detected scenes are presented. Again, we use the precision and
recall measures defined in Section III-A.3 for the performance
evaluation. Detailed results for movie scene segmentation are
shown in Table III.

IV. D ISCUSSIONS

The idea of thecentral conceptis also applicable to other
video domains. For example, in television talk shows, one
major distinction between the commercials and the real TV
talk shows is that, in the talk shows there often exists a
repeating pattern between the host and the guest, which the
commercials do not possess. The feature to distinguish this
central conceptinvolves the number of the repeating shots in

the segment. Another example is the news video segmentation.
In this task, each news segment is composed of the shots
that are coherent to a certain news focus. Non-news segments
include commercials, lead-in/out, reporter chit-chatting, etc.
The text information, closed captions (CC) and automatic
speech recognition (ASR) output, can be used as the features
for constructing the posterior distribution. In this case, the
semantic relations between the key-words appearing in the
shots can be analyzed. Shots that have the same news focus
should possess similar distributions of the key-words. The
MCMC framework can find the places where the distributions
of the key-words change to detect the scene boundaries.

There is another temporal segmentation process on the
lower-level video structure, which is commonly known as the
shot boundary detection. Shot level segmentation and the scene
segmentation have their similarities and differences. A shot
is defined as a series of continuous frames with consistent
background settings. This assumption naturally leads to the
color consistency constraints, and it does not refer to any
high level semantic meanings. On the other hand, scene
segmentation involves more semantic coherence. For example,
in home videos, shots within the same scene are coherent to
each other in terms of the same events or the same physical
sites. In feature films, shots in the same scene are related to the
same sub-theme of the movie story line. In both the cases, the
color similarity constraint is insufficient for the segmentation.
The high-level semantics are often bridged by analyzing the
patterns of other types of low-level features, like video pace
and the visual content in the films or the narration in the news
programs.

V. CONCLUSIONS

In this paper, we have presented a general statistical frame-
work for the temporal scene segmentation of videos. We
have solved the scene segmentation task by automatically
determining the places where thecentral conceptchanges.
A target distribution of the model parameters, including the
number of scenes and their corresponding boundary locations,
is constructed to model the probabilities of the video shots
being declared as the scene boundaries, and the solution
is achieved by performing the sampling from this target
distribution using the Markov chain Monte Carlo (MCMC)
technique. In the iterative process of MCMC, the posterior
probability is computed based on the model prior, conditional
prior and the data likelihood given the parameters, and the
updates are determined based on the posterior probabilities and
the transition probabilities. The method has been applied to
several home videos and three feature films, and high accuracy
measures have been obtained (Tables I, II and III).
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War by Scorpion King
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Digging the Mummy

Back Home
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Fig. 10. Matching of the scenes for the movieMummy Returns. It shows the key-frames of the ground truth scenes that are obtained from
the DVD chapters and the key-frames of the detected scenes. The key-frames of the ground truth scenes are accompanied with their titles.
The matches scenes are shown with their key-frames aligned. Pairs with blank spaces are the mis-matches, i.e., insertions and deletions.

REFERENCES

[1] B. Adams, C. Dorai, S. Venkatesh, “Novel Approach to Determining
Tempo and Dramatic Story Sections in Motion Pictures”,International
Conference on Image Processing, 2000.

[2] A. Amir, M. Berg, S.F. Chang, G. Iyengar, C.Y. Lin, A Natsev, C. Neti, H.
Nock, M. Naphade, W. Hsu, J. Smith, B. Tseng, Y. Wu, and DQ Zhang,
“IBM Research TRECVID 2003 Video Retrieval System”,TRECVID
2003, 2003.

[3] A. Aner and J.R. Kender, “Video Summaries Through Mosaic-Based Shot
and Scene Clustering”,European Conference on Computer Vision, 2002.

[4] L. Chaisorn, T-S. Chua and C-H. Lee, “The Segmentation of News Video
Into Story Units”, International Conference on Multimedia and Expo,
2002.

