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Video cameras monitoring  the activity of people in 
public settings are commonplace in cities worldwide.  
At large events, where crowds of hundreds or thousands  
gather, such monitoring is important for safety and 
security purposes but is also extremely (technically) 
challenging. Human operators are generally employed 
for the task, but even the most vigilant humans 
miss important information that could ultimately 
contribute to unfavorable consequences. 

Major research efforts are under way to develop 
systems that cue security personnel to individuals or 
events of interest in crowded scenes. Essential are 
methods by which information can be extracted from 
video data in order to recognize crowd behaviors, track

individuals in crowds, and detect ab-
normal events. 

This article explores cutting-edge 
techniques we have used in real-world 
scenarios to provide solutions to such 
problems.1,2,17 We developed them 
based on the notion that people in 
crowds behave, in ways, like particles 
in fluids. Hence, we treat crowds as 
collections of mutually interacting 
particles. 

Typically, the motion of a high-
density crowd appears to behave like 
a liquid, and interaction forces tend 
to dominate the motion of the people. 
This is in contrast to crowd motion 
appearing in states like gases, where 
interactions between people are few 
but random motions of individuals 
tend to dominate the behavior. With 
all this in mind, we contemplate visu-
al crowd surveillance using ideas and 
techniques based in hydrodynamics. 
Hence, we say “fluid” and “liquid” in-
terchangeably, distinguishing our ap-
proach from aerodynamics, which con-
siders fluids in gaseous states. 

Our hydrodynamics point of view is 
well suited for analyzing high-density 
crowds,9,12 with surveillance the pri-
mary concern. Though the number of 
people will never reach the astronomi-
cal numbers of particles in fluids, we 
pursue tasks in crowd analysis using a 
similar concept of scale. Ranging from 
the macroscopic view of all particles 
to the microscopic view of individual 
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 key insights
 � �Computer algorithms extract information 

from digital videos of people in crowds as 
a way to automatically track individuals, 
detect abnormal behavior, and segment 
characteristic patterns of flow in crowds. 

 � �Individuals in dense crowds, like 
particles in a fluid, are restricted in 
their motion by neighboring individuals, 
reflecting a kind of interdependence that 
is pivotal for solution development. 

 � �The tools of computational and applied 
mathematics are indispensable for visual 
analysis of crowds; pixel information  
is translated into particle trajectories 
used to understand crowd flow on length 
scales ranging from the macroscopic  
to the microscopic. 
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particles, we address the problems of 
segmentation, abnormal-behavior de-
tection, and tracking. 

Techniques devised by other re-
searchers have been used to consider 
similar problems. Here, we briefly 
review research in the area of visual 
crowd surveillance, referring the read-
er to detailed articles on tracking23 and 
crowd-behavior analysis.24 

For problems involving crowd seg-
mentation, Chan and Vasconcelos8 
used dynamic texture-based represen-
tations of scenes to determine how re-
gions differ, proposing a method7 for 
counting pedestrians in high-density 
crowds. Sand et al.20 implemented a 
particle-based framework for the pur-
pose of estimating the motion in a 
scene but did not use it for interpreta-
tion of significant segments. 

For problems involving behavior 
analysis, methodologies are available 
for understanding crowd behavior. 
The first, advanced by Marques et al.16 
and Tu et al.,22 perceived a crowd as 
an assembly of individuals, using seg-
mentation or tracking algorithms to 
understand their behavior. The other, 
promoted by Andrade et al.,3 viewed 
a crowd as an organism, such that its 
behavior is studied and accepted on a 
global level. Reisman et al.19 proposed 
that crowd behavior is recognized by 
modeling the scene, giving a descrip-
tion of important features within it. 
Kratz et al.15 detected anomalies as 
statistical deviations from the ordi-
nary motion patterns in space-time 
volumes to characterize the scene. 

With regard to tracking in crowd-
ed scenes, one of the first important 
methods was devised by Zhao et al.25 
using ellipsoids to model the human 
shape and color differences to mark 
appearances. Another framework, by 
Brostow et al.,5 assumed that points 
appearing to move together are prob-

Figure 2. Flow field of a frame in the Kabba video. 

Figure 3. Four frames from the video sequence of pilgrims circling Kabba and the FTLE field. 

Figure 1. (a) New York City Marathon; (b) political rally in Los Angeles; (c) pilgrims circling Kabba in Mecca. (a) (b) (c)
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ably part of the same object, tracking 
individuals based on the probability 
that points could be clustered togeth-
er. More recently, Pellegrini et al.18 
expanded a social-force model to take 
into account destinations and desired 
directions of individuals, making it 

suitable for tracking individuals in 
crowded scenes. 

