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Abstract 
 
In this paper, we propose an approach that retrieves 
actions from the videos based on the dynamic time warping 
of view invariant characteristics. Action is represented as a 
sequence of dynamic instants and intervals, which are 
computed using the spatiotemporal curvature of a 
trajectory. Dynamic Time Warping matches action 
trajectories using a view invariant similarity measurement. 
The nearest distance clustering approach is used to retrieve 
human actions without any training. The system is able to 
incrementally learn different actions without any 
initialization model. This paper makes two fundamental 
contribution to view invariant action recognition: (1) 
Dynamic Instant detection based on multiple motion 
characteristics (2) View invariant Dynamic Time Warping 
is used to measure similarity between two trajectories. We 
show successful recognition of sixty actions performed by 
different individuals from different viewpoints. 
 
1. Introduction and related work 
 

Understanding behavior of humans in a scene is a task 
that humans perform with great ease, allowing us to better 
interact, communicate with and respond to each other. 
However, it has been seen that developing computational 
models of such understanding of behavior has been a 
persistently difficult problem. One of the key challenges is 
view invariance. While humans can recognize actions from 
various views easily, finding view invariant cues for 
recognition has been difficult to replicate in computational 
vision systems. Some approaches to solving this problem 
have proposed complex 3D recognition systems [3]. We 
argue that finding view invariant representation makes the 
problem of recognition far more tractable. Furthermore, in 
order to generalize view invariant recognition of actions, 
we lay emphasis on the ability of the system to learn 
unsupervised. The recognition system we propose consists 
of three layers: motion capturing, action representation, and 
learning. An action in our system is represented as a 
sequence of dynamic instants and intervals. A dynamic 
instant is an instantaneous entity that occurs for only a 
single frame, and represents an important change in motion 
characteristics. Intervals are defined as the time period from 

one instant to the next. A system has been successfully 
implemented, which is able to handle actions from different 
viewing directions so that extensive training, context 
knowledge, or camera calibration is not needed. Moreover, 
the system can autonomously build up a recognition 
category database.  

The issue of view invariance is addressed in previous 
work [1]. This work has also three layers: tracking, 
representation, and recognition. Previously, the system only 
tracked the centoid position of the hand in each frame. The 
representation layer detected dynamic instants only based 
on x,y,t information. The recognition system classified the 
actions only based on the spatial information of the 
instants, the interval information was ignored during 
processing, and the system assumed the instant detection 
was perfect and the correspondences were made just using 
the dynamic instants. 

This study broadens the previous framework in two 
fundamental aspects: (1) Rather than studying point motion 
at dynamic instants, more motion characteristics are 
incorporated into the detection of instants, and we improve 
the anisotropic diffusion method to remove the noise in the 
trajectory; and (2) The motion information contained in the 
interval between two instants is measured and used to 
enhance recognition. By including the continuous 
information describing actions, the system recognition rate 
is improved greatly.  

At the first layer (motion capture), body movement 
during actions is recorded with respect to time providing 
action primitives to be analyzed.  

The representation layer takes the results from the 
motion capture layer and transforms it into a physically 
meaningful form; a sequence of instants and interval. We 
use spatio-temporal curvature to detect instants, effectively 
capturing speed, direction, and orientation changes during 
the action within one quantity. Moreover, since actions take 
place in 3D, then get projected on an arbitrary 2D image, 
depending on the viewpoint of the camera, our 
representation is able to recover the characteristics that are 
consistent from different viewing directions. The 
representation layer has a central role, since representation 
of action primitives determines the architecture of the 
recognition system. A �good� representation system should 
illustrate the actual event during the action.  



In learning layer, we propose a matching method, such 
that a similarity measurement is generated from the spatio-
temporal information of the action representation. Based on 
this similarity measurement, a nearest neighbor clustering 
approach is applied, so that the recognition database can be 
incrementally developed without any training. Because of 
the strength of our action representation system, and the 
view invariant matching algorithm, the system can take a 
relatively simple learning approach to achieve high 
recognition rate.  

