
Alper Yilmaz

UCF Computer Vision Lab. 1

UCF Computer Vision Lab. 1

Target Tracking in FLIR 
Images Using Mean Shift
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Characteristics of Targets
• Low contrast with the background.

• Similar gray level  distribution to the  overall frame 
gray level distribution.

• Slightly brighter than the background (not always).

• Targets are most of the time 5 to 10 pixels.

• Fast global and ego motion.

• No specific shape information
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Mean Shift Vector

Given:
Data points and approximate location of the mean of 
this data.

Task:
Estimate the exact location of the mean of the data 
by determining the shift vector from initial mean.
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Mean Shift Vector Example
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Mean shift vector always points towards the direction of 
the maximum  increase in the density.
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Modified Mean Shift
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nx : number of points in the kernel
y0 : initial mean location
xi : data points
h : kernel radius

Weights are determined using kernels (masks):
Uniform, Gaussian or Epanechnikov
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Properties of Mean Shift

• Mean shift vector has the direction of the gradient of 
the density estimate.

• It is computed iteratively for obtaining the maximum 
density in the local neighborhood.
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Outline
1. Introduction

1. Kernel density estimate
2. Possible kernels
3. Epanechnikov profile
4. Estimate of density gradient
5. Mean shift & Epanechnikov Kernel

2. Feature space
1. Target gray level distribution
2. Distribution and tracking 

1. Similarity of target & candidate distributions
2. Distance minimization
3. Bhattacharya maximization using mean shift
4. Algorithm

3. Target standard deviation
3. Target localization using 2 features
4. FLIR results
5. Future work
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Kernel Density Estimate
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n : number of points in the kernel
h : window radius
x : mean vector
d : number of dimensions
K : Kernel density function
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Possible Kernels
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• Epanechnikov kernel (convex, monotonic decreasing)

• Uniform kernel
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d : number of dimensions

cd : volume of unit d-dim sphere
d : number of dimensions

• Normal kernel (convex, monotonic decreasing)
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Kernel & Profile
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• Kernel function : defined in terms of vector

• Profile function : defined in terms of variable
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Epanechnikov Profile (2D)
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Epanechnikov profile yields minimum mean 
integrated square error
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Estimate of Density Gradient
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Mean Shift Vector in Terms of 
Epanechnikov Kernel
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mean shift vector
n  : number of points in unit d-dimensional sphere
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Target Model for Tracking

• Features used for tracking include:
• Gray level
• Standard deviation

• The weights are derived from Epanechnikov 
profile.

• Feature probability distribution are calculated by 
using weighted histograms.
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Target Model for Tracking

x1, x2, x3, x4 has the 
same feature, such as 
gray level.
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Target Gray Level Feature

image histogram

target 2

target 1

non - target

target 1 distribution target 2 distribution non target distribution
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Similarity of Target and 
Candidate Distributions
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ρ(y) :Bhattacharya coefficient.

Target : qu.
Candidate : pu.^
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Distance Minimization
Minimizing the distance corresponds to maximizing
Bhattacharya coefficient.

Maximizing Bhattacharya coefficient can be obtained 
by maximizing the blue term.
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Likelihood Maximization
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h : radius of sphere
Ch : normalization constant
S(xi) : gray level at x
y : kernel center
m : number of bins
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Likelihood Maximization Using 
Mean Shift Vector
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• y : Spatial coordinates of target 

• y0 = [0,0]T. 

∑

∑∑

=

== ==
x

xx

n

i

n

i i

x

n

i i
h n

M
1

11
0

1
)(

xx
y

new mean location



Alper Yilmaz

UCF Computer Vision Lab. 11

UCF Computer Vision Lab. 21

Likelihood Maximization Using 
Mean Shift Vector
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Maximization of the likelihood of target and candidate depends on the weights:
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Algorithm
Calculate (q

G
)

initialize estimated center (y
1
=y

0
)

Calculate (p
G
)

Calculate ( w
G
)

Estimate new target center (y
1
)

d< εfalse

update target center (y
0
=y

1
)

Repeat until end of the sequence
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Target Gray Level 
Distribution (1)

target
(frame 0)

frame 220

frame 246

frame 288
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Target Gray Level 
Distribution (2)

target
(frame 173)

frame 221

frame 382

frame 695
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Target Std. Deviation Feature
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Gray Level (Reminder)

image histogram

target 2

target 1

non - target

target 1 distribution target 2 distribution non target distribution
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Target Std. Deviation Feature

image std. dev. dist.