Particles and People 
Random actions, relationships be-
tween energy and density, and a gas/
liquid/solid-state demeanor are all 

characteristics of particles in a fluid 
and of people in a crowd. Most impor-
tant, the motions of particles/people 
are determined by the external forces 
exerted on them; for example, both 
particles and people are affected by 
boundary forces (such as walls) and 
feel the forces of neighboring par-
ticles/people. One difference is that 
people are, to some extent, able to 
determine their own destiny, so the 
crowd may be viewed as a “thinking 
fluid,”11 but there are still probabilistic 
similarities to particle motion regard-
less of this difference. 

When scientists consider hydrody-
namics, they often use different scales, 
depending on the questions being 
addressed.14 At the microscopic, one 
may examine the position or velocity 
of a particular particle among many. 
On another, the macroscopic is used 
to scrutinize the nature of enormous 
collections of particles (such as a tree 
branch moving in water). Between 
them is the mesoscopic scale, which 
is used to analyze the interaction of 
“small” collections of particles, giving 
characteristic information (such as 
temperature and average density). 

Considering the behavior of people 
in a crowd, we take a similar approach, 
depending on the questions we want 
to answer. We focus on three gener-
ally recognized key problems in visual 
crowd surveillance—crowd segmen-
tation, behavior analysis, and track-
ing—corresponding to the scales. To 
be clear, some situations might neces-
sitate tracking a particular person in a 
crowd, requiring a microscopic point 
of view. Others might call for descrip-
tive information on when the behavior 
of a crowd is abnormal, meaning it is 
neither necessary nor feasible to track 
every individual in a crowd but impor-
tant to understand how groups of indi-
viduals interact, for which we employ a 
mesoscopic point of view. Still, a macro-
scopic point of view is more appropriate 
for segmenting global patterns of flow. 

Here, it is pertinent to discuss the 
types of scenes and spatio-temporal 
range of crowd behaviors that can be 
handled through an understanding 
of the hydrodynamics point of view. 
To begin, hydrodynamics-based tech-
niques require that a crowd be viewed 
from above, thereby minimizing ar-
tifacts resulting from independent 
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Figure 4. Video scene (left) and corresponding segmentation (right). 
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Figure 5. Our approach for detecting abnormal behavior in crowd videos. 
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Random actions, 
relationships 
between energy  
and density,  
and a gas/liquid/
solid-state 
demeanor are all 
characteristics  
of particles in  
fluids and of people 
in a crowd. 

movement of multiple body parts. 
Side views of the scene are least prefer-
able within the particle-based frame-
work; Figure 1 includes examples of 
such scenes and camera setup. Our 
algorithms next allow each pixel to 
represent a particle, with a minimum 
requirement on the spatial scale of at 
least one pixel per person. If two or 
more people are matched to a single 
particle, the methods may encounter 
problems, but allowing as many par-
ticles per person as the scene dictates 
is certainly permissible. 

Another noteworthy requirement is 
that video scenes exhibit a dominant 
trend typical of high-density crowds, 
where the movement of individuals 
is restricted by other individuals, ob-
ligating the group to move as a whole, 
like a fluid. However, the dominant 
trend is key to the analysis, while the 
density of the crowd is allowed to vary. 
Since crowd behavior is naturally dy-
namic, and the flow (trend) of a crowd 
can change with time, any video-based 
analysis of crowd motion should take 
a sliding-window approach. It per-
forms the analysis over a particular se-
quence of frames (a window in time), 
then “slides” the window to another 
sequence of frames to repeat the anal-
ysis. The size of the window may be 
adaptable or fixed but depends on the 
level of activity in the scene. Methods 
explored here follow this principal. 

