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Abstract 
 
In this paper, we present a systematic framework for re-
cognizing realistic actions from videos “in the wild.” Such 
unconstrained videos are abundant in personal collections 
as well as on the web. Recognizing action from such videos 
has not been addressed extensively, primarily due to the 
tremendous variations that result from camera motion, 
background clutter, changes in object appearance, and 
scale, etc. The main challenge is how to extract reliable 
and informative features from the unconstrained videos. 
We extract both motion and static features from the videos. 
Since the raw features of both types are dense yet noisy, we 
propose strategies to prune these features. We use motion 
statistics to acquire stable motion features and clean static 
features. Furthermore, PageRank is used to mine the most 
informative static features. In order to further construct 
compact yet discriminative visual vocabularies, a divisive 
information-theoretic algorithm is employed to group se-
mantically related features. Finally, AdaBoost is chosen to 
integrate all the heterogeneous yet complementary features 
for recognition.  We have tested the framework on the KTH 
dataset and our own dataset consisting of 11 categories of 
actions collected from YouTube and personal videos, and 
have obtained impressive results for action recognition and 
action localization. 

1. Introduction 
Automatically recognizing human actions is receiving 

increasing attention due to its wide range of applications 
such as video indexing and retrieval, human-computer 
interaction, and activity monitoring. Although a large 
amount of research has been reported on action categori-
zation, recognizing actions from realistic video still re-
mains a quite challenging problem due to the significant 
intra-class variations, occlusion, and background clutter. In 
order to obtain reliable features, most early work made a 
number of strong assumptions about the videos, such as the 
availability of reliable human body tracking, slight or no 
camera motion, and limited number of viewpoints [3 ,5]. 
The commonly used KTH dataset contains relatively com-
plicated scenarios, and many methods employing this da-
taset have been reported [8,9,10]. However, very few at-
tempts have been made to recognize actions from videos 

“in the wild,” as shown by the examples in Fig.1. Here, a 
video “in the wild” refers to a video captured under un-
controlled conditions, such as videos recoded by an ama-
teur using a hand-held camera.  Owing to the diverse video 
sources such as YouTube, TV broadcast and personal video 
collections, this type of video generally contains significant 
camera motion, background clutter, and changes in object 
appearance, scale, illumination conditions, and viewpoint. 
In this paper, our goal is to offer a generic framework for 
recognizing this type of realistic actions. Since we collected 
most of these videos from YouTube, hereafter, YouTube 
videos refer to videos “in the wild.”  

To the best of our knowledge, not much work has been 
reported on action recognition from unconstrained videos 
due to the difficulty in extracting good features from these 
videos. One related work is by Laptev et al. on recognizing 
actions from movies [19]. They collected a large and 
complicated action dataset from movies and employed 
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Figure 1: Examples of our YouTube action dataset consist of 11 
categories with about 1160 videos.  
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various local motion features for recognition. Compared to 
the YouTube videos, the movie videos are of better quality, 
and contain no unintended camera motion. In addition, 
most actions in these videos are non-periodic.  Other da-
tasets include the UCF sports dataset [2] and Mikolajczyk’s 
sports dataset [16]. Both of them contain a small number of 
actions and simple backgrounds.  