target std. dev. dist. non - target std. dev. dist.possible target std. dev. dist.
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Combining Distributions of 
Gray Level and Std. Deviation

q
G

: target gray level
q

S
: target standard deviation

p
G

: candidate gray level
p

S
: candidate standard deviation
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Combining Distributions of 
Gray Level and Std. Deviation
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New target center is determined using

Iteratively calculate the new target center until the 
distance is minimized.
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Gray Level Distribution at Each 
Iteration

Sequence rng14_15, frames 87 and 88

0
0.1
0.2
0.3
0.4
0.5

bins

probability iter 1
iter 2
iter 3
iter 4
target
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Distance Between Consecutive 
Frames

For Different Sequences

0

0.25

0.5

0.75

1

frame no

distance to model rng14_15
rng15_20
rng15_NS
rng16_08
rng17_01
rng17_20
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Experiments
Features used:

• Intensity
• Standard deviation
• Gradient magnitude
• Intensity & standard deviation
• Intensity & gradient magnitude

Mutual probabilities are combined using
• Geometric mean
• Weighting (described in slide 20)

We filtered the frames using 2D-Regularization filter.
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Test Set
Our test set is composed of 21 FLIR sequences:
rng14_15, rng15_20, rng15_NS, rng16_04,
rng16_07, rng16_08, rng16_18, rng17_01,
rng17_02, rng17_20, rng18_03, rng18_05,
rng18_07, rng18_12, rng18_13, rng18_16,
rng18_18, rng19_01, rng19_06, rng19_07,
rng19_11

We manually initialize one target in the first frame 
and track the target in the sequence.

We have visually confirmed the results 
(not from the ground truth)
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Comparison of Results
Fine: 
tracks very well

Okay: 
tracks well 
except some 
sections

Bad: 
does not track

Geom. mean
sqrt(var/max) (>255)=255 Var/max (var/max)2

14_15 Fine Ok Fine Fine Fine Fine Fine Fine
15_20 Fine - Bad Fine Bad Fine Fine Fine - Fine
15_NS Fine Bad Ok Ok Ok Ok Fine Fine
16_04 Bad Fine Ok Ok Ok Ok Fine Fine
16_07 Bad Bad Fine Fine Fine Bad Ok (last part) Ok (last part)
16_08 Ok Fine Fine Fine Fine Ok Fine Fine
16_18 Fine Bad Ok Bad Fine Ok Fine Fine
17_01 Bad Fine Fine Fine Bad Bad Fine Fine
17_02 Bad Bad Bad Bad Bad Bad Bad Bad
17_20 Bad Bad Ok Fine Fine Bad Fine Fine
18_03 Ok Bad Bad Fine Ok Bad Ok Ok
18_05 Ok Bad Bad Fine Fine Bad Fine Fine
18_07 Fine Ok Ok-fine Fine Ok-fine Ok-fine Ok-fine Fine
18_12 Bad Bad Bad-ok Bad-ok Bad-ok Bad Bad-ok Bad-ok
18-13 Fine Bad Fine Fine Fine Fine Fine Fine
18-16 Ok
18-18 Ok
19-01 Fine
19-06 Fine
19-07 Fine
19-11 Fine

Variance and Color together

Variance Color
Arithmetic mean of probabilities

sqrt(var)
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Comparison of Results

Using “Geometric Mean” and
• Regularization pre-filtering 
• Gaussian pre-filtering 
• Median filtering
• Without filtering

Gaussian filter Regularization filter

14_15 15_20 15_NS 16_04 16_07 16_08 16_18 17_01 17_02 17_20 18_03 18_05 18_07 18_12 18-13 18-16 18-18
With 
Regularization 
filtering

Fine Fine Fine Fine Ok Fine Fine Fine Bad Fine Ok Fine - Fine Bad-ok Fine Ok Ok -

With Gaussian 
filtering

Fine - Ok Ok Ok Bad Ok Ok Ok Bad Ok Ok Ok Ok Bad-ok Ok Ok Ok -

With median 
filter-art mean

Fine Fine Fine Fine Fine - Fine Fine Fine Bad Ok Ok Fine - Fine Bad Fine Fine - Ok -

Without any 
filtering

Fine Fine Fine Fine Bad Fine Fine Fine Bad Ok Ok Fine - Fine Bad-ok Fine Ok Ok -
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FLIR Tracking Results

14_15 15_20 15_NS 17_01 17_02

17_20 18_03 18_05 19_07 19_11
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Future Work

• Resolve the drawback of the system for 
large global motion

• Enhance the sequence to have more 
distinctive features of the target

• Obtain target model using ellipsoidal region 
instead of circular region.

• Update initial model periodically. 