Early  approaches to this problem were either region-
based [8,16,18], temporal trajectory-based [17,19,20,1], 
part-based [21,22] or a combination of these [9,24,33], and 
considered either 2d shape or motion alone. These 
approaches were sensitive to changes in viewpoint, 
requiring explicit models for handling different viewpoints. 
Recent attempts have alleviated effects of viewpoint by 
developing invariants that are insensitive to viewpoint 
changes using an affine camera model [1], or have 
explicitly recovered viewpoint transformations using 
homography[25], or the general  perspective case[2]. Seitz 
and Dyer [11] used view-invariant measurement to find the 
repeating pose of walking people and the reoccurrence of 
position of turning points.  

In addition to viewpoint changes, the execution style 
variations include local changes in velocity and acceleration 
that are the result of natural variations produced by moving 
subjects and the effect of surrounding environments. 

A popular way to handle execution style variations is 
through hidden Markov models (HMM) where matching of 
an unknown sequence with a model is done through the 
calculation of the probability that a HMM could generate 
the particular unknown sequence. Siskind and Morris 
proposed a HMM based system [7]. The recognition system 
takes the 2D pose stream, such as position, orientation, 
shape, and size of each participant object, and classifies it 
as an instance of a given action type. Campbell et al. used 
3D measurements obtained from a stereo system [3]. Essa et 
al. [28], Hoey and Little [29] proposed similar systems. In 
order to model the interactions between subjects, Oliver et 
al. proposed a more complex architecture -- Coupled 
Hidden Markov Models (CHHM)[30]. The HMM-based 
approaches however suffer from the design and training 
issues relating to the construction of models per action. 
Moreover, in most of approaches, only view-based features 
have been used so that the proposed systems do not have 
ability to recognize the same action at different viewing 
directions. 

From the preceding discussion, we can see that view 
based methods face difficulty in handling recognition of the 
same actions from different viewpoint, which makes their 
applications rather limited. For implicit methods, such as 
HMM, the results are based on extensive training, and the 
rules of classification cannot be understood, so that there is 
no hint to generate new models except using huge number 
of exemplars 

 

2. Motion capturing system 
 

The motion capture layer detects and tracks motion of 
action primitives. During motion capture there are two 
steps: tracking and smoothing. The output of this layer is 
action represented as motion trajectories.  
 

2.1 Tracking  
For the actions performed by an action primitive (e.g. 

hand), first, the centroids of the hand regions are computed 
for each frame. The Mean-shift tracker is applied on the 
performing subjects (centroids) to get the trajectories of 
hand motion [31]. However, for more complicated hand 
actions, isolated tracking of centroids of hands do not 
provide sufficient information, e.g. making gesture, turning 
a knob, etc. Therefore, the orientation of hand is also 
tracked in our system with skin detection method as 
follows[6]. A small sequence of images of performer (3 to 5 
frames) are used for training to generate the color predicate. 
The system then labels the incoming pixels as either skin or 
non-skin based on the predicate. Finally, morphologic 
operations are used to group the skin pixels into region. 
Correspondence is resolved using the algorithm proposed 
by Rangarajan et al.[rs]. As the result of tracking, a motion 
trajectory is generated, which is a spatiotemporal curve 
defined as: {(x[ti],y[ti],θ[ti])}, i=0, 1, 2,� , where x and y 
are positions of the centroid, θ is orientation, and t is 
timestamp. In this way, we can treat a trajectory as a 
temporal function T: R1→R3.   

 

2.2 Smoothing 
To remove the noise in the trajectory caused by error 

from tracking, skin detection, and projection distortions, an 
anisotropic diffusion algorithm is used for smoothing [4]. 
The original diffusion algorithm proposed by Perona and 
Malik only applies to functions that have a 1D co-domain, 
such that F: Rn→R1, rather than trajectory functions: 
T:R1→R3, which has 3D co-domain. We need an algorithm 
that works on the vector data (x[ti],y[ti],θ[ti]) to keep the 
correlation in the co-domain (x, y, θ). The steps of the 
empirical method we use are: (1) Apply principal 
component analysis (PCA) to the raw data so that the 
correlations between different dimensions are minimized; 
(2) Perform Perona-Malik smoothing on each dimension of 
the transformed data, (3) transform the smoothed data back 
to original data coordinates. Figure 1 shows an example of 
smoothing motion trajectory, which represents a hand 
picking up a telephone handset and then putting it back.  