Successful extraction of good features from videos is 
crucial to action recognition. Considering the large varia-
tion in realistic videos, local motion and static pose or 
posture features are more feasible to extract compared to 
3D volumes, shapes, trajectories, etc. The bag of features 
(BOF) model can be used to capture the statistical infor-
mation of the local motion or static features.  BOF has been 
widely employed in object, scene, and action recognition 
[4,6,7,8,9,10,14,26,27,29] due  to its simplicity and surpri-
singly good performance. Below, we briefly review the 
work on action and posture recognition using BOF.     
Local Motion Features: Since the bag of video-words 
(BOV) approach does not require background subtraction 
and object tracking [3, 5], and can cope with certain camera 
motion and illumination changes, it is receiving increasing 
attention in generic action recognition [8,9,10,11,12,29]. 
Typically, spatiotemporal interest points are first detected 
either by a 3D Harris corner detector [11] or  Gabor filters 
[12], and the descriptor vectors around those interest points 
are then computed and quantized into video-words whose 
statistical distributions are used to represent the entire video 
sequence. Beyond the BOV, the discriminative learning 
model such as SVM [11] and the generative model such as 
pLSA [10] have achieved excellent performance on the 
KTH dataset. Since BOV does not provide a spatiotemporal 
distribution of the features, the spatial correlogram [8], 
spatiotemporal pyramid matching [8, 19], and pLSA-ISM 
[10] were proposed to capture the spatial and temporal 
relationship between the local motion features and further 
improve the results. 
Local Static Features: It is well known that the human 
vision system can recognize many types of human actions 
from a sequence of instantaneous postures or poses of a 
person in still images without motion information. There-
fore, we believe the static pose in a single image can be 
useful for action categorization. Recently, pose recognition 
using local shape features such as shape context [13,15], 
histogram of gradients of the local patches[26], appearance, 
and position context [14,27] have obtained good results. 
Since a single pose only provides instantaneous informa-
tion at a single instant, it is important to select the right pose 
in order to determine an action correctly. Instead of using a 
single pose, we can employ a sequence of poses, in order to 
make up for the lack of motion information. This is partic-
ularly useful for realistic videos where the motion features 

are unreliable due to unpredictable and often unintended 
camera motion (camera shake). 
Hybrid Features: We strongly feel that local motion and 
static features are complementary for action recognition in 
unrestricted videos. For instance, suppose we want to dif-
ferentiate cycling from horseback riding (see Fig. 1). Our 
observation is that videos of both actions may contain 
similar camera motion such as panning, which can result in 
similar motion features in both the background and the 
foreground.  So   it can be difficult to distinguish between 
the background and foreground based on only motion fea-
tures. Yet, we humans can easily tell bicycles from horses 
based on their local shapes or appearance, thus static fea-
tures may provide better recognition results in this case. On 
the other hand we may not be able to distinguish jogging 
from running based only on the pose information, and 
therefore must use motion features.  To exploit the synergy, 
we choose to use hybrid features composed of both static 
features (local shape and appearance) and spatiotemporal 
motion features (local motion) to develop an effective 
recognition framework.  

Little work has been reported on the combination of 
static and motion features for action recognition in realistic 
videos until recently. Fanti et al. [28] utilized a mixture of 
static features (local appearance) and dynamic features 
(simple velocity descriptors) for action recognition. 
Neibles et al. [15] proposed a generative model to learn a 
hierarchical model using both static and dynamic features 
for action recognition, and their results verified the hybrid 
features are useful. Liu et al. [4] proposed Fiedler Embed-
ding to combine local motion features and spin image fea-
tures that capture the global pose information. However, 
these methods may not be applicable for realistic videos 
due to the difficulty in acquiring good features in uncon-
strained videos. Instead of detecting spatiotemporal interest 
points, Mikolajczyk et al. [16] detected local static features 
with associated motion vectors from every single frame, 
and used motion vectors as a filter in recognition. Their 
action recognition method is akin to object recognition, and 
requires extra training images and object bounding boxes. 
Schindler et al. [17] combine different types of ST (spati-
otemporal) features by simply concatenating the feature 
vectors.  

1.1. Overview of the proposed framework 
We present a systematic framework for action recogni-

tion in unrestricted videos based on BOF integrating both 
static and motion features. Fig. 2 depicts the flowchart of 
the proposed system. We make three main contributions in 
this work: 
Motion and static feature pruning. Generally, in You-
Tube videos many motion features are detected in the 

Figure 2: The flowchart of the training phase in our system.  
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cluttered background due to the unpredicted camera mo-
tion. These motion features can adversely affect the rec-
ognition accuracy. In order to reduce their effects, we adopt 
an effective method to prune the motion features using 
spatial and temporal statistics.  