Macroscopic scale (crowd segmenta-
tion). The macroscopic scale suggests 
a focus on global crowd behavior, re-
quiring a comprehensive point of view; 
Figure 1 includes examples of the types 
of scenes we consider, with thousands 
of people in view. In such settings, we 
are primarily interested in the overall 
movement of the crowd, meaning we 
are able to find segments of common 
motion within it.1 

A key ingredient for our solution 
to the problem of segmentation is 
called “particle advection” and used 
in each of our three problem synop-
ses. The approach itself mimics a 
common mathematical formulation 
of fluid mechanics, or Lagrangian 
specification, characterized by follow-
ing particular particles as they move 
with the flow.4 The first step in apply-
ing this idea to a video sequence is to 
compute the optical flow, or apparent 
visual motion of objects in the scene 

(see Figure 2). Every pixel has position 
x = (x, y), and the optical flow provides 
velocities (u, v) at each position, so ob-
jects are related to their velocities by 
the system of equations 

dx
dt

 = u(x,y,t), dy
dt

 = v(x,y,t)

Particle advection is performed by over-
laying the scene with a grid of particles 
that serves as the initial conditions for 
this system of equations; particles are 
then transported to new coordinates 
in subsequent frames using a time-
stepping technique for integrating the 
system of equations, as in 

x(t+1) = x(t) + u(x(t),y(t),t),  
y(t+1) = y(t) + v(x(t),y(t),t)

Thus, the flow of the crowd in the scene 
is given by particle trajectories. 

Important to note is that errors 
and noise in optical flow are averaged 
out to some extent as a result of time 
integration performed to determine 
particle trajectories. Thus, the par-
ticular method used to produce op-
tical flow is not crucial for the three 
problems we consider and has been 
verified experimentally. Temporal 
scale for analysis is determined by the 
integration time t. In practice, t should 
depend on the rate of change of the 
flow field, with a higher rate of change 
of flow field resulting in smaller time 
scales and vice versa. In our experi-
ments, we fixed t = two seconds or 60 
frames for all scenarios. 

Particle advection produces a flow 
map, a function φt

t0
(x0) = x(t; t0; x0) relat-

ing the position x of a particle at time t0 
+ t to its original position x0 at the initial 
time t0. That is, the flow map fully de-
scribes the trajectory of each particle, 
which does not necessarily correspond 
to a person in a crowd but to a small 
region in the scene exhibiting a col-
lective pattern of motion. In sections 
with coherent motion, the flow maps 
show qualitatively similar behavior, 
but trajectories experiencing different 
behavior are from sections with differ-
ent coherent motion. These qualitative 
differences define flow segments. Our 
primary mathematical tool for finding 
these qualitative differences is called 
a “finite time Lyapunov exponent,” or 
FTLE, we use to define Lagrangian co-
herent structures.21 The FTLE is essen-



68    communications of the acm    |   december 2011  |   vol.  54  |   no.  12

contributed articles

tially a number that reflects how two 
neighboring particles separate from 
one another over time and is computed 
using the maximum eigenvalue λmax of 
the Cauchy-Green deformation tensor 
Δ, obtained from the Jacobian matrix 
for the flow map, Dφt

t0
(x). More precise-

ly, the largest FTLE with integration 
time t is 

σ = 
1
t

 ln λmax(Δ)√

where 

Δ = Dφt0 

t0 + t(x))T Dφt0 

t0 + t(x) 

Computing the FTLE at every point 
produces the FTLE field, a scalar 
field that immediately exposes any 
regions in the scene with differing 
flow by finding particle trajectories 
that start close together but end far 
apart. In practice, the particle advec-
tion approach allows implementa-
tion of the algorithm in both forward 
and backward time, meaning the flow 
segments are the same regardless of 
which direction the flow is moving. 

Combining the FTLE fields for both 
forward and backward motion yields 
vivid results (see Figure 3). We use a 
watershed algorithm to segment the 
FTLE field, making it find the exact 
number of flow segments. This pro-
cess is repeated by moving the sliding 
temporal window to obtain segments 
for subsequent time steps. 

The end result is a net segmenta-
tion showing each region exhibiting 
a single clearly defined characteristic 
flow pattern. Such a result is not pos-
sible through segmentation based 
solely on optical flow, because optical 
flow captures only motion between 
two frames. On the other hand, parti-
cle advection motion in several frames 
is integrated over time and nicely cap-
tured by the scalar FTLE field. Figure 
4 includes several results in which the 
motion in crowded pedestrian and 
traffic scenes is properly segmented 
through our method; each row shows 
a frame from a different video se-
quence, along with subsequent seg-
mentation. Regions of different colors 
signify qualitative changes in the flow, 

and dark blue represents areas with 
no coherent flow. A clear example is 
the traffic scene in the last row, with 
dark blue representing regions out-
side the lanes, and red, green and 
light blue representing movement in 
each direction. 