  
(a)  (b) 

Figure 1: a) the raw input data. b) The smoothing 
result by PCA-Perona-Malik method.   



 

3. Action representation 
 

In this layer, the motion trajectory recovered by the 
motion capture layer is interpreted into a sequence of 
dynamic instants and intervals. A dynamic instant is an 
instantaneous entity that occurs for only one frame, and 
represents a significant change of any of the motion 
characteristics: speed, direction, acceleration and curvature. 
These dynamic instants are detected by identifying maxima 
(a zerocrossing in a first derivative) in the spatiotemporal 
curvature. An interval represents the time period between 
any two (adjacent) dynamic instants during which the 
motion characteristics remain fairly constant. In our 
representation, both instants and intervals embrace certain 
physical meanings. 

 

3.1 Instants detection 
To illustrate the concept of instant detection, consider a 

1D motion trajectory {x[ti]}, i=0, 1, 2,�, where ti is the 
uniform sampling index along temporal axis, x is the 
position along X axis. If there is a change in speed at time 
ti, a turning point at {x[ti], ti} of the x-t curve will be 
present, and spatio-temporal curvature will capture this 
turning (figure 2a). This idea has been applied to multi-
dimensional spatiotemporal curves {x[ti],y[ti],θ[ti]}, i=0, 1, 
2, �, such that changes of speed, direction and rotation 
will be captured by turning points in the spatiotemporal 
domain.  

The spatiotemporal curvature of a trajectory is computed 
by a method described by Besl and Jain [5]. In this case, a 
1D version of the quadratic surface fitting procedure is 
used. The spatiotemporal curvature k is given as follows: 
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Here t'=1 and t"=0 since the time interval is constant, i.e. 
t0=0, t1=1, t2=2,� It is worth noting that the curvature 
captures all the changes of speed, direction and rotation. 
Moreover, we can generalize this formula to hold other 
motion characteristics that change with respect to time. 

Consider an opening overhead cabinet action (Figure 
2.b). This action can be described as: hand approaches the 
cabinet (�approaching� interval), hand makes a contact 
with the cabinet (�touching� instant), hand lifts the cabinet 
door (�lifting� interval), hand twists (�twisting� instant) the 
wrist, hand pushes (�pushing� interval) the cabinet door in, 
hand breaks the contact (�loosening� instant) with the door, 
and finally hand recedes (�receding� interval) from the 
cabinet. 

We use this approach to analyze human gait. When a 
walking person is tracked, his/her foot regions are 
segmented out by using color predicate, which is generated 
by the images of shoes. Figure 3 shows some tracking 
results. Figure 4 shows the trajectories of left and right feet 
respectively in three walking sequences. The short line 
segments represent the foot orientations at the centroid. The 
detected instants correspond to three important changes 
during a walking cycle: �foot touching the ground�, 
�leaving the ground�, and then �moving forward�. We 
compared the results with the detection using only x,y,t 
information. Using only x,y, and t we can only get two 
instants consistently.  

The hands or shoes are uniformly colored in general. If 
the object of interest is textured, (checkered, striped or has 
leopard-like markings), we can track the features and 
represent the motion with its average velocity. The instants 
can be detected from the characteristics of average velocity 
curve as proposed in [32].  

