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Human Action Recognition in Videos Using
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Learning
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Abstract —We propose a set of kinematic features that are derived from the optical flow, for human action recognition in videos. The set
of kinematic features include divergence, vorticity, symmetric and anti-symmetric flow fields, second and third principal invariants of flow
gradient and rate of strain tensor, and third principal invariant of rate of rotation tensor. Each kinematic feature, when computed from
the optical flow of a sequence of images, gives rise to a spatio-temporal pattern. It is then assumed that the representative dynamics
of the optical flow are captured by these spatio-temporal patterns in the form of dominant kinematic trends or kinematic modes. These
kinematic modes are computed by performing Principal Component Analysis (PCA) on the spatio-temporal volumes of the kinematic
features. For classification, we propose the use of multiple instance learning (MIL), in which each action video is represented by a bag
of kinematic modes. Each video is then embedded into a kinematic mode-based feature space and the coordinates of the video in
that space are used for classification using the nearest neighbor algorithm. The qualitative and quantitative results are reported on the
benchmark data sets.

Index Terms —Action Recognition, Motion, Video Analysis, Principal Component Analysis, Kinematic Features.
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1 INTRODUCTION

THE recognition of human-induced actions in videos
is considered an important problem in the field

of computer vision. This is due, in part, to the large
number of potential applications of action recognition in
areas of visual surveillance, video retrieval, sports video
analysis, human-computer interfaces, and smart rooms.
A popular approach pursued by vision researchers for
action recognition is to utilize the motion of the human
actor, where the motion is quantified in terms of the
optical flow computed from the sequence of images
depicting the action ([17], [18], [28], [29]).

Since motion is an important source of information
for classifying human actions, in this paper we have de-
scribed a set of kinematic features that are derived from
the optical flow for representing complex human actions
in videos. The idea behind the introduction of kinematic
features is to convert optical flow information into a
more discriminative representation that can improve the
motion-based action classification. The proposed kine-
matic features are: divergence, vorticity, symmetric and
anti-symmetric optical flow fields, second and third prin-
cipal invariants of flow gradient and rate of strain tensor,
and third principal invariant of rate of rotation tensor.
Each feature was selected to capture a different aspect
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of optical flow. For instance, divergence delineates the
regions of optical flow that are undergoing expansion
due to the movement of different limbs of the human
body, while the vorticity feature emphasizes regions of
optical flow that are undergoing circular motion.

Each kinematic feature, when computed from the
optical flow of a sequence of images, gives rise to a
spatio-temporal pattern. In order to reduce this three-
dimensional information into a more manageable two-
dimensional form, it is assumed that the representative
dynamics of the optical flow are captured by these
spatio-temporal patterns in the form of dominant kine-
matic trends or kinematic modes. These kinematic modes
are computed by performing Principal Component Anal-
ysis (PCA) on the spatio-temporal volumes of the kine-
matic features. Traditionally, the PCA is performed di-
rectly on the optical flow data, i.e., on the u and v
components of the optical flow which provides only a
limited description of the flow dynamics. However, we
capture the dominant dynamics of the optical flow by
performing PCA directly on the kinematic features that
are extracted from the optical flow, rather than on the
optical flow itself.

Next, we used the identified kinematic modes of each
kinematic feature for the classification of human actions.
To do this, we used the multiple instance learning (MIL)
approach proposed in [2]. The idea of MIL is to represent
each action video as a collection or a “bag” of kinematic
modes in which each kinematic mode is referred to as
an instance representing that video. In machine learning,
MIL is proposed as a variation of supervised learning
for problems with incomplete knowledge about labels of
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Fig. 1. Description of the process of representing a video in terms of modes of kinematic features. 1) A video containing
an action is the input to the first step, which computes the optical flow between consecutive frames of the video and
produces a stack of optical flow fields. 2) This stack of optical flow fields is the input to the second step, which computes
the kinematic features and produces a separate, spatio-temporal volume for each feature. 3) The third step takes the
volume of each kinematic feature as an input, performs the PCA, and produces the kinematic modes. 4) Finally, the
video is represented as a bag of kinematic modes pooled from of all the kinematic features. This bag is then used to
conduct the feature space embedding of the video.

training examples. In supervised learning, every training
instance is assigned a discrete or real-valued label. In
comparison, in MIL the labels are assigned only to bags
of instances. In the binary case, a bag is labeled positive
if at least one instance in that bag is positive, and the bag
is labeled negative if all the instances in it are negative.
There are no labels on the individual instances. The goal
of MIL is to classify unseen bags or instances by using
the labeled bags as the training data [2]. We preferred
to use MIL because it provides flexibility in picking the
number of kinematic modes used to represent the action.
This is important because a complex action may require
more kinematic modes to represent its dynamics than a
simple action.

1.1 Algorithmic Overview

We provide an algorithmic overview of the proposed
action recognition methodology in this section. The aim
is to clarify the algorithm by breaking it down into
logical blocks. A pictorial visualization of these logical
blocks is provided in Figure 1.

Given a video containing an action, the steps in-
volved in creating the corresponding bag of kinematic
modes are: 1) computation of optical flow between
consecutive pairs of frames of the video resulting in a
three-dimensional stack of optical flow fields, where the
third dimension is time; 2) computation of the above-
mentioned kinematic features from this stack of optical

flow fields, which results in a spatio-temporal volume
for each kinematic feature; 3) computation of the dom-
inant kinematic modes of each kinematic feature by
performing PCA. The PCA is performed separately on
each volume, where the temporal correlation between
the slices of the volume is used to create a temporal
correlation matrix or kernel matrix; 4) computation of
eigen vectors of the kernel matrix. The eigen vectors
correspond to the dominant modes of the optical flow
in terms of the dynamics, rather than energy, and are
referred to as “kinematic modes;” and 5) representation
of the video as a bag of kinematic modes by pooling the
kinematic modes from all the kinematic features. This
bag of kinematic modes is used later to perform the
feature space embedding of each video. (See Section 5
and Figure 7 for further details.) The process is repeated
for all the videos in the data set.

The contributions of this work are:

• A set of kinematic features that can be used to
extract different aspects of motion dynamics present
in the optical flow. Collectively, these features have
not been used in the context of action classification
to the best of our knowledge.

• Computation of the dominant PCA basis in terms
of the dynamics of the optical flow field instead of
the optical flow field itself.

