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Abstract

In this paper, we propose a novel method to establish tempo-
ral correspondence between the frames of two videos. The 3D
epipolar geometry is used to eliminate the distortion generated
by the projection from 3D to 2D. Although the fundamental ma-
trix contains the information of the extrinsic property of projec-
tive geometry between views, it is sensitive to noise and fails
for non-rigid human body movement. Therefore, we propose
the use of a rank constraint of the corresponding points in two
views to measure the similarity between trajectories. This rank
constraint shows more robustness and is easier to compute than
the fundamental matrix. Furthermore, a dynamic programming
approach using the similarity measurement is proposed to find
the non-linear time-warping function for videos containing hu-
man activities. In this way, videos of different individuals taken
at different times and from distinct viewpoints can be synchro-
nized. Moreover, a temporal pyramid of trajectories is applied to
improve the accuracy of the view-invariant dynamic time warp-
ing approach. We show various applications of this approach,
such as video synthesis, human action recognition and computer
aided training. Compared to the state-of-the-art techniques, our
method shows a great improvement.

1. Introduction
Many applications, such as video mosaicing, video retrieval,
image based modelling and rendering, video synthesis, multi-
sensor surveillance, and human action recognition, require a
computation of a spatio-temporal alignment of video sequences.
Methods that tackle this problem discover a correspondence be-
tween the video sequences. Some of these methods assume the
input video sequences are already synchronized, while the other
methods use an optional built-in expensive hardware that pro-
vides synchronization. This paper presents a novel approach of
alignment and matching of video sequences. We only assume
that given two video sequences are correlated due to the mo-
tion of objects. Based on this correlation we discover the cor-
respondences (temporal alignment) between the frames of one
sequence to other.

When a feature point moves in a 3D space with respect to
time, it generates a 3D trajectory:{(X1, Y1, Z1), (X2, Y2, Z2),
. . ., (Xt, Yt, Zt)}, where t is the time stamp. This 3D tra-
jectory is projected as a 2D trajectory in the image plane:
{(u1, v1), (u2, v2),. . . , (ut, vt)}. The relationship between a
point(Xi, Yi, Zi) in 3D, trajectory and its 2D projection(ui, vi)
is defined as follows:

[
ui

vi

1

]
= P




Xi

Yi

Zi

1


 , i = 1, 2, ..., t, (1)

whereP is the projection matrix (camera model).

Assume that the same motion is performed with a differ-
ent speed (temporal extent), then we obtain another 3D tra-
jectory: {(XC(1), YC(1), ZC(1)), (XC(2), YC(2), ZC(2)), · · · ,
(XC(t), YC(t), ZC(t))},whereC(i) is a time warping function
such that




Xi

Yi

Zi

1


 =




XC(i)

YC(i)

ZC(i)

1


 , i = 1, 2, ..., t

Now assume that the viewpoint of the camera has also been
changed. Then the projection of this 3D trajectory to a 2D tra-
jectory,{(u′1, v′1), (u′2, v

′
2), . . ., (u′t, v

′
t)}, is defined in the simi-

lar way:



u′C(i)

v′C(i)

1


 = P ′




XC(i)

YC(i)

ZC(i)

1


 , i = 1, 2, ..., t.

Therefore, the problem of aligning video sequences is to
discover the time-warping function,C(i), for i = 1, 2, . . . , t,
using the information in two 2D trajectories,{(u1, v1),
(u2, v2), . . ., (ut, vt)} and{(u′C(1), v

′
C(1)), (u′C(2), v

′
C(2)), . . .,

(u′C(t), v
′
C(t))}.

There are two crucial aspects of exploring correspondences
of video sequences. First, the 2D trajectory is highly depen-
dent on the viewpoint, that is the same 3D trajectory may look
different in videos shot from the different viewpoints. Second,
the same motion may have different speeds (temporal extents).
The second problem becomes more complicated when the mo-
tion changes dynamically, such that the indices of corresponding
frames are non-linearly related. This is very common in videos
depicting human activities, since even the same person may per-
form the same activity with different speeds. In this paper, we
propose a novel approach for alignment and matching of videos,
which is based on the epipolar geometry and can discover the
complex time-warping function,C(t).