 

3.2 Instants and view invariance 
Dynamic instants are places where �significant� changes 

occur during the actions. Significant change are defined 
such that the first derivative of the motion characteristics 
has a discontinuity. A dynamic instant in 3D is always 
projected as a dynamic instant in 2D. However, while 
detecting the dynamic instants in a trajectory it is important 

 

Figure 3: frame 174, 176,178, and 180 of a walking 
sequence and the foot tracking and labeling results. 
The gray color represents left feet and white color is 
right feet. The middle two frames have occlusion, 
but labeling is solved when occlusion is over.  
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(a)   (b)   (c) 

Figure 2: a) spatiotemporal curve of a 1D motion. 
b) An opening cabinet action trajectory with instants 
and intervals. c) The spatiotemporal curvature 
values and the peak detection results of the 
trajectory.  



to handle outliers that may arise. There are two principal 
sources of outliers during this detection phase.   

The first source of outliers is due to the discrete nature of 
video sequences. Under ideal continuous conditions if there 
is a discontinuity, the spatiotemporal curvature will be a 
Dirac delta function since the numerator of the equation (1) 
will be infinite. However, for video sequences, the impulse 
degenerates to a peak in the spatiotemporal curvature 
values. In addition, the spatiotemporal curvature is not 
constant; it fluctuates when the motion is changing 
smoothly. The second source of outliers is caused by the 
projection of the 3D trajectory onto the 2D image plane. 
The projection of camera may change the property of a 
smooth 3D curve, such that the spatiotemporal curvature 
may represent a peak even when the object is under smooth 
motion. This too may generate a false detection. 
Fortunately, the viewing direction only affects the intervals 
that have continuous second derivatives, and does not affect 
the intervals along straight lines. Experiments show that 
human beings always choose the straight path during daily 
life, since straight paths save energy and time. A simple 
example is that when a person wants to pick up an object, 
the hand approaches to the object along a straight line. It is 
against intuition that the hand will travel along a circle to 
approach the object. Therefore, outliers caused by 
projection are rarely gross errors. To handle these outliers 
we propose the use of dynamic time warping method, which 
provide an efficient and reliable basis to suppress the 
outliers and find correspondence between instants from 
different action trajectories.  

Once the instants are detected, the properties of the 

instants are observed. The sign of an instant remains 
constant when the viewing direction is limited to one of the 
hemispheres of the viewing sphere. Here, the sign is 
defined as the turning direction of the trajectory at the 
instant. This claim is further supported by Burns et al. [27]. 
They studied the variation of relative orientation for two 
line segments with respect to view. We denote a clockwise 
turn by �+� and a counter clockwise turn by �-�. Therefore, 
the same action should have same permutation of signs for 
the corresponding instants.  

 

4. Learning system 
 

As discussed in the previous sections, our system is view 
invariant and does not require any training data. The action 
database is built incrementally starting from zero and 
progressively growing by unsupervised learning. Each 
action trajectory is represented as a sequence of instances 
and intervals. In section 4.1 and 4.2, we discuss how to 
measure the similarity of the intervals from two different 
action trajectories and find the correspondence of points on 
the trajectories by using both spatial and temporal 
information of actions. Moreover, the measurement is view 
invariant. In section 4.3 an unsupervised learning system is 
built, such that not only can the system recognize actions 
that happen before, but it also recognizes new actions.  
 

4.1 View invariant similarity measurement 
In [1], the authors reported a similarity measurement 

that is not affected by the camera viewpoint changes. They 
proposed a theorem based on affine epipolar geometry: two 
trajectories match if and only if M is of rank at most 3. 
Here, the M is an observation matrix configured as: 
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image coordinates of dynamic instants from different 
viewpoints (interested readers can refer to appendix A for 
proof of this theorem.) It�s concluded from this results that 
if two trajectories represent the same action, and there are 
no numerical errors, the 4th singular value of the 4×n 
matrix M will be zero. Therefore, the similarity 
measurement between action trajectories is determined by 
the matching error 4, σ=jidist , where σ4 is the 4th 

eigenvalue of matrix M. The smaller jidist ,  is, the more 

similar two action trajectories are. However, this method 
requires exact correspondence between all the instants, 
which is hard to get when false detections of instants are 
present. Furthermore, since the information during an 
interval is ignored when matching, the recognition is not 
particularly robust. Temporal information can be used to 
ameliorate this problem, by dynamically aligning the 
trajectories temporally and finding point correspondences.   
 

