View-invariant Alignment and Matching of Video Sequences

PaperID 440

Abstract Assume that the same motion is performed with a differ-
ent speed (temporal extent), then we obtain another 3D tra-
In this paper, we propose a novel method to establish temig§tory: {(Xcq), Yeq), Zow), (Xew): Yow): Zow), -
ral correspondence between the frames of two videos. The @), Yo(r), Zo) 1 whereC(i) is a time warping function
epipolar geometry is used to eliminate the distortion generaggh that

by the projection from 3D to 2D. Although the fundamental ma- X, Xow

trix contains the information of the extrinsic property of projec- Y: | | You 1o
tive geometry between views, it is sensitive to noise and fails Zi | 7| Zew A kA
for non-rigid human body movement. Therefore, we propose 1 1

the use of a rank constraint of the corresponding points in twédow assume that the viewpoint of the camera has also been
views to measure the similarity between trajectories. This ragiianged. Then the projection of this 3D trajectory to a 2D tra-
constraint shows more robustness and is easier to compute IBERY. {(u1, v1), (u5,v3), ..., (uj, vy)}, is defined in the simi-

the fundamental matrix. Furthermore, a dynamic programmif Way:

approach using the similarity measurement is proposed to find e Xew)
the non-linear time-warping function for videos containing hu- v,c@ _p | Yeo =19t
man activities. In this way, videos of different individuals taken e Zoay |7 T

at different times and from distinct viewpoints can be synchro- 1

nized. Moreover, atemporal pyramid of trajectories is applied toTherefore, the problem of aligning video sequences is to
improve the accuracy of the view-invariant dynamic time wargiscover the time-warping functiorq; (i), for i = 1,2,...,t,

ing approach. We show various applications of this approagBing the information in two 2D trajectories{(u;,v),
sgch as v_|d_e0 synthesis, human action recognition and_ COMPUIET v,), ..., (ug, ve)} and{ (ug,), “/0(1))’ (U2 U/C(Q)), .
aided training. Compared to the state-of-the-art techniques, &ycr( : U/C( )}

t)? t)/J-

method shows a great improvement. There are two crucial aspects of exploring correspondences
) of video sequences. First, the 2D trajectory is highly depen-
1. Introduction dent on the viewpoint, that is the same 3D trajectory may look
o ) o . . different in videos shot from the different viewpoints. Second,
Many applications, such as video mosaicing, video retrievile same motion may have different speeds (temporal extents).
image based modelling and rendering, video synthesis, Mufife second problem becomes more complicated when the mo-
sensor surveillance, and human action recognition, requirgsd changes dynamically, such that the indices of corresponding
computation of a spatio-temporal alignment of video sequengggmes are non-linearly related. This is very common in videos
Methods thgt tackle this problem discover a correspondence(ﬁ@picting human activities, since even the same person may per-
tween the video sequences. Some of these methods assumgifethe same activity with different speeds. In this paper, we
input video sequences are already synchronized, while the offigfose a novel approach for alignment and matching of videos,
methods use an optional built-in expensive hardware that pggich is based on the epipolar geometry and can discover the
vides synchronization. This paper presents a novel approacec%mex time-warping functior¢'(t).
alignment and matching of video sequences. We only assumgnere are two main types of approaches for aligning se-
t_hat given two video sequences are C.Ofrelated due to the giQsnces: sequence-to-sequence and trajectory-to-trajectory.
tion of objects. Based on this correlation we discover the cqijye sequence-to-sequence approach, which is also called direct
respondences (temporal alignment) between the frames of 8Pfroach, takes the video frames as an input and applies the
sequence to other. computation over all pixels in the video frames. The trajectory-
When a feature point moves in a 3D space with respectdotrajectory approach tracks the movement of the feature points
time, it generates a 3D trajectory(X1, Y1, Z1), (X2, Y2, Z2), in the field of view, and computation is based on the informa-
- (X4, Y4, Zy)}, wheret is the time stamp. This 3D tra-tion from the trajectories. The advantages of direct approach in-
jectory is projected as a 2D trajectory in the image plangde: it determines more accurately the spatial transformation