There are two main types of approaches for aligning se-
quences: sequence-to-sequence and trajectory-to-trajectory.
The sequence-to-sequence approach, which is also called direct
approach, takes the video frames as an input and applies the
computation over all pixels in the video frames. The trajectory-
to-trajectory approach tracks the movement of the feature points
in the field of view, and computation is based on the informa-
tion from the trajectories. The advantages of direct approach in-
clude: it determines more accurately the spatial transformation
between sequences than trajectory-to-trajectory approach, and it
does not require explicit feature detection and tracking. On the
contrary, since the trajectories contain explicit geometric infor-
mation, the trajectory-to-trajectory approach better determines
the large spatio-temporal misalignments, can align video se-
quences acquired by different sensors and is less affected by the
background changes. The detailed comparison between these
approaches is available in [13, 1]. Since the video sequences
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in most applications contain a significant spatio-temporal vari-
ance, we choose trajectory-to-trajectory approach. As one of the
achievements, based on the trajectory information we can align
the video sequences where different people perform the same
action.

Previously, researchers have tried using cali-
brated/uncalibrated stereo-rigs [6, 8] to recover the projection
relationships among the videos. In these approaches, the
fundamental matrix is used to find the spatial relationship
between the trajectories [3, 14]. However, due to the instability
of reconstruction process, those approaches can only be applied
to some limited video sequences, such as videos simultaneously
shot. Therefore, there is no previous methods to synchronize
two videos of different people performing the same 3D activity
at different time using the fundamental matrix.

In this paper, we propose a method, which is based on the
epipolar constraint, but does not need explicit reconstructing of
the 3D relationships. This method can align videos contain-
ing 3D actions with large spatio-temporal variance. Since it is
a well-studied problem to reconstruct the spatial alignment of
video sequences given the correspondent frames, we do not dis-
cuss the spatial registration. The results of experiments show
that our method is much more stable, and it can be used in many
applications.

1.1. Previous Work

Stein [11] achieved the alignment of tracking data obtained
from multiple camera assuming homography relationship be-
tween the cameras. Stein did not use the trajectory informa-
tion, but discovered the temporal alignment using exhaustive
search among different intervals between video sequences. Due
to this, his method computationally quite expensive, and it can
only align the videos with a constant time shift.

Giese and Poggio [7] proposed a method to find the spatio-
temporal alignment of two video sequences using the dynamic
shift of the time stamp of the spatial information. They as-
sumed that a 2D action trajectory can be represented as a linear-
combination of prototypical views, and the effect of viewpoint
changes can be expressed by varying the coefficients of the
linear-combination. Since they did not use the 3D information,
this method can only align some simple motion patterns.

Caspi and Irani [1] proposed a direct approach to align two
surveillance videos by finding the spatio-temporal transforma-
tion that minimizes the sum of squares differences (SSD) be-
tween the sequences. They extended the direct approach to the
alignment of non-overlapping sequences captured by a stereo
rig [2]. In these video sequences, the same motion induces
“similar” changes in time. This correlated temporal behavior
was used to recover the spatial and temporal transformations be-
tween sequences. They also proposed a trajectory-to-trajectory
approach for alignment of sequences captured by cameras with
significant different viewpoints [3]. In this method the align-
ment of trajectories is based on computation of the fundamental
matrix. Their approaches can only be used for applications, in
which the time shift between the video sequences is constant or
is a linear function. Therefore, their method will fail for videos
with a dynamic time shift.

Wolf and Zomet [14] proposed a method for self calibrating a
moving rig. During the movement, the viewing angles between

cameras and the time shift are fixed, but the internal camera pa-
rameters are allowed to change.

Extensive research has been done for action recognition, var-
ious approaches were applied to discover the viewpoint differ-
ence between videos, to measure the difference between actions
using view-invariant characteristics, or to find the period of the
cyclic motion [12, 9, 10].

From these reviews, we can conclude that the existent meth-
ods are not appropriate for alignment of video sequences con-
taining the complex 3D motion with significant spatio-temporal
expansion.

2. View-invariant Alignment of Video

We propose a dynamic computation of time-warping function,
and a novel measurement of similarity that is based on epipolar
geometry.

2.1. View-invariant Measure

First, let us consider the measuring similarity between 2D
trajectories, which are represented as{(u1, v1), (u2, v2),
. . . , (ut, vt)} and {(u′C(1), v

′
C(1)), (u′C(2), v

′
C(2)), . . . ,

(u′C(t), v
′
C(t))}.