• A multiple-instance learning for the classification of
action videos.
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The rest of the paper is organized as follows. Section
2 covers the literature in the area of human action
and activity analysis. Section 3 introduces the kinematic
features. Section 4 explains the computation of kine-
matic modes. The MIL-based classification algorithm
is presented in Section 5. The experimental results are
discussed in Section 6.

2 RELATED WORK

Human action and activity recognition is an important
area of research in the field of computer vision. A
comprehensive review of the research in this area has
been presented in a number of survey papers ([13], [14],
[15]). In this section, we have limited our discussion to
some of the most influential and relevant parts of the
literature.

In general, approaches for human action and activity
analysis can be categorized on the basis of representation.
Some leading representations include learned geomet-
rical models of human body parts, space-time pattern
templates, appearance or region features, shape or form
features, interest-point-based representations, and mo-
tion/optical flow patterns. In next few subsections, we
discuss these representations and present a brief sum-
mary of the associated work.

2.1 Appearance-based Representations

In the past, representations based on appearance features
were popular. The general methodology was to learn
the appearance model of the human body or hand and
match it explicitly to images in a target video sequence
for action and gesture recognition ([11], [12], [21]). The
temporal aspects of an action or gesture were handled by
training Hidden Markov Models (HMM) and their dif-
ferent variants. The appearance-based approach works
well for gesture recognition, since the appearance of
the human hand remains relatively consistent from one
actor to another. However, actions involving the whole
human body are difficult to handle due to changes in the
clothing from one actor to another. Recent work by Jiang
et al. ([20]) also used appearance-based representation
for action recognition in images by searching for static
postures using the appearance of the whole human body
or parts of the body.

2.2 Shape-based Representations

The popular shape-based representations include edges
([19]) and silhouettes of the human body ([22]). The fun-
damental idea behind shape-based representation is that
an action consists of a series of poses that are detectable
from a single frame. Each pose can be encoded using the
shape features, and single frame recognition can be ex-
tended to multiple frames for robust action recognition.
Silhouette-based representation was extended recently
to characterize the outline of an actor’s body through
space and time ([3], [4]). This is done by stacking the

individual silhouettes detected in each frame, giving
rise to a three-dimensional volume. Yilmaz et al. ([3])
used the surface properties of this volume for action
recognition, while Blank et al. ([4]) used the solution of
the Poisson equation to extract space-time features of the
volumes. These approaches have demonstrated robust
performance on a number of actions. Note that work by
[3] and [4] can also be categorized under a volume-based
representation.

2.3 Volume-based Representations

The approaches based on volumetric analysis of video
for action recognition include [3], [4], [5], and [6]. Ke
et al. ([5]) extended the two-dimensional Haar features
to three dimensions and learned a cascade of boosted
classifiers, while Shechtman et al. ([6]) employed a three-
dimensional correlation scheme to match the actions in
a video volume. Mahmood et al. ([23]) also used volume
representation for action recognition. Recently, Scovanner
et al. [25] and Liu et al. [24] used quantized vocabularies
of volumetric features that are computed using the three-
dimensional SIFT (Scale Invariant Feature Transform)
descriptor [26][25]. One benefit of the volume-based ap-
proach is that there is no need to build complex models
of body configuration and kinematics, and recognition
can be performed directly from the raw video.

2.4 Interest-Point-based Representations

Another important direction of research which has
gained a lot of interest recently is the use of space-
time interest points and their trajectories for action
and activity analysis. Works by Laptev et al. ([33][34]),
Oikonomopoulousm et al. ([35], [36]), Niebles et al. ([9]),
Schuldt et al. ([37]), and Dollar et al. ([10]) belong to
this class. The main strength of this representation is the
robustness to occlusion, since there is no need to track
or detect the whole human body.

2.5 Optical Flow-based Representations

Features based on motion information and optical flow,
which are more relevant to our work, have been used by
a number of researchers ([32], [28], [16], [17], [29], [30]).
For instance, Bobick et al. [7] introduced motion energy
image (MEI) as a way of describing the cumulative spa-
tial distribution of motion energy in a given sequence.
This description of motion is then matched against the
stored models of the known actions. The MEI descriptor
was later augmented by motion history image (MHI)
in [8], where each pixel intensity in MHI is described
as a function of motion energy. Recently, Weinland et
al. ([27]) extended this representation to handle different
viewpoints. In optical flow-based approaches ([28], [31],
[17], [18], [30]), the idea is to directly use the optical flow
to derive a representation which can be used for recog-
nition. Little et al. ([28], [31]) used spatial distribution of
the magnitude of the optical flow to derive model-free
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features, while Ju et al. ([16]), Yacoob et al. ([17]), and
Black et al. ([18]) proposed PCA-based analysis of optical
flow for facial motion and expression recognition. Also
Arbel et al. ([30]) performed PCA on optical flows that
were generated by moving around a target object on a
view sphere. The resulting representation was used for
object recognition.

In [29], Hoey et al. used a Zernike polynomial basis
to represent optical flow. The Zernike polynomial basis
forms a complete orthogonal basis over a unit circle and
can be used as a compact representation of optical flow.
However, there is an inherent limitation in the precision
of the computation of the Zernike polynomial because
it is necessary to map the data to a circular domain.
In addition, the Zernike polynomial forms an infinite
basis, therefore precision is affected by the number of
bases one selects to represent the data. Furthermore, the
Zernike polynomial decomposes the optical flow and
not the kinematics of the optical flow, which is one
of the major difference between our work and that of
Hoey et al. [29]. The features proposed in this work
first try to capture the kinematics of the optical flow
and then are decomposed into dominant modes using
PCA. Therefore, the nature of the information captured
by the work of [29] is different from ours. Additionally,
in their method coefficient of Zernike polynomials were
computed separately for each optical flow field of the
video. These coefficient were tied together by training
a HMM to handle the temporal aspect of an action.
However, in our method we are computing only one
set of kinematic basis per feature per video. These basis
vectors directly capture the dominant temporal aspects
of the action without any explicit subsequent temporal
modeling using HMM.

In summary, our proposed framework is different
from the optical flow-based representations in three im-
portant ways. First, we propose a new set of kinematic
features for capturing the dynamics information hidden
within a flow field. Second, we capture the kinematic
modes of optical flow using the PCA, thereby enriching
the traditional approaches of [17] and [18] which capture
only the energetic modes of the optical flow. Third,
we compute dominant kinematic modes present within
the 3D volume of a kinematic feature by employing a
temporal correlation between slices of the volume, while
the works of [17] and [18] require multiple instances of
the volume for the computation of optical flow modes.
In addition, we perform classification by treating each
action as a bag of kinematic modes in an MIL frame-
work.