{(u1,v1), (u2,v2),..., (e, ve)}. The relationship between getween sequences than trajectory-to-trajectory approach, and it
point (X, Y;, Z;) in 3D, trajectory and its 2D projectiofu;, v;) does not require explicit feature detection and tracking. On the
is defined as follows: contrary, since the trajectories contain explicit geometric infor-
X, mation, the trajectory-to-trajectory approach better determines
Us Y_Z the large spatio-temporal misalignments, can align video se-
l vi |=P| ) |,i=1,2..,1, (1) quences acquired by different sensors and is less affected by the
1 12 background changes. The detailed comparison between these
whereP is the projection matrix (camera model). approaches is available i13, [1]. Since the video sequences



in most applications contain a significant spatio-temporal vacameras and the time shift are fixed, but the internal camera pa-
ance, we choose trajectory-to-trajectory approach. As one ofthimeters are allowed to change.

achievements, based on the trajectory information we can aligrExtensive research has been done for action recognition, var-
the video sequences where different people perform the sagig approaches were applied to discover the viewpoint differ-
action. ence between videos, to measure the difference between actions

Previously, researchers have tried wusing calising view-invariant characteristics, or to find the period of the
brated/uncalibrated stereo-rig8, 8] to recover the projection cyclic motion [12,19,/10].
relationships among the videos. In these approaches, thgrom these reviews, we can conclude that the existent meth-
fundamental matrix is used to find the spatial relationshigls are not appropriate for alignment of video sequences con-
between the trajectorie8,[14]. However, due to the instability taining the complex 3D motion with significant spatio-temporal
of reconstruction process, those approaches can only be apgligshnsion.
to some limited video sequences, such as videos simultaneously
shot. Therefore, there is no previous methods to synchronize . . . )
two videos of different people performing the same 3D activig. VIew-invariant Allgnment of Video
at different time using the fundamental matrix.

In this paper, we propose a method, which is based on ¥{g Propose a dynamic computation of time-warping function,
epipolar constraint, but does not need explicit reconstructing®d @ novel measurement of similarity that is based on epipolar
the 3D relationships. This method can align videos contaffROmetry.
ing 3D actions with large spatio-temporal variance. Since it is
a well-studied problem to reconstruct the spatial alignment.of . . .
video sequencgs given the correspondent frzmes, wg do not L!,'-' View-invariant Measure
cuss the spatial registration. The results of experiments st®ivét, let us consider the measuring similarity between 2D
that our method is much more stable, and it can be used in maajectories, which are represented &6&ui,vi), (ug,v2),

applications. o (up v} and {(ug)veay) (g voe)) -
(U/C(t)7U/C(t))}'
1.1. Previous Work In the Eq./1, the general camera projection can be modeled

) . ) . _using the following perspective matrix
Stein [11] achieved the alignment of tracking data obtained