In the Eq. 1, the general camera projection can be modeled
using the following perspective matrix

P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p23 p33 p34


 .

Readers could reference to any computer vision textbook to
find the properties of this projection matrix. In this paper, we
focus on the epipolar geometry, which represents the extrinsic
projective geometry between views.

For the perspective model, the fundamental matrix (a 3 by 3
matrix),F, is defined by the equation

s(i) =

[
ui

vi

1

]T

F




u′C(i)

v′C(i)

1


 = 0, (2)

for a pair of matching points(ui, vi) ↔
(
u′C(i), v

′
C(i)

)
in two

trajectories. Therefore, given a fundamental matrix, we can use
Eq. (2) to measure the similarity between trajectories, such that
the summation ofs(i) for all points is minimized.

It is a well known fact that the computation of fundamental
matrix is not robust. The non-rigid motion can further worsen
the stability. Example of non-rigid motion includes video se-
quences containing human activities captured at different time.
In other words, two sequences of two different people perform-
ing the same action captured by the same camera from two dif-
ferent viewpoints. If a person performs the same movement
differently, and the motion trajectories are non-rigid, previous
approaches [3, 14] will fail to synchronize these two video se-
quences. Therefore, we propose a novel approach, which avoids
the computation of the fundamental matrix.

Given sufficiently many point matches, Eq. (2) can be used
to compute the unknown matrixF from the following equation:
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Mf =




u′c(1)u1 · · · u′c(t)ut

u′c(1)v1 · · · u′c(t)vt

u′c(1) · · · u′c(t)
v′c(1)u1 · · · v′c(t)ut

v′c(1)v1 · · · v′c(t)vt

v′c(1) · · · v′c(t)
u1 · · · ut

v1 · · · vt

1 · · · 1




T

f = 0 (3)

where f is the rearrangement of the el-
ements of the fundamental matrix:
f =

[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T
.

Let us denote theM by the observation matrix, which is con-
structed using the coordinates of points of two 2D trajectories.
Since (3) is a homogenous equation, for a solution off to exist,
matrix M must have rank at most eight. However, due to the
noise or the matching error, the rank of matrixM may not be
exactly eight. In this case the9th singular value ofM estimates
the necessary perturbation of coordinates of each point in
matrixM to produce two projections of the same 3D trajectory.
Therefore, we can use the9th singular value of matrixM to
measure the matching of two trajectories. The smallest singular
value ofM corresponds to the best match of trajectories, and
we denote it asdis.

We generated two trajectories, selected nine points from each
trajectory and put them into the observation matrixM. The9th

eigenvalue increases dramatically when there is a large change
in thex andy coordinates of one point, and it is close to zero
only within a very small range. Therefore, if the points are
spread far enough from each other (that is the points are not
clustered in one specific location), by picking the nine corre-
sponding points from each trajectory, we can decide whether
two trajectories match or not. Moreover, since the trajectory
contains the temporal information, we can also use this temporal
information to align trajectories. We discuss the use of temporal
information for alignment in the section2.2.

In some applications it is reasonable to assume that the time-
warping function is linear,C(i) = ai + b. Thena andb param-
eters of the time-warping function, can be found by using the
exhaustive search and by minimizing thedist measures. And to
model more complicated time-warping functions, a higher order
polynomial must be used. However, these types of time-warping
function have very limited applications, such as synchronizing
two video sequences that are captured simultaneously, or syn-
chronizing stereo cameras. Generally, this approach fails to
align video sequences shot at different times and contain human
activities, since the time-warping function for human activities
can not be modelled by a polynomial.

2.2. View-invariant Dynamic Time Warping
Dynamic Time Warping (DTW) is a widely used method for
warping two temporal signals. It uses an optimum time expan-
sion/compression function to perform non-linear time alignment
(See Figure.2.2). The applications include speech recognition,
gesture recognition, signature recognition [5]. For two signalsI
andJ , a distance measureE is computed to measure the mis-
alignment between the temporal signals, whereE(i, j) repre-
sents the error of aligning signals (distance measure) up to the
time instantsti andtj respectively. It is The error of alignment

(a) (b)

(c)

Figure 1: a) Two temporal signals, b) after time warping, c) the
distance metric C and the warping path.

is computed incrementally using the formula:

E(i, j) = di,j + e, and
e = min {E(i− 1, j), E(i− 1, j − 1), E(i, j − 1)} (4)

Heredij captures the cost of making time instantsti andtj cor-
respond to each other. The best alignment is then found by keep-
ing track of the elements that contribute the minimal alignment
error at each step and backward following a path from element
E(i, j) to E(1, 1).