Mesoscopic scale (behavior detection). 
Beyond a global understanding of pe-
destrian flow in crowds, detection of ab-
normal events or behavior is important, 
generally for the sake of public safety. 
We use the local interactions of mul-
tiple people to identify regular patterns 
of motion, in addition to any anoma-
lies.17 A fundamental component of our 
approach (see Figure 5) in this setting is 
a social force (fluids-based mathemati-
cal) model for describing pedestrian 
movement, as pioneered by Helbing 
and Molnar10 almost 20 years ago. 

The central idea hinges on New-
ton’s second law of motion—force 
equals mass times acceleration, or F = 
ma. In it, each individual in the scene 
reacts to forces that produce motion. 
These forces can be deconstructed 
into two parts: the personal-desire 
force (individuals striving to get to 
their desired destinations) and the in-
teraction force (exerted on individuals 
by other individuals or things in the 
scene). Thus, pedestrian i changes ve-
locity according to 

a = 
dvi

dt
 = Fp + Fint

where Fp and Fint refer to personal and 
interaction forces, respectively. In a 
given scene, since individuals are all 
relatively the same size, the masses are 
assumed to be one. Quantifying these 
forces (see Figure 6a for an example) 
allows our method to establish the on-
going behavior in the crowd, enabling 
detection of any behavior out of the or-
dinary (Figure 6b). 

Note that in very dense crowds, pe-
destrians follow group velocity and 
goals,12 but as density decreases, per-
sonal interest plays a greater role in 
pedestrian motion. Hence, at the me-
soscopic scale, our algorithm may use 
scenes with mid-to-high crowd density, 
provided the interaction force is not 
negligible, meaning behavior is still 
fluid-like. 

The algorithm itself starts with 
particle advection, followed by com-
putation of the forces. Each person in 

(a)

(b)

Normal AbnormalNormal Normal

Figure 6. (a) Optical flow (yellow) and computed interaction vectors (red) for pedestrians 
with opposing directions; (b) frames of a sequence where the observed behavior suddenly 
becomes abnormal (people running in panic) in the last frame. 

Figure 7. Scheme for computing interaction force. 
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the crowd has a desired direction and 
speed, but individual direction and 
speed is limited by the surrounding 
pedestrians. The actual velocity vi of a 
particle in the (xi, yi) coordinate is ob-
tained from the spatial-temporal aver-
age of optical flow. On the other hand, 
the desired velocity v p

i is given by the 
optical flow for that particle. Hence, 
the personal-desire force is 

Fp =  
1
τ

 (v p
i – vi)

where τ is a relaxation parameter. 
Thus, the interaction force (see Figure 
7) is given as 

Fint =  
dvi

dt
 – Fp

These forces together yield a sufficient 
description of the motion in the scene 
based on the acting forces. 

Specification of the forces de-
termining the motion in the scene 
provides understanding of synergy 
between interacting particles but 
does not, by itself, secure evidence 
of changes in behavior; for example, 
normal interaction forces on a stock-
market trading floor may differ dras-
tically from those of pedestrians on 
the street. Using this technique to 
detect and localize any changes in be-
havior, the computer must first learn 
the “normal” behavior for the scene, 
for which our algorithm takes a bag-
of-words approach. (In the same way 
a document can be considered a bag 
of words, a video can be considered a 
bag, or collection, of spatial-temporal 
cuboids, for which the interaction 
force is computed.) The idea is for the 
algorithm to use a training set of vid-
eos and match the interaction forces 
with given dynamics. A video in ques-
tion can then be compared with those 
from the training set, and changes 
from the regular behavior in the scene 
are easily identified by the computer. 

To improve the fidelity of the results, 
optical flow is smoothed by a Gaussian 
filter, where the standard deviation of 
the Gaussian distribution is empirically 
set to half the width of the typical per-
son in the crowd. This smoothing com-
pensates for the inaccuracies of optical 
flow in textureless regions. Moreover, 
using a bag of video words for several 
frames could also reduce the effects of 
inaccurate instantaneous optical flow. 
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Figure 8. Frames from different sequences, showing (left) normal behavior (green)  
and (right) abnormal escape panic (red), comparing ground truth to abnormal  
behavior detection. 
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Sample results of the algorithm 
are in Figure 8; the videos for these 
experiments are from the University 
of Minnesota and show walking pe-
destrians as the normal behavior. At 
the end of each video the pedestrians 
suddenly run in all directions to es-
cape the scene. The figure shows de-
tection of abnormal behavior by our 
method (indicated as black triangles) 
compared with the ground truth. In 
most cases, panic detection occurs 
immediately following the change 
in behavior. The receiver operating 
characteristic curves in Figure 9 show 
a clear advantage of our method over 
simply using the optical flow to detect 
abnormal behaviors. 