from multiple camera assuming homography relationship be-
tween the cameras. Stein did not use the trajectory informa- pP—
tion, but discovered the temporal alignment using exhaustive
search among different intervals between video sequences. Due
to this, his method computationally quite expensive, and it canReaders could reference to any computer vision textbook to
only align the videos with a constant time shift. find the properties of this projection matrix. In this paper, we
Giese and Poggid7] proposed a method to find the spaticf-OCl_JS on the epipolar geometry, which represents the extrinsic
temporal alignment of two video sequences using the dynaiPfeiective geometry between views.
shift of the time stamp of the spatial information. They as- FOr the perspective model, the fundamental matrix (a 3 by 3
sumed that a 2D action trajectory can be represented as a lif@&trx), F', is defined by the equation
combination of prototypical views, and the effect of viewpoint . /
changes can be expressed by varying the coefficients of the U Uc (s)
linear-combination. Since they did not use the 3D information, s(i) = l ] F| veu | =0 @)
this method can only align some simple motion patterns. 1
Caspi and IraniT] proposed a direct approach to align two . . ) , , )
surveillance videos by finding the spatio-temporal transforn{@f & Pair of matching pointgu;, v;) « (UC(i)7 Ucu)) In two
tion that minimizes the sum of squares differences (SSD) b@jectories. Therefore, given a fundamental matrix, we can use
tween the sequences. They extended the direct approach t&the2) to measure the similarity between trajectories, such that
alignment of non-overlapping sequences captured by a stdf&summation of(i) for all points is minimized.
rig [2]. In these video sequences, the same motion inducest is a well known fact that the computation of fundamental
“similar” changes in time. This correlated temporal behavioratrix is not robust. The non-rigid motion can further worsen
was used to recover the spatial and temporal transformationstbe-stability. Example of non-rigid motion includes video se-
tween sequences. They also proposed a trajectory-to-trajectiugnces containing human activities captured at different time.
approach for alignment of sequences captured by cameras ithther words, two sequences of two different people perform-
significant different viewpoints3]. In this method the align- ing the same action captured by the same camera from two dif-
ment of trajectories is based on computation of the fundamerfiggient viewpoints. If a person performs the same movement
matrix. Their approaches can only be used for applicationsgdifferently, and the motion trajectories are non-rigid, previous
which the time shift between the video sequences is constaraproaches3, [14] will fail to synchronize these two video se-
is a linear function. Therefore, their method will fail for videoguences. Therefore, we propose a novel approach, which avoids
with a dynamic time shift. the computation of the fundamental matrix.
Wolf and Zomet/L4] proposed a method for self calibratinga Given sufficiently many point matches, E@®) can be used
moving rig. During the movement, the viewing angles betwetmcompute the unknown matriX from the following equation:
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ements of the fundamental matrix: (©
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Let us denote th&/ by the observation matrix, which is conFigure 1: a) Two temporal signals, b) after time warping, c) the
structed using the coordinates of points of two 2D trajectoriééstance metric C and the warping path.

Since B) is a homogenous equation, for a solutiorf @b exist,

matrix M must have rank at most eight. However, due to thecomputed incrementally using the formula:

noise or the matching error, the rank of mathk may not be

exactly eight. In this case th#" singular value oM estimates E(i,j) = di; + e, and (4)

the necessary perturbation of coordinates of each point in € = min{E(@ —1,5), E(i —1,j —1), E(i,j — 1)}

matrix M to produce two prc}tjeqtlons of the same 3D.traJeCt0r¥]eredi- captures the cost of making time instaftandt; cor-
Therefore, we can use tHg" singular value of matrixM to  respond to each other. The best alignment is then fourid by keep-
measure the matching of two trajectories. The smallest singygy track of the elements that contribute the minimal alignment
value of M corresponds to the best match of trajectories, agffor at each step and backward following a path from element
we denote it aglis. E(i,j)to E(1,1).

We generated two trajectories, selected nine points from eaclrhe above method can only align video sequences shot from
trajectory and put them into the observation mavix The9™  the same viewpoint. To achieve the view-invariance, we intro-
eigenvalue increases dramatically when there is a large chag@& the 3D shape information into the analysis throughithe
in thez andy coordinates of one point, and it is close to zeigistance measure. Based on the view-invariant similarity metric
only within a very small range. Therefore, if the points ajf Section 2.1, we propose a view-invariant DTW algorithm as
spread far enough from each other (that is the points are ffibws:
clustered in one specific location), by picking the nine corre- (1) We specify eight corresponding points between the first

sponding points from each trajectory, we can decide wheth@imes of two videos, and denote the image coordinates as
two trajectories match or not. Moreover, since the trajectcp’;yll’yll%. (24, v4) and (1, 1), ..., (28, ys).

contains the temporal information, we can also use this temporaf2) Track the feature points in two videos to acquire trajec-
information to align trajectories. We discuss the use of tempoigiies 1={ (v}, v}),... (u,,v})} and I (u1, v1),. .. (thom, Um)}.
information for alignment in the sectid¢h2 In our experiments we used the mean-shift trackpr [