The above method can only align video sequences shot from
the same viewpoint. To achieve the view-invariance, we intro-
duce the 3D shape information into the analysis through thedij

distance measure. Based on the view-invariant similarity metric
in Section 2.1, we propose a view-invariant DTW algorithm as
follows:

(1) We specify eight corresponding points between the first
frames of two videos, and denote the image coordinates as
(x′1, y

′
1), ..., (x

′
8, y

′
8) and(x1, y1), ..., (x8, y8).

(2) Track the feature points in two videos to acquire trajec-
tories I={(u′1, v′1),. . . ,(u′n, v′n)} and J={(u1, v1),. . . ,(um, vm)}.
In our experiments we used the mean-shift tracker [4].

(3) For each pair of the corresponding points in the trajecto-
ries, construct the9× 9 observation matrix:

MO =




x′1x1 · · · x′8x8 u′iuj

x′1y1 · · · x′8y8 u′ivj

x′1 · · · x′8 u′i
y′1x1 · · · y′8x8 v′iuj

y′1y1 · · · y′8y8 v′ivj

y′1 · · · y′1 v′i
x1 · · · x8 uj

y1 · · · y8 vj

1 · · · 1 1




T

. (5)

(4) Execute the classic DTW algorithm but using the distance
measure between the points atti and thetj respectively of two
trajectories:d(i,j) = dis(i, j), wheredis(i, j) = σ9 is the9th

singular value of the matrixMO in step 3.
(5) Generate the time-warping functionC(i) = i, i =

1, . . . , n by back tracing the path that minimize the value of
E(i, j) from the upper-left corner of the matrixE. If the cell
E(i, j) is on the warping path, it meansith point of trajectoryI
corresponds to thejth point of trajectoryJ .

Note that the DTW can establish the correspondence “on the
fly”, which means that it determines the best warping path to

3



elementE(i, j). To achieve more robust measurement for the
E(i, j), we put the previously found corresponding points up
to i andj in the observation matrixM, and update the original
observation matrixMO Eq. 2.2. The matrixMR is given as
follows:

MR =
[

Mp

MO

]
; MP =




u′1u1 · · · u′i−1uj−1

u′1v1 · · · u′i−1vj−1

u′1 · · · u′i−1

v′1u1 · · · v′i−1uj−1

v′1v1 · · · v′i−1vj−1

v′1 · · · v′i−1

u1 · · · uj−1

v1 · · · vj−1

1 · · · 1




T

(6)

This algorithm is not affected by the change in the viewpoint,
since the matching measure does not depend on the viewpoint,
and it dynamically computes the non-linear time-warping func-
tion between the two 2D trajectories.

2.3. Temporal Coarse-to-fine refinement
As we mentioned in section 2.1, the matching measure does
not require the explicit computation of the fundamental matrix,
therefore therank(M) = 8 is only a necessary condition to
determine whether the two points match or not. It can be no-
ticed that the last singular value of the observation matrix shows
an ambiguity if there are many points are very close to the cor-
rect one. Therefore, the matching algorithm might give wrong
results due to the noise in the trajectory. The DTW is also sensi-
tive to the errors, such that if the warping function is incorrect at
E(i, j), then the error will be propagated to the rest of the warp-
ing path. To solve these problems we use temporal pyramids of
trajectories.

In the temporal pyramid, the higher level has less number
of points, and the distance between consecutive points is rela-
tively greater than the one in the lower level. The larger distance
between points generates the larger change of the last singular
value. Consequently, the significant variation of the last singular
value determines matching points without the ambiguity. Fur-
thermore, the higher level of the pyramid provides a constraint
for the lower level by propagating point correspondence. So
by using the coarse-to-fine approach, we can prevent the error
propagation to the rest of the time-warping function.