Microscopic scale (individual track-

ing). At the “atomic” level, a surveil-
lance analyst is interested in auto-
matically following a person in a 
high-density crowd, a very challenging 
problem, as the object our algorithm 
is tracking is subject to occlusion, 
and other nearby objects may lead the 
tracker away from the original object. 
Figure 10 shows tracking results us-
ing our method in which individuals 
are correctly tracked in four video se-
quences involving hundreds of peo-
ple; each image shows the tracks over-
laying a single frame of the video. 

Inspired by research on evacuation 
dynamics,6,13 our method uses a scene-
structure-based force model that lik-
ens pedestrians to particles, such that 
the forces acting on them determine 

their direction and velocity. The algo-
rithm computes the probability that a 
particular particle will move from one 
position to another, building on floor 
fields that provide information about 
the scene.2 To make this clear, we make 
three assumptions about the flow in-
fluencing the individual’s behavior: 
First, the person has a goal (place to 
get to and clear direction how to get 
there) and, in the absence of obstacles, 
will go there directly; this is the effect 
of what is called the “static floor field.” 
Second, the person avoids permanent 
fixtures (such as trash cans and walls) 
and virtual barriers (such as opposing 
crowd flow) as a consequence of what 
is called the “boundary floor field.” 
And third, the person can move toward 
the goal only as the flow of the crowd al-
lows; this motion and direction is the 
influence from the dynamic floor field. 

A basic assumption on the static 
floor field, based on the observation 
that directions of motion in high-den-
sity crowds have dominant trends, is 
that crowd behavior remains constant 
during tracking. However, the static 
floor field can be updated periodically 
to respond to changes in the dominant 
trends. To respond to any instanta-
neous change in crowd flow, the model 
uses the dynamic floor, which is repre-
sentative of instantaneous crowd be-
havior in the vicinity of the target. The 
main limitation of the floor-field track-
ing model is the inability to handle lo-
cations with no dominant trend (such 
as a crowded museum) and locations 
with more than one dominant trend 
(such as pedestrian crossings). 

We begin our description of the 
method with the inference that peo-
ple in crowds are constantly avoid-
ing collisions. Hence, the boundary 
floor field is repulsive and computed 
easily through particle advection and 
the FTLE field, as described earlier in 
terms of segmentation of crowd flow. 
The edges of the computed segments 
give the boundaries of the flow, leading 
to the resulting boundary floor field 
(see Figure 11). 

Computation of the static floor 
field (Figure 11d) is performed only 
once for a given video using a small 
subset of all video frames. The first 
step provides a representation of the 
instantaneous changes in motion, or 
“point flow,” achieved by calculating 
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Figure 10. Tracking individuals using our method in (a–c) marathon scenes and (d) a crowded 
train station. 

Figure 9. ROC curves for detection of abnormal behaviors in the University of Minnesota 
data set; the area under the social force curve (red) is 0.96, and the area under the optical 
flow curve (blue) is 0.84. 
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the average optical flow for each loca-
tion over the entire subset of frames. 
Our algorithm can then place a grid of 
particles over the scene and determine 
the preferred direction of each par-
ticle based on the motion of neighbor-
ing point-flow vectors. If the influence 
is great enough to move the particle to 
the next cell, then the algorithm con-
tinues the process until the velocities 
are not significant enough to move it 
to the next position (see Figure 12). 
This process is used by the algorithm 
to find the sinks, defined computa-
tionally as the points where particle 
motion ceases to exist. In terms of 
crowd behavior, sinks are the desired 
goals or locations of the individuals in 
the crowd (such as preferred exits and 
frequently visited areas dominated by 
the flow of the crowd). The sinks, as 
well as the shortest distance needed 
to reach them, produce the static floor 
field. 

Computing the dynamic floor field 
means discovering the behavior of 
the crowd around the individual. To 
do this, the algorithm uses the opti-
cal flow for a subset of video frames 
and performs particle advection. If a 
particle changes its position between 
frames, then the value of interaction 
between those frames is increased by 
one, and zero interaction is assumed 
at the first frame in this sequence. 
The individual’s interactions in a local 
neighborhood are thus captured for 
that interval of time (see Figure 13). 