In some applications it is reasonable to assume that the time¢3) For each pair of the corresponding points in the trajecto-
warping function is linear”’'(i) = ai + b. Thena andb param- ries, construct thé x 9 observation matrix:
eters of the time-warping function, can be found by using the

exhaustive search and by minimizing et measures. And to YT v TRTs U ’

model more complicated time-warping functions, a higher order TYYr o TRYs U

polynomial must be used. However, these types of time-warping Ty o T u;

function have very limited applications, such as synchronizing YiT1 o YgTs Vi

two video sequences that are captured simultaneously, or syn- Mo = | wiyr -+ vsys vjvj ®)
chronizing stereo cameras. Generally, this approach fails to vioo W v;

align video sequences shot at different times and contain human s U

activities, since the time-warping function for human activities Yoo Y8 vy

can not be modelled by a polynomial. . 1 L

. . . - . (4) Execute the classic DTW algorithm but using the distance
2.2. View-invariant Dynamic Time Warping measure between the pointstatind thet; respectively of two
Dynamic Time Warping (DTW) is a widely used method fdirajectories:d; ;) = dis(i,j), wheredis(i, j) = o9 is the9t"
warping two temporal signals. It uses an optimum time expairgular value of the matrié o in step 3.

sion/compression function to perform non-linear time alignment (5) Generate the time-warping functiofi(i) = 4,9 =
(See Figure2.2). The applications include speech recognition, ..., n by back tracing the path that minimize the value of
gesture recognition, signature recognitiéh [For two signald  E(i, j) from the upper-left corner of the matri. If the cell
and.J, a distance measut is computed to measure the mis£ (i, 5) is on the warping path, it meané point of trajectory/
alignment between the temporal signals, wheig, j) repre- corresponds to th¢" point of trajectory.J.

sents the error of aligning signals (distance measure) up to thélote that the DTW can establish the correspondence “on the
time instantg; andt; respectively. It is The error of alignmenfly”, which means that it determines the best warping path to



elementE(i, j). To achieve more robust measurement for the

E(i,7), we put the previously found corresponding points up [ (uh)* ()t - (whn)* (wem)® ] r
to 7 andj in the observation matri®, and update the original (W) (w)* e () (vem)*
observation matridMo Eq. 2.2 The matrixMg is given as (uh)* ()"
follows: WD) (u)® o ()" (uem)”
Mp = | () )" - (vin)* (vem)"
ry ’ 1T Nk 7 \k
UIUL e Uy Uj—1 (v1) (Vin)
ujvg w1051 (u1)” (wem)®
[T/ u_y (v1)" (vtm)"
y v’}ul v%_luj,l L 1 1 J
e = (1] e = - Ll I ) ) ) ) ]
uy u;_l (u))*+ (011 (ui1)* (v 1)*
. ) (ull)kH (Ugfl)k+1
1111 vjl_l o)) (g )+ (0 )+ (uj_g )*H
- - Mg = | ()" (o))" (Vi) (w1
This algorithm is not affected by the change in the viewpoint, (vy)F+? (v]j_y)F*?
since the matching measure does not depend on the viewpoint, (ug)Ft! (uj—1)"t?
and it dynamically computes the non-linear time-warping func- (1)t (vj—1)F !
tion between the two 2D trajectories. L 1 e 1 i
. . R zhrs  (uh)* (uy)* ! 17
2.3. Temporal Coarse-to-fine refinement o s () (v )F !
As we mentioned in section 2.1, the matching measure does T Ty (uf)Ft?
not require the explicit computation of the fundamental matrix, Y11 yers  (vf)F T (uy)F
therefore therank(M) = 8 is only a necessary condition toMo = | yiy ysys ()" ()"
determine whether the two points match or not. It can be no- Yi i Chlan
ticed that the last singular value of the observation matrix shows T1 Ts (uy)" !
an ambiguity if there are many points are very close to the cor- b s ()"
rect one. Therefore, the matching algorithm might give wrong 1 1 1

results due to the noise in the trajectory. The DTW is also se i—(4) Continue the measurement of matching trajectories |

tive to the errors, such that if the warping function is incorrect +513) ?Qnd‘] (lt<+tl). 3 and 4 till the | tlevel
E(i,7), then the error will be propagated to the rest of the Warp—( ) Repeat steps 3 an liine lowest level.

ing path. To solve these problems we use temporal pyramids o hus, the co.r.respondence of points from the upper level is
trajectories. smoothly transitioned to the lower level of the pyramid. The