In the next section, we present details of proposed
kinematic features and elaborate on their computation
from the optical flow.

3 K INEMATIC FEATURES

The proposed set of optical flow features is based on
kinematics. The term “kinematics” emphasizes that these

features are independent of forces acting on the object or
mass of the object and only capture motion information.
This property can be useful for recognizing action as
it makes the representation independent of the physical
features of the subject performing the action.

In order to compute the kinematic features, we start
by computing the optical flow of a given video using a
block-based correlation algorithm. Let U(x, ti) represent
the flow vector (u, v) at pixel location x = (x, y) at
time ti. It is computed by selecting a square inter-
rogation block centered at the same pixel location in
two consecutive frames Fti

and Fti+1 of the sequence.
Pixel values in both blocks are mean normalized and
a correlation surface is obtained by performing cross
correlation in the frequency domain. Peaks are located
on the correlation surface and are used to compute the
displacement of the pixel. The process is repeated for
all possible blocks in the image. As a post-processing
step, local outliers are removed by applying adaptive
local median filtering and removed vectors are filled by
interpolation of the neighboring flow vectors. The size
of the block employed in our experiments is 16 × 16
pixels. The process is repeated for all frames, i.e. for
ti, i = 1, . . . , M , to generate a stack of optical flows
for the video. The optical flow fields computed by this
algorithm for two different actions are shown in Figure
2. Note that this approach has been used to analyze fluid
flows obtained by particle image velocimetry [39].

Now we describe the proposed kinematic features
and the steps involved in their computation. We use
the symbol F = (f1, f2, . . . , fp) to represent the set
of kinematic features, where superscript p is the index
of the kinematic feature. The symbol f j , without any
reference to the location and time, refers to the spatio-
temporal volume of j-th kinematic feature. f j(x, ti) is
used to refer to the value of the j-th kinematic feature
at pixel location x at frame ti. When referring to the
kinematic features of a specific video, we use symbol
f j

c , where subscript c is the index of the video.

3.1 Divergence

Divergence of a flow field is a scalar quantity which is
defined at a point (x, ti) in space and time as:

f1(x, ti) =
∂u(x, ti)

∂x
+

∂v(x, ti)
∂y

, (1)

where ∂u(x,ti)
∂x and ∂v(x,ti)

∂y , respectively, are the partial
derivatives of u and v components of the optical flow
with respect to the x and y direction at time ti.

The physical significance of the divergence stems from
the fact that it captures the amount of local expansion
taking place in the fluid. This type of feature can be
important for discriminating between types of motions
which involve independent motion of different body
parts. For instance, in “hand-waving” action, only one
part of the body is involved, while in “bending” action
the complete upper body plays a role. These two motions
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Fig. 2. Top: Optical flow of bend action at frames 10, 20, and 50. Bottom: Optical flow of hand-waving action at frames
1, 10, and 15.

will induce different types of expansion in the flow
field. In addition, from fluid dynamics we know that
the divergence of any incompressible fluid is zero, which
implies existence of low energy in divergence fields of
actions that do not involve independent motion of body
parts. For instance, a “vertical jump” action, in which
the whole body is expected to move up without any
independent motion of arms or legs, will induce a low
divergence in the corresponding optical flow. Figure 3
shows an example of the divergence field for the “bend”
action at times t20, t30 and t45. It can be observed from
the figure that the divergence has high values around
the contours of the actor performing the action.

3.2 Vorticity

Vorticity is the measure of local spin around the axis
perpendicular to the plane of the flow field. Vorticity is
a more general concept than rotation/curl, although both
are inter-related. It can also be defined as circulation per
unit area. It is computed at a point (x, ti) as follows:

f2(x, ti) =
∂v(x, ti)

∂x
− ∂u(x, ti)

∂y
. (2)

Curl ω is related to vorticity through the relation ω = f2

2 .
Vorticity can also be used as a measure of the rigidity

in the flow. Therefore, it is useful for distinguishing
between actions that involve articulated motion and ones

that do not. In addition, it is useful for highlighting
dynamics in the flow field resulting from local circu-
lar motion of the human body or part of the body.
The “bend” action is a good example of this type of
motion, where circular motion of the body is around
the perpendicular axis passing through the torso. This
phenomenon is observable in Figure 3, where higher
values are correlated with the central region of the body,
as compared to the divergence, where higher values are
around the contour of the body. Note that for irrotational
flows f2(x, ti) = 0.

3.3 Symmetric and Asymmetric Fields

Symmetric and asymmetric fields capture the dynamics
that emphasize the symmetry or asymmetry of a human
action around a diagonal axis. This can be an important
feature for action classification as some actions represent
symmetrical motion of body parts, while others do not.
An interesting example is the action of raising the right
hand compared to raising the left hand. If the diagonal
axis is drawn from the top-left to the bottom-right of
the image, then symmetric and asymmetric kinematics
can help us in distinguishing between these two actions.
Note that divergence and vorticity will not be able
to capture this type of the symmetric and asymmetric
dynamics hidden in the input flow field.

In our formulation, symmetric and asymmetric kine-
matics of u and v components of the flow field are
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Fig. 3. Top Row: The video volume of the “bend” action and three frames from the volume. For each frame, we show
the visualization of computed kinematic features in the following rows.

computed separately, resulting in four kinematic mea-
surements in total. The symmetric kinematic features are
computed as follows:

f3(ti) = u(ti) + u(ti)∗, (3)
f4(ti) = v(ti) + v(ti)∗, (4)

where u(ti) and v(ti) represent the u and v components
of the optical flow at time ti. Here we have removed
the dependence on spatial location x to show that these
features can easily be computed by using the matrix

transpose operation. The symbol ‘∗’ denotes the trans-
pose operation. The asymmetric kinematic features are
computed as follows:

f5(ti) = u(ti)− u(ti)∗, (5)
f6(ti) = v(ti)− v(ti)∗. (6)

Figure 3 shows an example of these features computed
for the “bend” action. It should be noted that if the
kinematics are symmetric or asymmetric, the absolute
values around the diagonal axis will be high; otherwise
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the absolute values will be high on one side and low
on the other. In Figure 3, features f3 and f4 have the
high values around the diagonal, thus emphasizing the
symmetry, while features f5 and f6 have high values
on one side and low values on the other. Note that this
feature imposes a restriction on the structure of the flow
field, i.e., it has to be a square matrix. However, we
can easily overcome this problem by resizing the images
before computing the optical flow. Another solution is
to change the reference axis to vertical or horizontal.

