IDENTIFYING BEHAVIORS IN CROWDED SCENES THROUGH STABILITY ANALYSIS FOR DYNAMICAL SYSTEMS

Berkan Solmaz, Dr. Brian Moore and Dr. Mubarak Shah

Outline

- Behaviors to be Identified
- Theoretical Concepts
 - Lagrangian Particle Dynamics, Numerical Integration
 - Linearization of Dynamical Systems, Jacobian Matrix
- Proposed Framework
- Experimental Results

Behaviors in Crowded Scenes

Identifying Behaviors in Crowded Scenes

Challenges :

- Various real-world conditions
- High-densities of moving objects
- Difficult to analyze behaviors of individuals

Conventional Approaches for Behavior Analysis

- Fail for high density of objects
- Computationally expensive

Require training, hence the manual isolation of behaviors

Theory Behind Our Method (Lagrangian Particle Dynamics)

Sequence

Optical Flow F(y(t))

using numerical integration, Euler's Method y(t+1) = y(t) + F(y(t))

Theory Behind Our Method (Linearization of a Dynamical System)

$$\frac{dx}{dt} = f(x, y) \qquad \frac{dy}{dt} = g(x, y) \qquad \text{particle velocities} \qquad (1)$$
$$f(x^*, y^*) = 0 \qquad g(x^*, y^*) = 0 \qquad \text{fixed points} \qquad (2)$$

By Taylor's theorem $f(x,y) \approx f(x^*,y^*) + f_x(x^*,y^*)(x-x^*) + f_y(x^*,y^*)(y-y^*)$ (3)

where f_x and f_y are partial derivatives

$$\frac{dx}{dt} = f(x,y) = f(x^*,y^*) + f_x(x^*,y^*)(x-x^*) + f_y(x^*,y^*)(y-y^*)$$
(4)

 $u = (x - x^*)$ $v = (y - y^*)$ new coordinates (5)

$$\frac{du}{dt} = \frac{dx}{dt} \qquad \frac{dv}{dt} = \frac{dy}{dt}$$
(6)

$$\frac{du}{dt} = f_x(x^*, y^*)u + f_y(x^*, y^*)v \qquad \frac{dv}{dt} = g_x(x^*, y^*)u + g(x^*, y^*)v \tag{7}$$

$$= \begin{bmatrix} u \\ v \end{bmatrix} \qquad \frac{d\mathbf{u}}{dt} = \mathbf{J}\,\mathbf{\vec{u}} \tag{8}$$

$$J = \begin{bmatrix} f_x(x^*, y^*) & f_y(x^*, y^*) \\ g_x(x^*, y^*) & g_y(x^*, y^*) \end{bmatrix}$$
Jacobian matrix

ū

Eigenvalues of Jacobian Matrix

Jacobian matrix

Sink

Bottleneck

 $\lambda_1 < 0 \lambda_2 < 0$

Source

 $\lambda_1 > 0 \lambda_2 > 0$

Departure

(Fountainhead)

Line of

fixed points

 $\lambda_1 = 0 \text{ or } \lambda_2 = 0$

Lane

Saddle

 $\lambda_1 < 0 < \lambda_2$

Blocking

 λ_1 and λ_2 complex conj. Arch/Ring

8

Proposed Framework

Task 2 Computing Eigenvalue Map

Task 1 – Finding ROIs

Sequence

Optical Flow

v Particle Trajectories

Density Map

Sequence

Optical Flow

Particle Trajectories Density Map

Task 1 – Finding ROIs

Density Map

Accumulation Points

Particle Trajectories

Task 2 – Computing Eigenvalue Map

Ratios & Identified Behaviors

Eigenvalue Map Around Candidate Point

Bottleneck

Identified Behavior	Ratio Condition
Bottleneck	Red / Total > Thr
Lane	Blue / Total > Thr
Arch/Ring	(White+Cyan+Magenta) / Total > Thr

Eigenvalue Map Around Candidate Path

Lane and Arch

Detecting Departure

Angle (0 : 360) Angles of Trajectories

Particle Trajectories

Angle (0: 360) Angles of Trajectories

Various directions — Candidate points for Departure

Detecting Departure

Average Optical Flow

Eigenvalue Map Around Candidate Point

Departure

$$\lambda_{1} < 0 \quad \lambda_{2} < 0$$

$$\lambda_{1} > 0 \quad \lambda_{2} > 0$$

$$\lambda_{1} = 0 \quad \text{or} \quad \lambda_{2} = 0$$

$$\lambda_{1} < 0 < \lambda_{2}$$

$$\lambda_{1,2} = \alpha \pm j \beta, \quad \alpha < 0$$

$$\lambda_{1,2} = \alpha \pm j \beta, \quad \alpha > 0$$

$$\lambda_{1,2} = \pm j \beta$$
No motion

Identified	Ratio
Behavior	Condition
Departure	Yellow / Total > Thr

Experiments on Real Videos

- YouTube, Getty-Images, BBC Motion Gallery, Though Equity
- 60 videos including Crowd and Traffic Scenes
- Ground Truth

-Positions of bottlenecks/departures/blockings

-Paths of lanes/arches/rings

• Evaluation Criteria

-Distance test for bottlenecks/departures/blockings

-Path overlap ratio test for lanes/arches/ring

Identified Behaviors on Real Videos

Quantitative Results (I)

Advantages

- Integrates of low-level local motion features and high-level information of the scene
- Performs well in various types of crowded scenes
- No training, or detection and tracking
- No isolation of activities
- Fast and robust to occlusions
- Multiple behavior identification

Thank You