To bring the three floor fields to-
gether for the purpose of tracking, 
the algorithm divides image space 
into cells, so each cell is occupied by 
one particle. The probability that a 
particle at cell i will move to neighbor-
ing cell j is then computed and com-
bined with appearance information to 
complete the tracking. This method 
depends on computation of the influ-
ences from the static, dynamic, and 
boundary floor fields, denoted Sij, Bij, 
and Dij, respectively, with each needed 
for accurately modeling the interac-
tion of individuals and their preferred 
direction of motion. Described pre-
cisely, the probability that a particle 
will move from i to j is 

pij = CekDDijekSSijekBBijRij

where kD, kS, and kB are the coupling 

strength of the object to the respec-
tive field, C is a normalization con-
stant, and Rij is a similarity measure 
for the initial and updated appear-
ance templates. 

Experimentally, a target individual 
is selected by a surveillance analyst 

by computing the gray-scale appear-
ance template for a rectangular region, 
called a chip, surrounding the indi-
vidual, with average chip size 14 × 22 
pixels. The algorithm computes the 
position of the target at the next time 
instant according to the probable loca-
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Figure 13. (left) Region for computing dynamic floor field, where green chip is a target 
individual; (right) dynamic floor field reflects strong relationship between the yellow cell  
and neighboring cells at the peak. 

(c)

(a) (b)

(d)

Figure 11. For the marathon sequence in Figure 10c: (a) crowd-flow segmentation obtained 
through particle advection; (b) the corresponding edge map; (c) the boundary floor field; and 
(d) the static floor field.  
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Figure 12. (a) The sink-seeking process. Red arrows signify the point flow influenced by 
neighboring points; the yellow curve is the sink path. (b) The sliding window used to find 
sinks; the solid circle is the point under consideration; hollow circles inside the box are 
neighboring points and outside the box non-neighboring points. 
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frame to frame is uncertain. However, 
by combining the dynamic and static 
floor fields (Figures 15b and c) with 
the appearance surface our method 
obtains a surface (Figure 15d) provid-
ing the best match for the tracked indi-
vidual. Figure 16 also shows that, when 
using all three floor fields, the tracking 
error is consistently low, but if using 
only one floor field, the error increases, 
often significantly. 

Conclusion 
We have devised methods for seg-
menting motion, detecting abnormal 
behavior, and tracking individuals in 
video scenes of high-density crowds. 

Our underlying supposition is that 
people in crowds appear to move ac-
cording to the flow, like particles in 
a liquid. Hence, we gaze through a 
hydrodynamics lens to analyze video 
scenes in various scenarios on three 
different length scales. Each of our 
methods relies to some extent on the 
optical flow and associated particle ad-
vection adapted from the Lagrangian 
approach to fluid dynamics. 

Our experimental results have been 
excellent, and we expect the underly-
ing hydrodynamics theme can be taken 
further to solve other problems in visual 
surveillance of high-density crowds. Ul-
timately, we envision the ability to pre-
dict potentially hazardous situations in 
crowded scenes, though it is work for the 
future. Training a computer to decipher 
and understand crowd behavior from a 
video sequence is extremely challeng-
ing; aside from having to sort through 
a plethora of digital information, there 
are also questions specific to each of the 
three problems—segmenting motion, 
detecting abnormal behavior, tracking 
individuals—discussed here. 

For crowd segmentation, our 
method makes use of flow maps cor-
responding to each particle, comput-
ing maximal Lyapunov exponents to 
reveal segments of coherent motion in 
the scene.1 Our method performs well 
for steady flows, with no changes in ge-
ometry, but segmentation for unsteady 
flows is an open problem with several 
challenges. Coherent flow segments in 
crowds can change quickly, and to cap-
ture such changes, an algorithm must 
distinguish changes within segments 
from changes in segment boundar-
ies. One location in a scene may also 
exhibit alternating collective patterns 
of motion, meaning several segmenta-
tions are needed to describe different 
modes within a single region. In addi-
tion, modeling abstract human behav-
iors that help define segments (such as 
courteous acts, social agreement, and 
individual intention) is difficult. More-
over, scenes can grow more complex, 
as moving/cluttered back/foregrounds 
are important in segmentations more 
discriminating than ours. 

For detecting abnormal behavior, 
our method approximates the inter-
action forces in the crowd to build a 
model for the motion, detecting anom-
alies as deviations from the norm.17 

tion, as determined by the computed 
floor fields; the appearance similarity 
is then computed by normalized cross 
correlation, and the appearance tem-
plate is automatically updated. Figure 
14 charts results for 50 tracks in a video 
of a marathon, showing objects are 
tracked correctly in most cases. 