3.4 Gradient Tensor Features
Small-scale structures present in a flow field are referred
to as “eddies”, a term taken from the literature on
turbulence phenomena in fluid flows. These structures
are characterized by large velocity gradients ([38]). In a
flow field representing human actions, these small-scale
structures arise due to small-scale motion of different
limbs. In this section, we present a few kinematic fea-
tures that take these local structures into account, and are
based on optical flow gradients which represent a better
measure of the local structure than the optical flow itself.
For this purpose, we start by computing the optical flow
gradient tensor as follows:

∇U(x, ti) =

(
∂u(x,ti)

∂x
∂u(x,ti)

∂y
∂v(x,ti)

∂x
∂v(x,ti)

∂y

)
. (7)

The gradient tensor can be considered as a 2× 2 matrix
at each spatial location x.

The kinematic features derived from the gradient
tensor are based on the concept of tensor invariants.
Tensor invariants, under full transformation group, are
scalar quantities which are the combination of the tensor
elements, and remain unchanged no matter which coor-
dinate system they are referenced in. In simple terms,
this invariant quantity can be obtained by summing, or
contracting, all the indices of a tensor in pairs, so that
no free indices remain. For example, a vector is a tensor
of rank 1 whose projections on different axes change
with the rotation of the coordinate frame; however its
length is invariant since it remains unchanged regardless
of the rotation of the coordinate system. An invariant
property is particularly useful for human actions, since
many interesting aspects of a flow field can be described
in terms of features that are coordinate invariant.

The three principal invariants of the gradient tensor
can be written as ([38]):

P (x, ti) = −trace(∇U(x, ti)),

Q(x, ti) =
1
2
(P 2 − trace(∇U(x, ti)2)),

R(x, ti) = −det(∇U(x, ti)).

The first invariant P is the trace of the gradient
tensor, which is equal to the divergence. Therefore, we
utilize only the second and third invariants as they are
providing us with new information, i.e., f7 = Q and
f8 = R. Figure 3 provides an illustration of these features
for the “bend” action.

3.5 Rate of Strain and Spin Tensor Features

The rate of strain tensor S and rate of spin tensors O can
be obtained by decomposing the flow gradient tensor as
follows:

S(x, ti) =
1
2
(∇U(x, ti) +∇U(x, ti)∗),

O(x, ti) =
1
2
(∇U(x, ti)−∇U(x, ti)∗),

where ∗ is the matrix transpose operation. These two
tensors are often used as a measure of the deformability
which occurs due to the presence of the gradients in the
flow field. Another way to look at it is that they represent
deviations from the rigid body motion. The kinematic
features from these tensors are also encoded in terms
of their principal invariants, similar to the flow gradient
tensor.

We use the second and third principal invariants of
S and only the third invariant of O. The is because the
first invariant of S is equal to the first invariant of ∇U ,
and therefore equivalent to the divergence. Similarly, the
second invariant of O is the magnitude of the vorticity
squared, which we have already taken into account.
Using subscript s and o for invariants of these tensors,
we have f9 = Qs, f10 = Rs and f11 = Ro. An example
output of these features for the “bend” action is shown
in Figure 3.

4 K INEMATIC MODES

As mentioned in the introduction, the PCA of optical
flow is limited in its description because it only cap-
tures the energy-containing structures of the flow field.
However, to get a complete description of an action, it is
important to capture the evolution of the dynamics of the
flow field in space and time, and not just the evolution
of the energy. This is critical because information about
an action often lies at the location of moving limbs and
their boundaries. Such locations may not be the most
energetic parts of the optical flow.

To provide an intuitive insight into this idea, we show
the first three dominant modes of the optical flow of
the “two hands wave” action in Figure 4 (top row).
These modes are obtained by performing PCA directly
on the two-components ((u, v)) of optical flow. It can be
observed that as the number of modes increases, smaller
energy-containing scales are exhibited. However, these
modes do not provide information about the dynamics
(e.g., rotation, expansion, symmetry, etc.) of the under-
lying optical flow. The second row in Figure 4 shows
the first three modes of divergence. It is clear that these
modes are revealing characteristics of the optical flow
not visible in the energy containing structures of the
first row. In addition, divergence with fewer modes is
able to uncover a much more complex and possibly
discriminating pattern.

Therefore, in order to capture the dynamics informa-
tion of the optical flow, we propose computing a set
of orthogonal basis in terms of its dynamics, instead
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Fig. 4. Top Row: First three modes of the optical flow field for the “two hands wave” action. Bottom Row: First three
modes of the divergence feature for the same action. It can be observed that the information extracted by these two
sets of modes is very different. The energy-containing regions of the optical flow in the top row do not reveal the finer
characteristics of the optical flow visible in the bottom row.

of its energy content. For this purpose, we perform
PCA separately on spatio-temporal volumes of each
kinematic feature described previously. Here we employ
a computationally efficient way of obtaining the orthog-
onal basis using the snapshot PCA technique ([1]). The
snapshot PCA uses a temporal autocorrelation matrix
to compute time-independent eigenvectors by utilizing
the observation that data vectors and eigenvectors span
the same linear space; therefore, eigenvectors can be
written as a linear combination of data vectors. We
would like to emphasize that the way we apply PCA on
the 3D data is different from the traditional approach.
The traditional approach involves vectorizing the 3D
information and constructing a co-variance matrix by
using multiple instances of the vectorized data. The
multiple instances of the vectorized data come from the
optical flow fields, which are computed from multiple
videos of the same action. However, in our case we want
to extract kinematic modes present within an optical
flow field of a single video, and we achieve this by
using all frames of the video to compute a temporal
autocorrelation matrix of optical flows.