In the temporal pyramid, the higher level has less numbaépblgwty is resolved and the error does not affect the rest of

of points, and the distance between consecutive points is rgm_e—warping function.
tively greater than the one in the lower level. The larger distange E | d Appli .
between points generates the larger change of the last singdlar xampies an pp Ications

value. Consequently, the_ signifi_cant v_ariation of the I_ast_singuWé have applied our algorithm on various video sequences.
value determines matching points without the ambiguity. Fifirst we used synthetic trajectory data for an accurate evalu-
thermore, the higher level of the pyramid provides a constraifiy of proposed approach. Next, we apply our method to syn-
for the lower level by propagating point correspondence. gQronize the real videos. From Caspi and Irani’'s experiments
by using _the coarse-to-fine ap_proach, we can prevent the ef%P'we chose sequences acquired by the cameras with non-
propagation to the rest of the time-warping function. _overlapping FOVs, and the cameras with zoom and no zoom
~ We propose a novel coarse-to-fine refinement for the Vieyeriapping FOV in order to show the view-invariace of the pro-
invariant DTW algorithm: _ ~ posed approach. The alignment of videos, containing human
(1) Forthe trajectory use spllge to sub-sample the trajectoryciyities captured by moving and stationary cameras, illustrates
by factor of 2, such thalength(I%) = 0.5 length(l(k + 1)) the robustness of the view-invariant measure used in DTW. The
(length() is the total number of points in the trajectory), Whetg hronization of the videos of different dancers and matching
k is the index of level of the pyramid and the highest level &5 its can be applied in training dancers. Finally, we applied
labelled ask = 0. The same approach is applied for the trgqe gigorithm to a long video, containing 60 actions performed
jectory J. And the coordinates of" point in trajectoryl his by different people, to retrieve automatically similar actions.
represented agu/)*, (v/)¥), and thej** point in trajectory.*
is represented &gu; )", (v;)*). :
(2) At the top level(k = 0) compute view-invariant DTW 3.1. Synthetic Examples
using® and.J. We generated a 3D sinusoidal curve, and projected it onto 2D
(3) For thek+1 level, generate the observation matrix, whodane using different projection matrices. Fig(a) shows the
first rows are the rows of observation matikfrom thei level. Synthetic 3D trajectory, and Fig (b) shows the projected 2D

Mp trajectories.
The matrixM is arranged as followingd/r = | Mg First, we used théx,y) coordinates of the trajectories for
Mo general DTW algorithm. The DTW using Euclidian distance



Perspective camera Fundamental matrix

model with rank con-| based similarity - \
straint similarity .

No Figi3(a): excellent result| Figi3(a): excellent result
noise

With Same as Fi3(a): excel-| Figl3(b): very bad result
noise lent result

Table 1: The performance evaluation for different model based
approaches. Each approach was tested with perfect data and
degenerated data.

(b)

cannot solve the correspondence at all, since the shape of two .

trajectories is significantly different due to the projection effects. ’ '

Second, we compared the view-invariant metric using the rank

constraint and applied view-invariant DTW to obtain correspon- f

dence. Fig2(c)shows the result, such that the dotted lines con- (c)

nect the corresponding points in each trajectory. Taldlshows

the error under different conditions. Figure 2: (a) A synthetic trajectory in 3D space. (b) The two
The noise with a normal distributed with = 0.00001 and projected trajectories of (a) in 2D space. (b) The view-invariant

mean = 0 was added to the 2D trajectories. Figjshows the dynamic time warping result, where the dot lines connect the

histogram of correspondence errors for different methods. cerresponding points

this figure,0 error represents the correct correspondence result,

1 and—1 represent the forward and backward one frame error in

trajectory correspondences, and so on. In other words, the hor- "
izontal axis is the error, number of frames, between correspon- .
dent frames, and the vertical axis is a total number of frames "

that have a certain error. There are tat&8 points in the se-
quences. Rank based approaches are not affected by this small
disturbance, however, the fundamental matrix based approach
degraded dramatically. We used the toolbox provided by Torr ’ |

to compute the fundamental matrix and applied the linear ant oo s s E e s e
non-linear approaches. We can conclude that the rank constraint () (b)

based approach is much more stable than the fundamental ma- _ i ) _
trix based approach. Figure 3: (a) The histogram of matching error using the rank

constraint of the perspective camera with/without noise. (b) The

] histogram of matching error using fundamental matrix with very
3.2. Zoomed and Non-overlapping Sequences  small noise in the data.