Some tracking methods (though 
not ours) depend mainly on appear-
ance information, but in crowded 
scenes appearance is not enough, as 
neighboring objects may have similar 
appearance. Figure 15a shows the ap-
pearance similarity surface for a mara-
thon scene; the surface is relatively flat, 
so which runner is being tracked from 

Figure 14. Computed track lengths vs. ground truth for a marathon sequence. 
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Figure 15. For tracking a runner in a marathon sequence: (a) appearance similarity surface; 
(b) dynamic floor field; (c) static floor field; and (d) final decision surface. 

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

−5

−4

−3

−2

−1

0

1

2

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(a)

(c)

(b)

(d)



contributed articles

december 2011  |   vol.  54  |   no.  12  |   communications of the acm     73

This approach works well for detecting 
global changes in regular motion, but 
detecting smaller (more local) events is 
more difficult. Our method is also, by 
design, good at measuring the forces 
individuals exert on one another but 
is unable to recognize specific behav-
iors and distinguish the acceptable 
from the unacceptable. This limitation 
stems from an enormous variety in the 
behaviors observed in crowded scenes, 
along with the difficulty of distinguish-
ing certain activities from other activi-
ties. Some behaviors are easily defined 
(such as bottlenecks or lanes), but for-
mulating clearly defined behaviors for 
general crowd motion is difficult, as is 
categorizing unsteady flows, with the 
flow constantly changing. 

For tracking in high-density crowds, 
our method exploits the influences 
of boundaries, neighboring pedestri-
ans, and desired direction, along with 
appearance information, to identify 
the position of a target in subsequent 
frames.2 Our algorithm produces ex-
cellent results for extremely crowded 
scenes, where the tracked individual 
is highly influenced by the flow of the 
crowd, but tracking in crowds that 
are less dense, allowing pedestrians 
to move against the flow, still involves 
many research problems; for example, 
crowd dynamics involve psychological 
aspects (such as preferences and hab-
its) that influence individual behavior, 
thereby increasing scene complexity. 
Aside from the thoughts and intent of 
individuals, the constant interaction 

among them makes it difficult to dis-
tinguish one from another. In addition, 
occlusions result in loss of observation 
of a target object, while the object’s 
appearance (such as shape and color) 
varies, not only from one setting to the 
next, but also as a given setting evolves. 

Acknowledgment
This article summarizes and incor-
porates three earlier publications: 
Ali et al.,1 Ali and Shah,2 and Mehran 
et al.17 The research is partially sup-
ported by the U.S. Army Research Of-
fice, part of the U.S. Army Research 
Laboratory, under grant number 
W911NF-09-1-0255 and by the U.S. De-
partment of Defense. 	

References 
1.	A li, S. and Shah, M. A Lagrangian particle dynamics 

approach for crowd flow segmentation and stability 
analysis. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (Minneapolis, 
June 18–23, 2007), 1–6. 

2.	A li, S. and Shah, M. Floor fields for tracking in high-
density crowd scenes. In Proceedings of the 10th 
European Conference on Computer Vision (Marseille, 
France, Oct. 12–18), Springer, 2008. 

3.	A ndrade, E.L., Blunsden, S., and Fisher, R.B. Modeling 
crowd scenes for event detection. In Proceedings 
of the 18th International Conference of Pattern 
Recognition (Hong Kong, Aug. 20–24, 2006). 

4.	B ennett, A. Lagrangian Fluid Dynamics. Cambridge 
University Press, New York, 2006. 

5.	B rostow, G. and Cipolla, R. Unsupervised Bayesian 
detection of independent motion in crowds. In 
Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (New York, June 17–22, 
2006). 

6.	B urstedde, C., Klauck, K., Schadschneider, A., and 
Zittartz, J. Simulation of pedestrian dynamics using 
a two-dimensional cellular automaton. Physica A: 
Statistical Mechanics and its Applications 295, 3–4 
(June 2001), 507–525. 

7.	 Chan, A.B. and Vasconcelos, N. Bayesian poisson 
regression for crowd counting. In Proceedings of 12th 
IEEE International Conference on Computer Vision 
(Kyoto, Sept. 27–Oct. 4, 2009), 545–551. 

8.	 Chan, A.B. and Vasconcelos, N. Mixtures of 
dynamic textures. In Proceedings of the 10th IEEE 
International Conference on Computer Vision (Beijing, 
Oct. 17–20, 2005), 641–647. 