4.1 Principal Component Analysis

Principal component analysis is a well-known technique
for determining an optimal basis for the reconstruction
of data. Let U(x, ti), i = 1, ...., M , represents a vectorized
sequence of experimental observations. The observation
at each ti is referred to as “snapshot” of the physical
process that it is measuring. In the context of the current
work, u(x, ti) represents the optical flow computed at
frame ti of the given video. Without any loss of gener-
ality, the time average of the observation defined by

Ū(x) = 〈U(x, ti)〉 =
1
M

M∑

i=1

U(x, ti), (8)

is assumed to be zero. Here, the symbol 〈.〉 represents
the averaging operation. The PCA then extracts the time
independent orthonormal basis φk(x) and time-dependent
expansion coefficients ak(ti), such that the reconstruction

U(x, ti) =
M∑

k=1

ak(ti).φk(x), i = 1, ...,M, (9)

is optimal in the sense that the average least squares
truncated error

εm = 〈‖U(x, ti)−
m∑

k=1

ak(ti).φk(x)‖〉 (10)

is minimum for any given number, m ≤ M , of the
basis vectors over all possible sets of orthogonal basis.
Here ‖ . ‖ is the L2-norm, where “.” denotes the
standard Euclidian inner product. The vectors φk(x) =
(φ1(x), φ2(x), . . . , φm(x)) are called the empirical eigen-
functions or dominant PCA modes of the data.

A computationally efficient implementation of PCA,
when the resolution of the spatial grid, N , is higher than
the number of observations M , is a snapshot PCA ([1]). It
is based on the observation that the data vectors, U(x, ti),
and the eigenvectors, φk, span the same linear space.
This implies that the eigenvectors can be represented as
a linear combination of the data vectors

φk =
M∑

i=1

vk
i U(x, ti), k = 1, . . . , M. (11)

The coefficients vk
i can be obtained from the solution of

Cv = λv, (12)

where v = (vk
1 , . . . , vk

M ) is the k-th eigenvector of
the above equation, and C is a symmetric M ×
M matrix defined by Cij = 1

M (U(x, ti).U(x, tj)).
Here, again “(.)” is the standard vector inner prod-
uct, i.e., (U(x, ti).U(x, tj)) = u(x1, ti)u(x1, tj) + . . . +
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Fig. 5. The dominant kinematic modes of kinematic features for the “bend” action. The volumes are obtained by
computing the kinematic features from the optical flow of the video. Three different slices are shown to emphasize the
internal structure of each volume. The dominant kinematic modes are obtained by performing PCA on these volumes,
as described in Section 4.

u(xN , ti)u(xN , tj). In this way, the eigenvectors of the
N × N matrix, R, can be found by computing the
eigenvectors of a M ×M matrix C, due to the relation
in Equation 11, which is computationally more efficient
when N À M .

The eigenvectors v are then used to compute the
dominant temporal modes present in the optical flow,
using the relation in Equation 11. Note that the com-
puted eigenvectors are time independent; however, we
can reconstruct the optical flow at any instant of time
by computing the time-dependent temporal expansion
coefficient as ak(ti) = (U(x, ti).φk(x)), i = 1, . . . , M .

4.2 Computation of Kinematic Modes

Our goal is to compute the kinematic modes represen-
tative of the dynamics of the flow field. The kinematic

modes are not always the most energetic part of the flow,
however they are essential ingredients of the spatio-
temporal patterns representing the human action.

Therefore, to obtain kinematic modes of the op-
tical flow, we compute the orthogonal basis of the kine-
matic features of the optical flow field. Theoretically,
this can be done by treating the kinematic features
f1(x, ti), f2(x, ti), . . . , f11(x, ti), as kinematic kernels for
the application of PCA. That is, we represent the kernel
matrix C used in the eigenvalue problem (Equation 12)
as:

Ck(ti, tj) =
1
M

(fk(ti).fk(tj)), (13)

where k is the index of the kinematic feature being used.
Here symbol fk(ti), without spatial dependence, refers
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Fig. 6. The dominant kinematic modes of kinematic features for the “two hands wave” action.

to the vectorized version of fk(x, ti). From this kernel
matrix we derive the time-independent eigen vectors,
or kinematic modes, and time-dependent expansion co-
efficient. Note that we are able to do this because the
newly constructed kernel matrix, Ck, satisfies the total
positivity constraint. Two examples of kinematic modes
computed in this way for the “bend” and the “hand-
wave” action are shown in Figures 5 and 6, respectively.

5 MULTIPLE INSTANCE-BASED LEARNING

The action classifier is learned using multiple instance
learning (MIL), in which each example is represented
by several feature vectors called “instances”. For the
problem at hand, this translates into representing each
action by several kinematic modes, where each kine-
matic mode is treated as an instance representing the
action. In other words, we represent each video as a
bag (collection) of kinematic modes, where the label of
the action is associated only with the bag. The goal is
then to learn the kinematic mode-based representation
of each action so that we can predict whether a new
bag represents that action or not. This is achieved by
embedding bags into a kinematic mode or instance based
feature space, and using the coordinates of the bag in that
space for classification. The fundamental idea behind
the embedding procedure is that each kinematic mode
in a training set (positive as well as negative) can be
viewed as an attribute or a feature for representing a
bag. This point will become more clear through the
following mathematical formulation of the idea based
on the nomenclature of [2].

Let B+
i = {s+f1

i1 , s+f1

i2 , s+f2

i2 , . . . , s+fk

ij , . . .} (See Figure

7) denotes the ith positive bag, and s+fk

ij represents the
jth kinematic mode in Bi. The superscript fk is used

to identify the type of the kinematic feature generating
the kinematic mode, and k ranges from k = (1, . . . , 11).
The number of total kinematic modes in B+

i is repre-
sented by n+

i , which is equal to the total number of
modes (or eigenvectors) retained across all kinematic
features for the video corresponding to B+

i . Similarly,
B−

i = {s−fk

i1 , s−fk

i2 , . . .} represents the ith negative bag
with n−i kinematic modes in it. The number of positive
and negative bags in the training set is represented by
l+ and l−, respectively.

As mentioned earlier, each kinematic mode in the
training set, regardless whether it belongs to a positive
or a negative bag, can be viewed as an attribute or
feature for generating the instance-based representation
of the bag. Therefore, we line up all the kinematic
modes from all the bags into a set C (See Figure 7)
and re-index the kinematic modes as sfk

e , where e =
{1, . . . , (

∑l+

i=1 n+
i +

∑l−

i=1 n−i )}. In other words, C =
{sf1

1 , sf1

2 , sf2

3 , . . . , sfk

j , . . . , sf10

e−2, s
f11

e−1, s
f11

e }, and contains
the kinematic modes of all kinematic features of all the
videos in the training set.

For instance, if we keep two kinematic modes per
kinematic feature per video, we will have n+

1 = 22
kinematic modes for each video as there are 11 kine-
matic features in total. Then sf1

1 ∈ C will be the first
kinematic mode of kinematic feature f1 of video B+

1 ,
while sf1

23 ∈ C (which is the 23rd element of C) will be the
first kinematic mode of kinematic feature f1 of video B+

2 .
Following this notation, the kinematic modes of negative
bags will span the range (2 × 11 × l+) + 1 to e. This is
also illustrated in Figure 7.