In [2], Caspi and Irani propose an attractive method to align

two non-overlapping video sequences. Their approach is basetsequence. The view-invariant DTW discovered 71 correct
on the computation of inter-frame transformations along eaahrrespondences, and eight frames with one frame shift. Fig. 7
video sequence. This approach requires two fixed camerasshows results of the trajectories and the histogram of matching
stalled on a common platform. In their experiments, the sceneiigor.

static, but the video cameras are moving. It is equivalent to thein the third experiment they used non-overlapping sequences.
static cameras capturing the dynamic scene. Although the fieftie first half of the videos contains the building around the foot-
of views are non-overlapping, the spatial relationship (epipolsdll stadium. We tracked one feature on the wall of the football
geometry) is still maintained. stadium and the corner of the window. Fi@ shows the in-

We applied our method to sequences used in experimentpuifimages, and Fig9 shows the results. The view-invariant
Caspi and Irani2]. The first experiment contains one sequen@TW discovered 151 correct correspondences, 21 frames with
captured by a camera with a wide FOV and the other captucet frame shift, and 28 frames with two frames shift. Fig. 8
by a camera with a zoomed FOV. The length of sequencesh®ws the results of trajectories and the histogram of matching
300 frames. Fig.4 shows the input frames. We tracked therror. The error may due to the tracking error.
lower left corner of the blue logo in both sequences to obtain
trajectories. After.allgnment only nine frames had |n.correct cof-g Syntheses of New Videos Containing Human
respondences. Fi% shows the results and the the histogram of L
matching error. Activities

In the second experiment they used videos captured by nem the previous experiments it is hard to evaluate the ef-
moving cameras. Fig. 6 shows the input sequences from fibetiveness of DTW function. Video sequences were captured
left and the right cameras. There are 80 frames in each vidg@multaneously so the trajectories do not contain the dynamic
We tracked the right-upper corner of the gate in the right camehange among the corresponding frames. Therefore, at different
sequence and the left-upper corner of the gate in the left caime and from distinct viewpoints we recorded videos people



Figure 4: The input sequences from Caspi and Irani’'s p&igure 6: The non-overlapping sequences (jump sequence),
per(frame 1,100,200,299), the first row is a wide field of viefkame 1,27,54 and 80 are shown. The first row is from the left
scene, and the second row is the zoomed scene. camera and the second row is from the right camera.