 

Figure 4. The trajectories three walking
sequences, the left hand side is left foot and the
right hand side is right foot. The small lines
display the orientation value, and the ’*’ is the
instants detected by spatiotemporal curvature.
The last row is the trajectories and instant
detection results, which using only x,y,t
information



4.2 View invariant dynamic time warping  
There are several methods to measure the similarity 

between two temporal signals, such as HMM, neural 
network and dynamic time warping (DTW). DTW is 
chosen in our system since research shows that it 
consistently outperforms HMM when the amount of 
training data is low [26]. Furthermore, in learning system, 
based on the similarity measurement between each action 
trajectory, a nearest neighbor clustering is applied to 
achieve unsupervised learning, and new action categories 
are generated when needed. HMM and neural network 
approaches do not have this capability. 

Dynamic Time Warping (DTW) is a widely used 
technique for matching two temporal signals. It uses an 
optimum time expansion/compression function to do non-
linear time alignment (Figure 5). For two signals I and J, a 
distance metric C is computed to represent the alignment 
between the two actions, with Cij representing the cost of 
aligning the actions up to the time instants ti and tj 
respectively. The cost of alignment is computed 
incrementally using the formula: 

{ })1,()1,1(),1(,, ,,min −−−−+= jijijijiji CCCdC  

Here dij captures the cost of making time instants ti and tj 
correspond. The best alignment is then found by keeping 
track of the element that contributed to the minimization of 
alignment error at each step and following a path 
backwards through them from element Cij. 

So far, the above framework can handle only motion 
information. We now inject shape information into the 
analysis through the dij metric.  

Based on the view invariant similarity measurement in 
section 4.1, we propose a view invariant DTW as follows:  

1) For each trajectory, pick up 4 instants from the 
instant detection result, such that the permutations 
of signs are the same.  

2) Execute the classic DTW algorithm, but replace 
the distance measurement between the ti and the tj 
points of two trajectories with the following: 

4),( σ=jid , where 4σ is the fourth eigenvalue of 

matrix M, and M is defined as:  
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the {(u1,v1)(u2,v2)(u3,v3),(u4,v4)} and 
)},(u),,(u),,(u),,{(u 44332211 vvvv  are the (x,y) image 

coordinates of 4 instants in two trajectories 
separately. (ui,vi) is the image coordinate of the ith 
point in one trajectory,  (u�

i,v�
i) is the image 

coordinate of the jth point in the other trajectory*.  
Then record this matching distance and the 
correspondence result. The correspondence results 
are used for validating the 4 instants matching, 
since they must be located on the optimum path, 
otherwise, the result is abandoned. 

3) If there are other instants available, go back to step 
1 and run DTW again until all the combinations of 
instants are checked.  

4) Find the minimal global distance from step 2, and 
take the correspondence as the matching of two 
trajectories.  

* note: the DTW can establish correspondence on the 
fly, which means that it provides the best warping path 
to element (i,j). Therefore, we put those corresponding 
points in the observation matrix M to get more robust 
measurement.   
We find that this algorithm performs DTW without 

being affected by viewpoint variance since the difference 
measurement itself is not dependant on the viewpoint. 
Moreover, the instant outliers are suppressed if there are 
enough correct detections.  

The instants outliers are suppressed as following: since 
only four instants are needed for view invariant 
measurement and DTW, so the system iteratively chooses 
four pairs of instants. Because wrong correspondence give 
high error with DTW, and we only choose the 
correspondence that gives minimal difference, the right four 
pairs of instants correspondences are kept, and the rest of 
point correspondence is provided by DTW.    

This measurement can not be applied to the walking 
sequences (section 3.1), due to that the camera was moving, 
and we do not apply global motion compensation yet. The 
epipolar geometry is not preserved in the sequence.    