Since each member of sfk

e ∈ C is a feature, the
conditional probability of a feature belonging to the bag
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Fig. 7. (a) The data set consists of positive class videos from the “two hand wave” action and negative class videos
from actions ’‘run” and ’‘jump”. (b) For each video, the bag of kinematic modes is computed by performing PCA on the
kinematic features of the video. Two kinematic modes per kinematic feature are retained giving rise to 22 kinematic
modes for each video. (c) The set C is constructed by pooling all kinematic modes from all the videos in the data set.
The kinematic modes are re-indexed resulting in e = 88 modes. (d) Next, the embedding coordinate of each video is
computed. We are showing the computation process only for the first video. The values of the embedding coordinate
m(B+

1 ) are populated by computing the similarity between the kinematic modes of video B+
1 and kinematic modes in

set C using Equation 15.

B is P (sfk

e | B). Then,

[P (sf1

1 | B), P (sf1

2 | B), . . . , P (sfk

j | B), . . . , P (sf11

e | B)] (14)

determines values of all the features for the bag B. Note
that notation B without superscript + or − is used to
represent a bag when the label of the bag does not
matter. The feature space defined by the above vector is
called the “instance-based” or “kinematic mode-based”
feature space FC , where each bag is a point in this space.
Following [2], the conditional probability P (sfk

e | B) of
e-th kinematic mode sfk

e independent of the bag label

can be written as

P (sfk

e | Bi) ∝ d(sfk

e , Bi) = max
j

exp(
−‖sfj

ij − sfk

e ‖2
σ2

), (15)

∀f j = fk.

For example, the value of the z-th dimension of the
embedding coordinates for Bi is equal to the similarity
between the z-th kinematic modes in the set C, and the
closest kinematic mode of the same type from the bag
Bi. This similarity is represented by the function d in
the equation. The justification for the above equation
comes from the observation that it is the most-likely-
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cause estimator ([40]) for the cases when C is a single-
point concept class. Note that we have imposed the
additional restriction that the similarity between kine-
matic modes can only be computed if they are from the
same kinematic feature. Next, the complete embedding
coordinate m(Bi) of the bag Bi in FC is written as:

m(Bi) = [d(sf1

1 , Bi), d(sf1

2 , Bi), d(sf2

3 , Bi), . . . , d(sfk

j , Bi), (16)

. . . , d(sf11

e , Bi)]
T .

This way each action video is mapped to an e-
dimensional vector. The process of computation of the
embedding coordinate m(Bi) is illustrated in Figure 7.
Finally, the nearest-neighbor classifier is learned using
the instance space coordinates m(Bi) of bags belonging
to different actions. For visualization purposes, the coor-
dinates for different actions from the Weizmann action
data set are shown in Figure 8.
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Fig. 8. Coordinate values of the 10 actions classes of the Weiz-
mann action data set. The visual difference in the coordinate
values of these different actions in the kinematic mode-based
instance space is quite obvious.

6 EXPERIMENTS

We present an evaluation of the proposed action recog-
nition algorithm on two publicly available data sets:
the Weizmann action data set ([4]) and the KTH action
data set ([37]). Comparison is performed with other
methods that have reported their results on these data
sets. In addition, we compare the performance against
the optical flow-based classification using the Weizmann
data set. The goal of these experiments was to determine
the presence or absence of the target action in the given
video.

6.1 Weizmann Action Data Set

This data set contains 10 actions performed by 9 differ-
ent actors. The actions are running, walking, skipping,
jumping-jack,jumping forward on two legs, jumping in
place on two legs, jumping sideways, waving with two
hands and waving with one hand. This data set is a
good starting point at which to test the feasibility of
the algorithm. Originally, the data set consisted of 90

videos but we extended the number of action sequences
by further dividing the videos. Each chunk of video
contains roughly one cycle of an action. The length of the
cycle was determined by observing one video per action
and manually selecting the appropriate cycle length for
that action. The selected cycle length was then used to
divide the remaining videos of the action. We ignored
any portion of the video in which the actor was not fully
visible. This processing resulted in total of 180 videos.
Next, background subtraction was used to extract the
bounding boxes of moving actors. Each bounding box
was resized to a pre-specified size of 100 × 100 pixels.
The bounding boxes were stacked to generate the space-
time volume of the action, which was then used to
compute the optical flow. The resulting optical flow was
employed to compute all the kinematic features and
dominant kinematic modes. The number of kinematic
modes per feature was used as a parameter in the
experiments and we report results with different choices
of this parameter. Once dominant kinematic modes for
all training videos were computed, we embedded the
videos into the kinematic mode-based feature space as
described in Section 5. The value of parameter σ was
fixed at 0.7 after varying it from 0.1 to 1, because 0.7
gave the best average result across different number of
kinematic modes. Finally, the embedding coordinates of
the training videos were used to learn a nearest neighbor
classifier.

The testing was performed in a “leave-one-actor-out”
setting, where the classifier was trained using all the
videos except those corresponding to the actor in the
test video. This process was repeated many times so
each action video was treated as test video at least
once. Figure 9 shows the confusion tables of different
runs with different values of the “number of kinematic
modes”. Using just one kinematic mode per feature,
we were able to achieve the mean accuracy of 80.3
percent for all ten actions. As we increased the number of
kinematic modes per feature, an increase in the accuracy
was observed. The best result was obtained by using four
kinematic modes per feature, beyond which the change
in the accuracy was insignificant. It is important to note
that we are able to achieve a high level of accuracy
by using just four kinematic modes per feature, which
emphasizes our initial observation that computing or-
thogonal basis in terms of dynamics will reveal far more
complex structures in fewer modes as compared to the
energy-based orthogonal basis. The complex structures,
in turn, translate into a more discriminating represen-
tation which helps our algorithm do a better job of
distinguishing between different types of actions.

The confusion table corresponding to the best run in
Figure 9 shows that the “run” action was often confused
with the “skip” action. If we closely observe these two
actions, the similarity between them is quite evident.
In both actions, actors move across the field of view at
almost the same speed and their limbs behave similarly,
except in the “skip” action one of the legs which remains
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Confusion Table − One Kinematic Mode per Feature
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Fig. 9. Confusion tables for the Weizmann action data
set. The parameter that was varied across the experi-
ments was the number of kinematic modes per feature.