150} &j '»
S X

N -2 Figure 7: The view-invariant DTW correspondence result for
’ T jump sequences.
(a) (b)
Figure 5:The correspondence result for the zoom sequencesnd so on. From example readers can notice from trajectories
#3 and+#4 that there is a huge spatial difference between tra-
] ) ] ] jectories. Fig.[13 shows one of the warping results, in which
performing several identical actions. all sequences are warped toward the sequefge Each row
In the first experiment, two students were moving their hangisntains some key frames in the video, and the corresponding
up and down with the different speeds. We recorded three vidg@snes are shown in each column. Please reference to the sup-
using one camera. The first two videos were captured usfiigmental materials to get the full size input/output movies. Al-
static camera from the different viewpoints, while the third onkough the videos contain large amount of non-rigid motion, our
was captured using a moving camera. The hands were trackigdrithm successfully computed the correspondence from one
using the mean-shift tracker. We stabilize the frames of the thirdme to the frames in other sequences. We are very happy to
video (which was captured by moving camera) by subtractigge that the algorithm runs very robustly and the results are syn-
the image coordinates of a static point (the corner of desk) frefronized with a high accuracy.
the image coordinates of the hand. There was a time-shift of
approximately the half of the cycle in one of the videos rel- . ..
ative to the other. We used the perspective camera modeéilér' Computer Aid Training
the rank constraint approach to synchronize these videos. Dge time-warping function is a path that minimizes the align-
spite of the change in the viewpoints and the non-linear timeent error at each step through the similarity meagur&ach
shift, our method successfully established the correspondepei it from the path represents the correspondence between the
between videos. FiglQ shows the input videos. Fid.1shows ;" point in trajectoryl and the;j* point in trajectory.J. If
the results of the view-invariant DTW. The results are quite imvany points in the trajectory correspond to the same point in
pressive, since the large temporal variance had been compestrajectory/, then it means that the movement of sequehce
sated. is slower than the movement of sequedcat that moment. This
The next experiment dealt with synchronizing of videos thalpservation gave us a clue for the performance estimation. We
contain more complicated human activities. We recorded thteek sequences#6 as a model ang#1 as a test, and computed
dancers performed the same dance. For each dancer we captheedarping path between them. Fid4(a) shows the result.
two video sequences from two significant distinct view pointistom this figure we can notice that the dangdrhad a pause at
Fig.[12shows the trajectories of the left feet of dancers in the sixound the frame 150. Fid4(b) shows the time-warping path
sequences. The difference between trajectories includes vieatween sequencgs2 and#6. This figure shows the dancer
point difference, temporal difference and the difference due#& did not decrease the speed at the frame 80. By this way, the
the non-rigid motion of the dancers. We computed the tempsers can find easily the places for improvement.
ral correspondence for each trajectory point with respect to theFig. [15(a) shows the similarity measurement along the time-
points in the other five trajectories. So there are tafgl £ 15) warping path for sequenceél and #6. We noticed that the
computations. Based on the pair-wise correspondence we glamcer did well overall, but she had a bad movement from
erated a video containing all six synchronized dance sequenfrespes 150 to 200. We checked the input sequence, and found
such that the sequenggl is warped towards thg:6 based on that she lowered her leg from the upper most position around
the warping function computed from the trajectori¢d and that time. Therefore, we concluded that she may need to im-
#6, the sequencg2 is warped towards the sequen#é also, prove that part. Fid5(b) shows the similarity measurement for
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Figure 8: The non-overlapping sequences (football sequendégure 10:The human activity sequences. The first, second and
frames 0,49,99 and 149 are shown. The first row is from the lifird rows respectively shows the first, second and third input se-
camera and the second row is from the right camera. Theregurences, which are not synchronized. The columns are ordered
total over 300 frames in each sequence as frame 0,20,40,60,80,100, and 120 for each sequence.
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Figure 9: The view-invariant DTW correspondence result fqtigure 11:The output of the view invariant dynamic time warp-
football sequences. (a) shows the two trajectories and the Cof{§: The columns represent the synchronized corresponding
sponding points connected with dotted lines. (b) The histogrames. Every 40th of the output frames are shown, they are
of matching error. 11,51,91,131,171,211,251,291.
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Trajectory #1 Trajectory #2 Trajectory #3

Trajectory #4 Trajectory #5 Trajectory #6

Figure 12:The trajectories of the right feet of dancers in 6 se-
quences. The first row contains trajectodgs, #2 and#3 that
correspond to thés?, 2% and3"? dancers respectively. The sec-
ond row contains trajectorieg4, #5 and#6 that correspond to
the1%t, 274 and3"? dancers respectively also. Trajectorigs
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Figure 15: (a) The similarity measurement between the se-
guences#1 and#6, from frame 150 to 200 are contain large
spatial difference. (b) The similarity measurement between the
sequenceg2 and+#6, from frame 120 to 160 are contain large
spatial difference.

Figure 13: The key frames of the output sequences (the frame
index is shown at the bottom of figures. The sequences
H#1, #2, #3, #4, #5 are warped towards the sequerté and

are shown according to the rows. Thé and4'” are correspond

to the first dancer, thg"¢ and5*"

correspond to the second dancer, andtfeand6'” correspond

to the third dancer.
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Figure 14: (a) The time-warping path between the sequences
#1 and+#6, at the frame 150 there is a pause in sequehte

(b) The time-warping path between the sequeng2sand #6,

at the frame 80 the sequeng® is faster.