We propose a novel coarse-to-fine refinement for the view-
invariant DTW algorithm:

(1) For the trajectoryI use spline to sub-sample the trajectory
by factor of 2, such thatlength(Ik) = 0.5 ∗ length(I(k + 1))
(length() is the total number of points in the trajectory), where
k is the index of level of the pyramid and the highest level is
labelled ask = 0. The same approach is applied for the tra-
jectory J . And the coordinates ofith point in trajectoryIk is
represented as((u′i)

k, (v′i)
k), and thejth point in trajectoryJk

is represented as((uj)k, (vj)k).
(2) At the top level(k = 0) compute view-invariant DTW

usingI0 andJ0.
(3) For thek+1 level, generate the observation matrix, whose

first rows are the rows of observation matrixM from thek level.

The matrixM is arranged as following:MR =




MP

MQ

MO




MP =




(u′1)
k(u1)

k · · · (u′tn)k(utm)k

(u′1)
k(v1)

k · · · (u′tn)k(vtm)k

(u′1)
k · · · (u′tn)k

(v′1)
k(u1)

k · · · (v′tn)k(utm)k

(v′1)
k(v1)

k · · · (v′tn)k(vtm)k

(v′1)
k · · · (v′tn)k

(u1)
k · · · (utm)k

(v1)
k · · · (vtm)k

1 · · · 1




T

MQ =




(u′1)
k+1(u1)

k+1 · · · (u′i−1)
k+1(uj−1)

k+1

(u′1)
k+1(v1)

k+1 · · · (u′i−1)
k+1(vj−1)

k+1

(u′1)
k+1 · · · (u′i−1)

k+1

(v′1)
k+1(u1)

k+1 · · · (v′i−1)
k+1(uj−1)

k+1

(v′1)
k+1(v1)

k+1 · · · (v′i−1)
k+1(vj−1)

k+1

(v′1)
k+1 · · · (v′i−1)

k+1

(u1)
k+1 · · · (uj−1)

k+1

(v1)
k+1 · · · (vj−1)

k+1

1 · · · 1




T

MO =




x′1x1 · · · x′8x8 (u′i)
k+1(uj)

k+1

x′1y1 · · · x′8y8 (u′i)
k+1(vj)

k+1

x′1 · · · x′8 (u′i)
k+1

y′1x1 · · · y′8x8 (v′i)
k+1(uj)

k+1

y′1y1 · · · y′8y8 (v′i)
k+1(vj)

k+1

y′1 · · · y′1 (v′i)
k+1

x1 · · · x8 (uj)
k+1

y1 · · · y8 (vj)
k+1

1 · · · 1 1




T

.

(4) Continue the measurement of matching trajectories I
(k+1) and J (k+1).

(5) Repeat steps 3 and 4 till the lowest level.
Thus, the correspondence of points from the upper level is

smoothly transitioned to the lower level of the pyramid. The
ambiguity is resolved and the error does not affect the rest of
time-warping function.

3. Examples and Applications
We have applied our algorithm on various video sequences.
First, we used synthetic trajectory data for an accurate evalu-
ation of proposed approach. Next, we apply our method to syn-
chronize the real videos. From Caspi and Irani’s experiments
[2] we chose sequences acquired by the cameras with non-
overlapping FOVs, and the cameras with zoom and no zoom
overlapping FOV in order to show the view-invariace of the pro-
posed approach. The alignment of videos, containing human
activities captured by moving and stationary cameras, illustrates
the robustness of the view-invariant measure used in DTW. The
synchronization of the videos of different dancers and matching
results can be applied in training dancers. Finally, we applied
the algorithm to a long video, containing 60 actions performed
by different people, to retrieve automatically similar actions.

3.1. Synthetic Examples
We generated a 3D sinusoidal curve, and projected it onto 2D
plane using different projection matrices. Fig.2 (a) shows the
synthetic 3D trajectory, and Fig.2 (b) shows the projected 2D
trajectories.

First, we used the(x, y) coordinates of the trajectories for
general DTW algorithm. The DTW using Euclidian distance
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Perspective camera
model with rank con-
straint similarity

Fundamental matrix
based similarity

No
noise

Fig.3(a): excellent result Fig.3(a): excellent result

With
noise

Same as Fig.3(a): excel-
lent result

Fig.3(b): very bad result

Table 1:The performance evaluation for different model based
approaches. Each approach was tested with perfect data and
degenerated data.

cannot solve the correspondence at all, since the shape of two
trajectories is significantly different due to the projection effects.
Second, we compared the view-invariant metric using the rank
constraint and applied view-invariant DTW to obtain correspon-
dence. Fig.2(c)shows the result, such that the dotted lines con-
nect the corresponding points in each trajectory. Table3.1shows
the error under different conditions.