 

4.3 Learning  
In our approach, we match each action with all other 

actions by view invariant dynamic time warping, and then 
computing the match distances. For each action, we select 
closely matched actions. All the matches above a certain 
threshold are eliminated first, and only the three best 
matches for each action are maintained. If a particular 
action does not closely match to any action of its category, 
then it is declared a unique action. Its label may change as 
more evidence is gathered (Table 1).  

 

 
Figure 5: a) two temporal signals, b) after time 
warping, c) the warping path.  



The best matches for individual actions are merged into 
a compact list using the transitive property. That is, if 
action 1 is similar to actions 29, 43, and 38; and action 29 
is similar to actions 43, 38, and 1; then actions 1, 29, 38, 
and 43 are all similar actions due to the transitive property. 
This is easy implemented by Warshall�s algorithm. Figure 6 
shows some matching results and the correspondence for 
every 7 points of the trajectories. Please reference to the 
supplemental file to get the correspondence results.  

 

5. Experiments 
 

We digitized several video clips recorded at 24 fps. The 
location of camera was changed from time to time. Seven 
people performed a total of 60 different actions (figure 6). 
People were not given any instructions, and entered and 
exited from arbitrary directions, and the location of the 
camera was changed from time to time. Therefore, the 
viewpoints of these actions were very different. The system 
automatically detected hand using skin detection, generated 
trajectories of actions.  

Trajectories of these actions were used to generate the 
view invariant representation proposed in this paper. These 
representations were interpreted by the system to learn 
these actions.  

Each of these actions was matched using method 
discussed in section 4.1. The results are shown in Table 2. 
We are pleasantly surprised to see our simple matching 
technique worked quite well. Only two matches were 
completely wrong (actions 31, 41). Three matches (33, 36, 
and 59) were partially incorrect. Action 31 and 36 are 
partially matched with opening action, such as 1. The table 
2 shows the results. We list the matching result from using 
only instant information for matching in table 2 also, which 
contains 2 three totally wrong matches and seven partial 

mismatches. The improvement is significant. 
Note that these matches are based on only single 

instance of an action. Therefore the performance of our 
approach is remarkable.  

The system was able to learn that actions 1, 4, 14, 16, 
21, 29, 43, and 38 are the same. Note that even though 
trajectories of these actions shown in Figure 6, are different, 
but due to the strength of our representation, the system was 
able to learn they represent the same action. Similarly, the 
system was able to discover that action 3, 18, 6, 23, which 
represent �put down the object, and then close the door�, 
are all the same using matching and the transitive property. 
Therefore, the confidence for this action is quite large.  

Several actions were identified as unique, because they 
did not match well with other actions having the same 
number of instants. Therefore, their confidence is quite low. 
Since we assume that the system is continuously watching 
in its field of view, if more instances of these unique actions 
are performed, the system will be able to increase the 
confidence.  
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9. Appendix A 
 

The affine camera is a special case of projective camera 
and proposed by Mundy and Zisserman. The projection can 
be represented as:      

Table 1. Interpretation results. The bold face font in 
column indicates incorrect match. 
 
Action 3 Best matches by 

view invariant DTW 
Evaluation & 

comments 
3 Best matches by 

instant only 
matching 

1 29 43  38 Correct  38  29  14 
2 Pick up Correct Pick up 
3 18   23 6 Correct  18  6  23 
4 1 14  16 One wrong  36  29  14 
5  Unique action   
6 18 3 23   Correct 23 3  18   
7 48 33 8 Correct 33 8 48 
8 48 33 7  One wrong 33 7 60 
9 Pick up Correct Pick up 
10 Put down Correct  Put down 
11 Pick up  Correct  Pick up  
12 Put down Correct  Put down 
13  Unique action  
14 43 16 1  Correct  16 1  29   
15  Unique action   
16 14  29 1 Correct  38  14  29 
17 Pick up Object hidden Pick up 
18 6  3  23   Correct  3  23  6 
19 Pick up Correct  Pick up 
20   Unique motion   
21 43 38 16 Correct  14 38 16 
22 Pick up Correct Pick up 
23  6 3 18 Correct  18  6 3 
24 Pick up Correct Pick up 
25 Put down Correct Put down 
26  Unique action  
27  Unique action  
28  correct  
29 43 38 1 Correct 1 16 14 
30  Correct  
31 43  38 29 incorrect 43  16  38 
32   Unique action  
33 48 7 59 correct 8 7 48 
34  Random motion  
35 Put down The action is 