[5] F. Dellaert, S.M. Seitz, C.E. Thorpe and S. Thrun, “EM, MCMC, and
Chain Flipping for Structure from Motion with Unknown Correspon-
dence”,Machine Learning, special issue on Markov chain Monte Carlo
methods, 50, pp. 45-71, 2003.

[6] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions,
and Bayesian Restoration of Images”,IEEE Transations on Pattern
Analysis and Machine Intelligence, Vol.6, pp.721-741, 1984.

[7] P. Green, “Reversible Jump Markov Chain Monte Carlo Computation and
Bayesian Model Determination”,Biometrika, 82, 711-732, 1995.

[8] U. Grenander and M.I. Miller, “Representation of Knowledge in Complex
Systems”,Journal of Royal Statistical Society, Series B, Vol.56, No.4,
1994.

[9] B. Gunsel, A. Ferman and A. Tekalp, “Temporal Video Segmentation
Using Unsupervised Clustering and Semantic Object Tracking”,Journal
of Electronic Imageing, Vol.7, No.3, 1998.

[10] F. Han, Z.W. Tu and S.C. Zhu, “Range Image Segmentation by an
Effective Jump-Diffusion Method”,IEEE Transaction on Pattern Analysis
and Machine Intelligence, Vol.26, No.9, 2004.

[11] A. Hanjalic, R.L. Lagendijk, and J. Biemond, “Automated High-Level
Movie Segmentation for Advanced Video-Retrieval Systems”,Circuits
and Systems for Video Technology, Vol.9, Issue.4, 1999.

[12] W.K. Hasting, “Monte Carlo Sampling Methods Using Markov Chains
and Their Applications”,Biometrika, 57:97-109, 1970.

[13] K. Hoashi, M. Sugano, M. Naito, K. Matsumoto, F. Sugaya and Y.
Nakajima, “Shot Boundary Determination on MPEG Compressed Domain
and Story Segmentation Experiments for TRECVID 2004”,TREC Video
Retrieval Evaluation Forum, 2004.

[14] W. Hsu and S.F. Chang, “Generative, Discriminative, and Ensemble
Learning on Multi-Model Perceptual Fusion Toward News Video Story
Segmentation”,International Conference on Multimedia and Expo, 2004.

[15] http://www.m-w.com.
[16] O. Javed, S. Khan, Z. Rasheed, and M. Shah, “Visual Content Based

Segmentation of Talk and Game Shows”,International Journal on
Computer Applications, 2002.

[17] Z. Khan, T. Balch and F. Dellaert, “An MCMC-Based Particle Filter
for Tracking Multiple Interacting Targets”,European Conference on
Computer Vision, 2004.

[18] J.R. Kender and B.L. Yeo, “Video Scene Segmentation Via Continuous
Video Coherence”,International Conference on Computer Vision and
Pattern Recognition, 1998.

[19] R. Lienhart, S. Pfeiffer, and W. Effelsberg, “Scene Determination Based
on Video and Audio Features”,International Conference on Multimedia
Computing and Systems, 1999.

[20] Y. Li, S. Narayanan, C.-C. Jay Kuo, “Movie Content Analysis Indexing
and Skimming”,Video Mining, Kluwer Academic Publishers, 2003.

[21] C.W. Ngo, H.J. Zhang, R.T. Chin, and T.C. Pong, “Motion-Based Video
Representation for Scene Change Detection”,International Journal on
Computer Vision, 2001.

[22] D.B. Phillips and A.F.M. Smith, “Bayesian Model Comparison via Jump
Diffusion”, Markov Chain Monte Carlo in Practice, Chp.13, Chapman
and Hall 1995.

[23] Z. Rasheed, M. Shah, “Scene Detection In Hollywood Movies and
TV Shows”, International Conference on Computer Vision and Pattern
Recognition, 2003.