The noise with a normal distributed withσ = 0.00001 and
mean = 0 was added to the 2D trajectories. Fig.3 shows the
histogram of correspondence errors for different methods. In
this figure,0 error represents the correct correspondence result,
1 and−1 represent the forward and backward one frame error in
trajectory correspondences, and so on. In other words, the hor-
izontal axis is the error, number of frames, between correspon-
dent frames, and the vertical axis is a total number of frames
that have a certain error. There are total183 points in the se-
quences. Rank based approaches are not affected by this small
disturbance, however, the fundamental matrix based approach
degraded dramatically. We used the toolbox provided by Torr
to compute the fundamental matrix and applied the linear ant
non-linear approaches. We can conclude that the rank constraint
based approach is much more stable than the fundamental ma-
trix based approach.

3.2. Zoomed and Non-overlapping Sequences
In [2], Caspi and Irani propose an attractive method to align
two non-overlapping video sequences. Their approach is based
on the computation of inter-frame transformations along each
video sequence. This approach requires two fixed cameras in-
stalled on a common platform. In their experiments, the scene is
static, but the video cameras are moving. It is equivalent to the
static cameras capturing the dynamic scene. Although the fields
of views are non-overlapping, the spatial relationship (epipolar
geometry) is still maintained.

We applied our method to sequences used in experiments of
Caspi and Irani [2]. The first experiment contains one sequence
captured by a camera with a wide FOV and the other captured
by a camera with a zoomed FOV. The length of sequences is
300 frames. Fig.4 shows the input frames. We tracked the
lower left corner of the blue logo in both sequences to obtain
trajectories. After alignment only nine frames had incorrect cor-
respondences. Fig.5 shows the results and the the histogram of
matching error.

In the second experiment they used videos captured by the
moving cameras. Fig. 6 shows the input sequences from the
left and the right cameras. There are 80 frames in each video.
We tracked the right-upper corner of the gate in the right camera
sequence and the left-upper corner of the gate in the left cam-
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Figure 2: (a) A synthetic trajectory in 3D space. (b) The two
projected trajectories of (a) in 2D space. (b) The view-invariant
dynamic time warping result, where the dot lines connect the
corresponding points
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Figure 3: (a) The histogram of matching error using the rank
constraint of the perspective camera with/without noise. (b) The
histogram of matching error using fundamental matrix with very
small noise in the data.

era sequence. The view-invariant DTW discovered 71 correct
correspondences, and eight frames with one frame shift. Fig. 7
shows results of the trajectories and the histogram of matching
error.

In the third experiment they used non-overlapping sequences.
The first half of the videos contains the building around the foot-
ball stadium. We tracked one feature on the wall of the football
stadium and the corner of the window. Fig.8 shows the in-
put images, and Fig.9 shows the results. The view-invariant
DTW discovered 151 correct correspondences, 21 frames with
one frame shift, and 28 frames with two frames shift. Fig. 8
shows the results of trajectories and the histogram of matching
error. The error may due to the tracking error.

3.3. Syntheses of New Videos Containing Human
Activities

From the previous experiments it is hard to evaluate the ef-
fectiveness of DTW function. Video sequences were captured
simultaneously so the trajectories do not contain the dynamic
change among the corresponding frames. Therefore, at different
time and from distinct viewpoints we recorded videos people
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Figure 4: The input sequences from Caspi and Irani’s pa-
per(frame 1,100,200,299), the first row is a wide field of view
scene, and the second row is the zoomed scene.
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Figure 5:The correspondence result for the zoom sequences.

performing several identical actions.