1-Mode 2-Modes 3-Modes 4-Modes 5-Modes
Optical Flow 74.2% 76.43% 82.77% 82.25% 85.8%
Kinematic 80.3% 89.68% 93.18% 95.75% 94.75%
Features

Fig. 10. Comparison of optical flow-based classification
to the kinematic features based classification. Each col-
umn compares the mean accuracy on Weizmann action
data set for different number of modes.

in the air throughout. This is a very minor difference, but
our method was still able to deal with it adequately and
only confused a few of the test examples.

6.1.1 Comparison with Optical Flow-based Classifica-
tion
The objective of this experiment was to show the benefit
of using kinematic features over the traditional op-
tical flow-based representation. The experiment was per-
formed in the following manner. We selected the same
180 videos and their optical flows which were used to
compute the kinematic features in the previous section.
The dominant modes of the optical-flow were computed
by performing the snapshot PCA on the optical flows of
each video. The dominant optical flow modes were then
used to embed each video into an optical flow-based
feature space utilizing method described in Section 5.
All of the parameter values were kept the same as those
used in the construction of the kinematic mode-based
feature space. Again, for testing, we used a “leave-one-
actor-out” setting. A comparison of the mean-accuracy
for different experimental runs with different “numbers
of modes” is presented in the table in Figure 10. In
each case the gain in performance using the kinematic
features is between 5-10 percent. This proves that the
representation based on kinematic features is much more
discriminating and powerful, compared to simple optical
flow-based representation.

6.1.2 Scale
Next, an experiment was performed to test the robust-
ness against scale changes. The action classifier men-

tioned above for 100× 100 pixels bounding box is used
for this purpose. The number of modes per kinematic
feature was fixed at four. Then, we resized each bound-
ing box to half its original size (50×50) and recomputed
the optical flow. The optical flow was computed by using
the block-based correlation described in Section 3, but
using a window of size 8 × 8 pixels. The optical flow
was resized to 100×100 pixels for subsequent kinematic
feature computation. Using the original classifier, testing
was performed in the “leave-one-actor-out” fashion and
we observed a slight degradation in performance. The
mean accuracy was 91.3 percent compared to 95.75 per-
cent at the original resolution. The main reason was the
loss of detail around crucial body parts, such as hands
and legs, at this resolution, which ultimately leads to
degraded information in the kinematic features as well.
On the other hand, when we resized the bounding to
twice the size (200 × 200, optical flow window size to
32×32 pixels) and performed the classification, the mean
accuracy (95.2 percent) remained almost the same. This
further supports the above argument because increasing
the size does not affect the details regarding the motion
of crucial body parts.

6.2 KTH Action Data Set

In order to further verify the performance of our algo-
rithm, we conducted experiments on the KTH data set.
It consists of six different actions: hand clapping, hand
waving, boxing, running, walking and jogging. This is
a challenging data set for a number of reasons. First,
the camera is no longer static and often zooms in and
zooms out while capturing the action. Therefore, the size
of the actor varies considerably within the sequence.
Second, each action is performed by a number of actors
in varying postures and lighting. Finally, the camera
angle also varies across instances of the same action.

Since our algorithm requires person localization for
learning and recognition, we first performed person
segmentation within each video. Another option was to
have a sliding window that moves over the image at
all possible scales, but that would have been computa-
tionally very expensive. The person segmentation was
done using the contour evolution method proposed in
[41]. The evolution process minimizes the background
likelihood of the region within the contour by using a
level set based framework. For each frame, we initialized
the contour along the boundary. Figure 11 shows the
output of this step for the boxing action. Once the actor
was localized within a frame, we put a bounding box
around him and computed the optical flow within the
bound box only. The computed flow field was resized to
a predefined size of 70×70 pixels. The computed optical
flow fields were then stacked up to generate a space-time
volume of flow fields for the video. Next, the resulting
space-time volume of optical flows was employed to
compute the kinematic features and kinematic modes.

For the experiments, the input data set was divided
into a training and a testing set using the standard
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(a) (b) (c) (d)

Fig. 11. The process of optical flow computation on the
KTH data set. First Row: Frames from the input sequence.
Second Row: Masks obtained after the segmentation.
Third Row: Optical flow fields computed only for the region
containing the person. (a-d) Results for frame 1, 3, 5 and
7, respectively.

Boxing Hand Hand Jog Run Walk
Clapping Waving

Boxing 88.5% 10.2% 1.3% 0 0 0
Hand 5.35% 86.44% 8.21% 0 0 0
Clapping
Hand 5.4% 7.43% 84.46% 1.12% 1.59% 0
Waving
Jog 0 0 0 86.2% 9.78% 4.003%
Run 0 0 0 6.1% 91.51% 2.39%
Walk 0 0 0 7.49% 3.4% 89.11%

Fig. 12. The table shows the confusion matrix obtained
by our method for the KTH data set.

splits [44]. Note that each video in this data set has
multiple cycles of the same action; however, we only use
one cycle for training and testing. For each experiment,
the kinematic mode-based feature space was constructed
using the kinematic modes belonging only to the training
examples. The value of sigma was kept at 0.7 for this
purpose. A nearest neighbor classifier was learned using
the coordinates of each video in the embedding space.
Ten kinematic modes per feature were used for this
experiment.

Table in Figure 12 shows the confusion matrix ob-
tained by our method. We are able to achieve mean
accuracy of 87.7 percent on these six actions. It can
be observed that the jogging action is confused most
of the time with the running action and vice versa.
This is understandable as these actions have a high
degree of similarity in terms of the kinematics. In these
videos, the actors performed the actions without any
strict experimental restriction on the speed with which
they ran; therefore, it was quite possible that many of the
jogging sequences were performed at speeds comparable
to the running action. In addition, the PCA attempts

to capture only the dominant flow dynamics of each
feature, and therefore does not take into account small
variations in speed. The observation is further verified
by the confusion between running and jogging actions,
and confusion of the walking action with both the run-
ning and jogging actions. It is important to note that
the performance of our algorithm depends heavily on
the quality of the optical flow. In the KTH data set the
computation of the optical flow was relatively difficult
due to rapid illumination changes and blurring between
frames.