9.	H elbing, D. Traffic and related self-driven many-
particle systems. Review of Modern Physics 73, 4 (Dec. 
2001), 1067–1141. 

10.	H elbing, D. and Molnar, P. Social force model for 
pedestrian dynamics. Physical Review E 51, 5 (May 
1995), 4282–4286. 

11.	H ughes, R.L. The flow of human crowds. Annual 
Review of Fluid Mechanics 3 (2003), 169–182. 

12.	H ughes, R.L. A continuum theory for the flow of 
pedestrians. Transportation Research (Part B: 
Methodological) 36, 6 (July 2002), 507–535. 

13.	 Kirchner, A. and Schadschneider, A. Simulation of 
evacuation processes using a bionics-inspired cellular 
automaton model for pedestrian dynamics. Physica 
A: Statistical Mechanics and its Applications 312, 1–2 
(Sept. 2002), 260–276. 

14.	 Kotelenez, P. Stochastic Ordinary and Stochastic 
Differential Equations. Springer, New York, 2008. 

15.	 Kratz, L. and Nishino, K. Anomaly detection in 
extremely crowded scenes using spatio-temporal 
motion pattern models. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern 
Recognition (Miami, June 20–26, 2009), 1446–1453. 

16.	M arques, J.S., Jorge, P.M., Abrantes, A.J., and 
Lemos, J.M. Tracking groups of pedestrians in video 
sequences. In Proceedings of the IEEE Computer 
Vision and Pattern Recognition Workshop (2003), 101. 

17.	M ehran, R., Oyama, A., and Shah, M. Abnormal 
behavior detection using social force model. In 
Proceedings of the IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition (Miami, 
June 20–26, 2009), 935–942. 

18.	P ellegrini, S., Ess, A., Schindler, K., and van Gool, L. 
You’ll never walk alone: Modeling social behavior for 
multi-target tracking. In Proceedings of the 12th IEEE 
International Conference on Computer Vision (Kyoto, 
Sept. 27–Oct. 4, 2009). 

19.	R eisman, P., Mano, O., Avidan, S., and Shashua, A. 
Crowd detection in video sequences. In Proceedings 
of the IEEE Intelligent Vehicles Symposium (Parma, 
Italy, June 14–17, 2004), 66–71. 

20.	S and, P. and Teller, S. Particle video: Long-range 
motion estimation using point trajectories. In 
Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (New York, June 17–22, 
2006), 2195–2202. 

21.	S hadden, S.C., Lekien, F., and Marsden, J.E. Definition 
and properties of Lagrangian coherent structures from 
finite time Lyapunov exponents in two-dimensional 
aperiodic flows. Physica D: Nonlinear Phenomena 212, 
3–4 (Dec. 2005), 271–304. 

22.	T u, P., Sebastian, T., Doretto, G., Krahnstoever, N., 
Rittscher, J., and Yu, T. Unified crowd segmentation. 
In Proceedings of the 10th European Conference 
on Computer Vision (Marseille, Oct. 12–18, 2008), 
691–704. 

23.	Y ilmaz, A., Javed, O., and Shah, M., Object tracking: 
A survey. ACM Computing Surveys 38, 4 (2006), 
13.1–13.45. 

24.	 Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, 
S.A., and Xu, L. Crowd analysis: A survey. Machine 
Vision and Applications 19, 5–6 (2008), 345–357. 

25.	 Zhao, T. and Nevatia, R. Tracking multiple humans 
in a crowded environment. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern 
Recognition (Washington, D.C., June 27–July 2, 2004), 
II-406–II-413. 

Brian E. Moore (bmoore@math.ucf.edu) is an assistant 
professor of mathematics in the Department of 
Mathematics at the University of Central Florida, Orlando, 
FL. 

Saad Ali (saad.ali@sri.com) is a computer scientist in 
the Vision Technologies department at SRI International 
Sarnoff, Princeton, NJ. 

Ramin Mehran (ramin@cs.ucf.edu) is a Ph.D. student 
in the Computer Vision Lab at the University of Central 
Florida, Orlando, FL. 

Mubarak Shah (shah@cs.ucf.edu) is Agere Chair 
Professor of Computer Science and founding director 
of the Computer Vision Lab at the University of Central 
Florida, Orlando, FL. 

© 2011 ACM 0001-0782/11/12 $10.00 

Figure 16. Average tracking error for each object in a marathon sequence using only 
dynamic (green), only static (maroon), and all three (blue) floor fields. 
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