In the first experiment, two students were moving their hands
up and down with the different speeds. We recorded three videos
using one camera. The first two videos were captured using
static camera from the different viewpoints, while the third one
was captured using a moving camera. The hands were tracked
using the mean-shift tracker. We stabilize the frames of the third
video (which was captured by moving camera) by subtracting
the image coordinates of a static point (the corner of desk) from
the image coordinates of the hand. There was a time-shift of
approximately the half of the cycle in one of the videos rel-
ative to the other. We used the perspective camera model in
the rank constraint approach to synchronize these videos. De-
spite of the change in the viewpoints and the non-linear time
shift, our method successfully established the correspondence
between videos. Fig.10 shows the input videos. Fig.11 shows
the results of the view-invariant DTW. The results are quite im-
pressive, since the large temporal variance had been compen-
sated.

The next experiment dealt with synchronizing of videos that
contain more complicated human activities. We recorded three
dancers performed the same dance. For each dancer we captured
two video sequences from two significant distinct view points.
Fig. 12shows the trajectories of the left feet of dancers in the six
sequences. The difference between trajectories includes view-
point difference, temporal difference and the difference due to
the non-rigid motion of the dancers. We computed the tempo-
ral correspondence for each trajectory point with respect to the
points in the other five trajectories. So there are total (C2

6 = 15)
computations. Based on the pair-wise correspondence we gen-
erated a video containing all six synchronized dance sequences,
such that the sequence#1 is warped towards the#6 based on
the warping function computed from the trajectories#1 and
#6, the sequence#2 is warped towards the sequence#6 also,

     

    

Figure 6: The non-overlapping sequences (jump sequence),
frame 1,27,54 and 80 are shown. The first row is from the left
camera and the second row is from the right camera.
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Figure 7: The view-invariant DTW correspondence result for
jump sequences.

and so on. From example readers can notice from trajectories
#3 and#4 that there is a huge spatial difference between tra-
jectories. Fig.13 shows one of the warping results, in which
all sequences are warped toward the sequence#6. Each row
contains some key frames in the video, and the corresponding
frames are shown in each column. Please reference to the sup-
plemental materials to get the full size input/output movies. Al-
though the videos contain large amount of non-rigid motion, our
algorithm successfully computed the correspondence from one
frame to the frames in other sequences. We are very happy to
see that the algorithm runs very robustly and the results are syn-
chronized with a high accuracy.

3.4. Computer Aid Training

The time-warping function is a path that minimizes the align-
ment error at each step through the similarity measureE. Each
point from the path represents the correspondence between the
ith point in trajectoryI and thejth point in trajectoryJ . If
many points in the trajectoryI correspond to the same point in
the trajectoryJ , then it means that the movement of sequenceI
is slower than the movement of sequenceJ at that moment. This
observation gave us a clue for the performance estimation. We
took sequences,#6 as a model and#1 as a test, and computed
the warping path between them. Fig.14(a) shows the result.
From this figure we can notice that the dancer#1 had a pause at
around the frame 150. Fig.14(b) shows the time-warping path
between sequences#2 and#6. This figure shows the dancer
#2 did not decrease the speed at the frame 80. By this way, the
users can find easily the places for improvement.

Fig. 15(a) shows the similarity measurement along the time-
warping path for sequences#1 and#6. We noticed that the
dancer did well overall, but she had a bad movement from
frames 150 to 200. We checked the input sequence, and found
that she lowered her leg from the upper most position around
that time. Therefore, we concluded that she may need to im-
prove that part. Fig.15(b) shows the similarity measurement for
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Figure 8: The non-overlapping sequences (football sequence),
frames 0,49,99 and 149 are shown. The first row is from the left
camera and the second row is from the right camera. There are
total over 300 frames in each sequence
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Figure 9: The view-invariant DTW correspondence result for
football sequences. (a) shows the two trajectories and the corre-
sponding points connected with dotted lines. (b) The histogram
of matching error.

sequences#2 and#6, we detected the dancer#2 had the same
problem as the dancer#1.

With the help of view-invariant DTW, we can easily develop
a self-training system, such that the users (dancers#1 and#2)
record their performance, and compare to the master’s (dancer
#3). Then the system will give suggestions about the speed and
the extent of their movement. Note that the beginner’s and mas-
ter’s camera viewpoints can be different. Therefore, this method
has a great potential.

References
[1] Y. Caspi and M. Irani. A step towards sequence-to-sequence

alignment. InCVPR00, pages 682–689, 2000.

[2] Yaron Caspi and Michal Irani. Alignment of Non-Overlapping
sequences. InICCV’01, pages 76–83, 2001.