confusing 
Put down 

36 43  31  38 incorrect 38  14  43 
37  Unique  
38 21 16 1 Correct 1 16 29 
39  Correct   
40  46 is missing  
41 35 Unique action 35 
42  Unique action  
43 14 29 1 Two incorrect  31 14 36 
44 Pick up Object too small  Pick up 
45  Unique action  
46  40 is missing  
47  Unique action  
48 33 8 7 Correct 59 33 7 
49 51 53 50 Correct 51 53 50 
50 51 53 50 Correct 51 53 50 
51 50 53 49 Correct 50 53 49 
52  Unique action  
53 51 49 50 Correct 51 49 50 
54 56 57 Correct 56 57 
55 Incorrect One instant missing Incorrect 
56 54 57 Correct 54 57 
57 56 54 Correct 56 54 
58 60 59 Collinear points 48 33 
59 60 33 Collinear points 48 60 
60 58 59  Collinear points 59 8 48 
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A image coordinate u=(u,v) can be represented as a 
projection of 3D point X=(X,Y,Z)T : 

tNXu +=    (a) 
where N is a 2×3 matrix (with elements Nij=Pij/P34) and 
t=(P14/P34, P24/P34)T is a 2-vector.  

A property of this affine camera is that it retains its form 
when the scene undergoes a 3D affine transformation. 
Consider a 3D point X moves to a new position X� as 

TAXX +=′ , where A is a 3×3 matrix and T is a 3-
vector. The new 3D position X� then projects to u�=(u�,v�)T, 
where 

tXNtNDXNA
tTAXNtXNu
′+′=++′=

++=+′=′
)(

)(    

A second property of the affine camera model is that 
relative coordinates cancel out translation effects, such that 

0XXX −=∆  and XAXXX ∆=′−′=′∆ 0 . Furthermore, in 
the image, the points are: 

XNuuu ∆=−=∆ 0 , and   
XNAXNuuu ∆=∆′=′−′=′∆ 0    

Therefore, the image coordinates are independent of T, t 
and t�.   
     The equation of epipolar line is obtained by petitioning 
N as (B|b), where B is a 2×2 matrix and b a 2×1 vector. 
From (a), 
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and similar for N� 
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     from (c) and (d), we can eliminate the world coordinates 
(X,Y)T, and get: 

ε++Γ=′ Zduu    (e) 
with 1−′=Γ BB , bbd Γ−′= and tt Γ−′=ε , and these 
quantities are depend only on the cameras motion � not on 
the scene structure. Notice Γ is a 2×2 matrix, d and ε are 2-
vectors. Multiply the both sides of equation (e) with d⊥  , 
which is the perpendicular to d, and notice that d•  d⊥ =0, we 
get: 

0)( =−Γ−′ ⊥dxx Tε    (f) 
 Then, the equation (f) can be represented as 

0=+++′+′ edycxybxa . Moreover, the difference vector 
form is:  

0=++′+′ dycxybxa   (g) 
We rewrite equation (f) as matrix form, such that 
[ ] 00000 =−−′−′′−′ nvvuuvvuu , where 

( )Tdcban ,,,=  and n is the motion parameters. Since all k 
points on the object share one set of motion parameters, we 
can represent the relationship before and after the 
movement as:  
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Since MT is a k×4 matrix, in order to obtain a non-trivial 
solution for n, the rank of matrix M must be at most 3. 

 

 

 

 

 

 
 Figure 7. Trajectories of all 60 actions. The instants are shown with red “*”.  

 

 

 

 
Figure 8. Sequence 
showing Action 56, 
erase the white board.

 

 
Figure 9. Sequence showing Action 3, put down the object in cabinet, then close 
the door. 