Table 1 shows a comparison between the performance
of our algorithm and that of other methods which have
reported results on the KTH data set. We achieved better
recognition accuracy than all methods ([9], [10], [5],
[37],[43]) except [42]. However, we want to emphasize
that Table 1 should be interpreted in the light of the
fact that our proposed method and Kim et al. [42] have
used additional information for training by temporally
segmenting the subject performing the action. The rest
of the methods rely on supervision provided by the data
set only. Nevertheless, it is interesting to note that the
approaches with respect to which we achieved higher
accuracy are the ones that use sparse features, such as in-
terest points, distributed volumetric features, quantized,
and spatio-temporal words. The sparsity of the features
allows these methods to focus only on specific regions
of the spatio-temporal pattern. This may be a good
strategy in scenarios where it is expected that changes in
viewpoint will be significant, and the actor may undergo
occlusion. But it is not a good idea to compute sparse fea-
tures when one has access to complete spatio-temporal
patterns, because by computing sparse features, we will
discard useful pieces of global information.

We also performed an experiment to show the benefit
of kinematic features over the traditional optical flow-
based representation on this data set. The experiment
setup was the same as described previously for the
Wizemann action data set. The same partitioning of the
data set was used as mentioned in [44]. Ten dominant
optical flow modes were used per video to embed the
video into optical flow-mode based feature space. The
classification is again performed using the nearest neigh-
borhood classifier, and we achieved a mean accuracy of
79.22 percent. Therefore, the gain of kinematic features
based representation (87.7 percent mean accuracy) over
optical flow representation was close to 8 percent. This
shows that the kinematic features are again capturing
discriminating patterns which help achieve better per-
formance.

6.3 Feature Contributions

The purpose of this experiment was to validate the
contribution of each feature towards action classification
using the Weizmann action data set. In order to do that, a
nearest neighbor classifier was learned using one feature
at a time and then its performance was tested on the
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Niebles et al. [9] Dollar et al. [10] Ke et al. [5] Schuldt et al. [37] Kim et al. [42] Wong et al. [43] Our Approach
81.5% 81.17% 62.96% 71.72% 95.33% 71.16% 87.7%

TABLE 1
Comparison of mean classification accuracy on the KTH data set.

82.87 81.72 81.88 82.57
77.89 77.46 79.57 79.1 77.07

87.21 89.92 90.38 91.38 90.8 92.4 93.7 95.75
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Fig. 13. The bar chart shows the mean-accuracy of
the proposed algorithm for different combinations of kine-
matic features. The first nine bars corresponds to the
results obtained using only one feature at a time. While
the remaining eight bars correspond to different combi-
nation of features. The label on each bar corresponds to
the kinematic feature(s) used for that experiments. They
are 2=Divergence, 3=Vorticity, 4=Symmetric Flow (both
u and v components), 5=Asymmetric Flow (both u and
v components), 6=Second Invariant of the Gradient Ten-
sor, 7=Third Invariant of the Gradient Tensor, 8=Second
Invariant of the Rate of Strain Tensor, 9=Third Invariant
of Rate of Strain Tensor, 10=Third Invariant of Rate of
Rotation Tensor, respectively.

data set. For instance, the performance of divergence
feature was measured by representing each video using
only feature f1, which was followed by computation
of kinematic modes using the snapshot PCA. Next,
kinematic modes-based embedding of each video was
performed and a nearest neighbor classifier was learned.
The testing was performed using a “leave-one-actor-out”
cross validation. In order to derive a comparison with
the performance obtained using all the features on this
data set, we kept all the parameters (number of modes,
value of sigma, etc.) the same as for the experiments
reported in Section 6.1. Next, we began adding features
one by one and observed how the overall performance
changed as the number of features increased. Again, the
experimental parameters are kept the same. The results
of these experiments are summarized in Figure 13. The
x-axis shows the feature IDs (which are described in
the caption), while the y-axis corresponds to the mean
accuracy for each run.

The graph shows that the results obtained by individ-
ual features are reasonable, but the performance is far
below the results obtained by using all of the features. It
is also clear from the graph that the addition of more
features helps to obtain a steady increase in overall
performance. This is reflected in the increasing trend
in the bars corresponding to different combinations of
features. The best result of 95.75 percent is obtained by
using all kinematic features together. We believe this is

because each feature is providing complementary infor-
mation, thus allowing our method to construct a more
discriminative embedding for the videos. Furthermore,
we observed that the increase in the number of kinematic
features is especially helpful in distinguishing actions
which are very similar to each other, such as walking,
running and skipping actions. It can be concluded that
these features provide a unique description of the ac-
tion, which if used collectively, can achieve much better
performance than the individual features.

7 DISCUSSION & CONCLUSION

Although, our proposed algorithm works well for the
task of action recognition, a number of weaknesses are
apparent. First, the kinematic features are not view-
invariant because the same action viewed from different
angles will induce a different optical flow on the images.
One solution is to discretize the number of views and
learn a separate kinematic feature-based representation
for each view. Second, occlusion will severely affect the
performance of our algorithm especially in cases where a
crucial body part is occluded, e.g., the hand in the case of
the “wave” action. The main reason is the holistic nature
of our approach. However, if occlusion only obscures the
parts of the body that are not taking part in the action,
our approach is expected to be robust. The quality of
optical flow is also an important factor in our algorithm.

The current implementation of the algorithm is in Mat-
lab. On a dual core Pentium processor with 1GB RAM, it
takes 30-60 seconds to compute optical flow for a video
containing 60 frames, where each frame is resized to
100× 100 pixels. The computation of kinematic features
takes 30-40 seconds per video, while the computation
of kinematic modes require an average of 10 seconds
per video. The embedding step is the slowest part of
the algorithm due to excessive memory consumption
and the iterative nature of the program. For instance,
on the Weizmann action data set, it takes 5-10 minutes
to compute the embedding coordinates of all 180 videos.

In summary, in this paper we have explored the utility
of kinematic features derived from motion information
for the task of human action recognition in videos.
The kinematic features are computed from the optical
flow. The features are divergence, vorticity, symmetric
and anti-symmetric optical flow fields, second and third
principal invariants of flow gradient and rate of strain
tensor, and third principal invariant of rate of rotation
tensor. Next, it was hypothesized that the dynamic in-
formation of the optical flow is represented by the kine-
matic features in terms of dominant kinematic trends or
modes. These dominant kinematic modes are computed
by performing PCA on each kinematic feature. For classi-
fication, we proposed a multiple instance learning (MIL)
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model where each action video is treated as a bag or a
collection of kinematic modes. Each bag is embedded
into a kinematic mode-based feature space, in which
the coordinates of the videos in this space are used for
classification using the nearest neighbor classifier.
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