[3] Yaron Caspi, Denis Simakov, and Michal Irani. Feature-based
sequence-to-sequence matching. InVAMODS (Vision and Mod-
elling of Dynamic Scenes) workshop with ECCV, Copenhagen,
2002.

[4] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of
non-rigid objects using mean shift. InProceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, volume 2,
pages 142–149, 2000.

[5] Trevor J. Darrell, Irfan A. Essa, and Alex P. Pentland. Task-
specific gesture analysis in real-time using interpolated views.
IEEE Trans. PAMI, 1995.

[6] David Demirdjian, Andrew Zisserman, and Radu Horaud. Stereo
autocalibration from one plane. InECCV, pages 625–639, 2000.

[7] M. Giese and T. Poggio. Synthesis and recognition of biological
motion patterns based on linear superposition of prototypical mo-
tion sequences. InProceedings of the MVIEW 99 Symposium at
CVPR, pages 73–80, Fort Collins, CO, 1999.

       

       

       

Figure 10:The human activity sequences. The first, second and
third rows respectively shows the first, second and third input se-
quences, which are not synchronized. The columns are ordered
as frame 0,20,40,60,80,100, and 120 for each sequence.

        

Figure 11:The output of the view invariant dynamic time warp-
ing. The columns represent the synchronized corresponding
frames. Every 40th of the output frames are shown, they are
11,51,91,131,171,211,251,291.

[8] Radu Horaud and Gabriella Csurka. Autocalibration and eu-
clidean reconstruction using rigid motion of a stereo rig. InProc.
of the Sixth International Conference of Computer Vision, pages
96–103, Bombay, India, 1998.

[9] V. Parameswaran and R. Chellappa. Quasi-invariants for human
action representation and recognition. In16th International Con-
ference on Pattern Recognition, volume 1, pages 307–310, 2002.

[10] S. M. Seitz and C. R. Dyer. View-invariant analysis of cyclic mo-
tion. International Journal of Computer Vision, 25:1–25, 1997.

[11] G. P. Stein. Tracking from multiple view points: Self-calibration
of space and time. InDARPA IU Workshop, pages 521–527, 1998.

[12] the author is blanked for review. blanked for review. In
IEEE Workshop on Detection and Recognition of Events in Video
(EVENT’01), Vancouver, Canada, July 2001.

[13] P. H. S. Torr and A Zisserman. Feature based methods for
structure and motion estimation. In W. Triggs, A. Zisserman,
and R. Szeliski, editors,International Workshop on Vision Algo-
rithms, pages 278–295, 1999.

[14] L. Wolf and A. Zomet. Sequence to sequence self-calibration.
In Proceedings of the European Conference on Computer Vi-
sion(ECCV), Copenhagen, May 2002.

7



0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150

200
Dance sequence #1

0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150

200
Dance sequence #2

0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150

200
Dance sequence #3

 

Trajectory #1   Trajectory #2   Trajectory #3 

0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150

200
Dance sequence #4

0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150

200
Dance sequence #5

0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150

200
Dance sequence #6

 

Trajectory #4   Trajectory #5   Trajectory #6 

 

Figure 12:The trajectories of the right feet of dancers in 6 se-
quences. The first row contains trajectories#1, #2 and#3 that
correspond to the1st, 2nd and3rd dancers respectively. The sec-
ond row contains trajectories#4,#5 and#6 that correspond to
the1st, 2nd and3rd dancers respectively also. Trajectories#1

      

19  63  75  114  148  194 

Figure 13:The key frames of the output sequences (the frame
index is shown at the bottom of figures. The sequences
#1, #2, #3, #4, #5 are warped towards the sequence#6 and
are shown according to the rows. The1st and4th are correspond
to the first dancer, the2nd and5th

correspond to the second dancer, and the3rd and6th correspond
to the third dancer.
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Figure 14: (a) The time-warping path between the sequences
#1 and#6, at the frame 150 there is a pause in sequence#1.
(b) The time-warping path between the sequences#2 and#6,
at the frame 80 the sequence#2 is faster.
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Figure 15: (a) The similarity measurement between the se-
quences#1 and#6, from frame 150 to 200 are contain large
spatial difference. (b) The similarity measurement between the
sequences#2 and#6, from frame 120 to 160 are contain large
spatial difference.
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