[24] J. Senegas, “A Markov Chain Monte Carlo Approach to Stereovision”,
European Conference on Computer Vision, 2002.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. Y, 2005 11

[25] H. Sundaram and S.F. Chang, “Video Scene Segmentation Using Video
and Audio Features”,International Conference on Multimedia and Expo,
2000.

[26] W. Tavanapong and J.Y. Zhou, “Shot Clustering Techniques for Story
Browsing”, IEEE Transactions on Multimedia, Vol.6, No.4, August 2004.

[27] Z.W. Tu and S.C. Zhu, “Image Segmentation by Data Driven Markov
Chain Monte Carlo”,IEEE Transaction on Pattern Analysis and Machine
Intelligence, Vol.24, No.5, May 2002.

[28] M. Yeung, B. Yeo, and B. Liu, “Segmentation of Videos by Clustering
and Graph Analysis”,Computer Vision and Image Understanding, vol.71,
no.1, pp. 94-109, July 1998.

[29] M.M. Yeung, B.L. Yeo, W. Wolf and B. Liu, “Video Browsing Using
Clustering and Scene Transitions on Compressed Sequences”,SPIE
Conference on Multimedia Computing and Networking, 1995.

[30] Y. Zhai and M. Shah, “A Multi-Level Framework for Video Shot Struc-
turing”, International Conference on Image Analysis and Recognition,
2005.

[31] Y. Zhai, Z. Rasheed and M. Shah, “University of Central Florida at
TRECVID 2003”,TREC Video Retreival Evaluation Forum, Gaithersburg,
Maryland, 2003.

[32] H.J. Zhang, J. Wu, D. Zhong and S.W. Somaliar, “An Integrated System
for Content-Based Video Retrieval and Browsing”,Pattern Recognition,
Vol.30, No.4, 1997.

[33] S.C. Zhu and A.L. Yuille, “Region Competition: Unifying Snakes,
Region Growing, and Bayes/MDL for Multiband Image Segmentation”,
IEEE Transations on Pattern Analysis and Machine Intelligence, Vol.18,
No.9, pp.884-900, 1996.

Yun Zhai received his BS in Computer Science
from the Bethune-Cookman College (B-CC), Day-
tona Beach, Florida, in 2001. He is currently a Ph.D.
candidate at the School of Computer Science at the
University of Central Florida (UCF). His research
interests include computer vision, multimedia pro-
cessing and video indexing and retrieval. The current
emphasis of his work is on the content-based image
and video retrieval. He is a student member of IEEE.

Mubarak Shah is a professor of Computer Science,
and the founding director of the Computer Vision
Laboratory at University of Central Florida (UCF),
is a researcher in computer vision. He is a co-
author of two books Video Registration (2003) and
Motion-Based Recognition (1997), both by Kluwer
Academic Publishers. He has supervised several
Ph.D., M.S., and B.S. students to completion, and
is currently directing twenty Ph.D. and several B.S.
students. He has published close to one hundred and
fifty papers in leading journals and conferences on

topics including activity and gesture recognition, violence detection, event
ontology, object tracking (fixed camera, moving camera, multiple overlapping
and non-overlapping cameras), video segmentation, story and scene segmen-
tation, view morphing, ATR, wide-baseline matching, and video registration.
Dr. Shah is a fellow of IEEE, was an IEEE Distinguished Visitor speaker
for 1997-2000, and is often invited to present seminars, tutorials and invited
talks all over the world. He received the Harris Corporation Engineering
Achievement Award in 1999, the TOKTEN awards from UNDP in 1995, 1997,
and 2000; Teaching Incentive Program award in 1995 and 2003, Research
Incentive Award in 2003, and IEEE Outstanding Engineering Educator Award
in 1997. He is an editor of international book series on “Video Computing”;
editor in chief of Machine Vision and Applications journal, and an associate
editor Pattern Recognition journal. He was an associate editor of the IEEE
Transactions on PAMI, and a guest editor of the special issue of IJCV on
Video Computing.