The background in certain types of professional sports 
videos (e.g. football) can provide useful contextual infor-
mation for action recognition since videos of the same 
sports tend to contain similar backgrounds. However, the 
background can vary significantly even for the same type of 
actions in unconstrained videos. Therefore, the background 
of unrestricted videos may not be that informative. We 
propose to utilize the spatial and temporal distribution of 
the motion to coarsely localize the region of interests 
(ROI). We believe the local shape or appearance informa-
tion in the ROI, combined with (weak) contextual infor-
mation from the background, provides the best opportunity 
for action recognition in unconstrained videos. In addition, 
we build a vast feature similarity graph by pair-wise image 
matching, and use PageRank (PR) [22] to select the sig-
nificant static features. This method is capable of mining 
the features in the foreground in video sequences contain-
ing changing background.   
Semantic visual vocabulary learning. The semantic vis-
ual vocabulary learning has two phases. In the first phase, 
we use k-means to create an initial vocabulary by grouping 
similar features based on their appearance. The initial vo-
cabulary has two drawbacks. First, the performance is 
sensitive to the size of the vocabulary. Generally, larger 
vocabulary size performs better since the features are better 
quantized. Second, the visual words are not necessarily 
semantically meaningful, because k-means only considers 
the appearance similarity. For the sake of efficiency and 
effectiveness, compact yet discriminative semantic voca-
bularies are preferred. Liu, et al. [8] and Fulkerson et al. [1] 
used Information Bottleneck (IB) to obtain meaningful 
feature clusters. In the IB approach clusters  are greedily 
merged in each iteration, this usually results in a suboptimal 
solution, so this makes it  computationally expensive. In-
stead, we employ the divisive algorithm based on 
KL-divergence [20]. For each loop, it attempts to maintain 
the global optimal solution, and is more effective and effi-
cient. 
Heterogeneous features boosting. In the classification 
phase, we apply Adaboost to construct an effective final 
classifier through boosting of the heterogeneous features 
including motion and static features.  

Our method can also localize the actions without explicit 
object detection and tracking. In summary, we propose a 
systematic framework for action recognition based on the 
following four steps: 1) use of  motion statistics for feature 
pruning, and PR to further select important static features; 
2) an information-theoretic divisive algorithm to learn the 
discriminative semantic visual vocabularies in order to 

make feature representation more compact and meaningful; 
3) representation of  the action videos by the histogram of 
bag of visual words; 4) combination of  heterogeneous 
features by boosting for action recognition.   

The proposed framework has been tested on both the 
standard KTH dataset and our unconstrained YouTube 
video dataset. Moreover, action localization can be pro-
vided both spatially and temporally thanks to the high 
quality of the motion and static features.   

2. Visual Feature Extraction 
2.1. Static feature detection 

For every temporally sampled frame, we first apply three 
interest point detectors: Harris-Laplacian (HAR), Hes-
sian-Laplacian (HES), and MSER detectors [25]. The three 
detectors produce complementary features: HAR locates 
corner features, and both HES and MSER extract blob 
features that are complementary to corner features. Next, 
each feature is described by its location (x, y), scale σ, and a 
128-dimensional SIFT descriptor.      

2.2. Motion feature detection and pruning 
We use the spatiotemporal interest point detector proposed 
by Dollar et al. [11]. Compared to the 3D Harris-Corner 
detector, it produces dense features that can significantly 
improve the recognition performance in most cases. It 
utilizes two separate filters in spatial and temporal direc-
tions: 2-D Gaussian filter in space and 1-D Gabor filter in 
time. This detector produces high response to temporal 
intensity changes. The interest points are selected at the 
locations of local maximal responses of this detector, and 
3D cuboids are extracted around them. For simplicity, we 
use the flat gradient vectors to describe the cuboids and 
then use PCA to reduce the descriptor dimension.    

This motion feature extractor is effective and efficient. 
However, we have noted that in realistic videos, many 
features from the background may also be detected due to 
often unintended camera shake motion.  One way to re-
move the camera motion is to perform motion compensa-
tion by registering frames using homography [16]. How-
ever, this method assumes scene with one dominating 
plane, while many of these videos normally contain mul-
tiple planes. Therefore, motion compensation may not 
work that well and is also computationally expensive. In-
stead of motion compensation, we employ an efficient 
feature pruning approach to remove irrelevant features 
corresponding to the background.    
 The major difficulty in detecting robust motion features 
captured by a moving or shaking camera is jittery motion, 
which may last only for a few frames. If those frames can 
be identified, then noisy features in those frames can be 
removed. Therefore, we propose to use feature statistics 
and the distribution of spatial locations to prescreen the 
features. Suppose a video has T frames, and frame Ft has Nt  
features. We propose two rules to prescreen the features. 
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Rule 1: If Nt > Mean (N) + Ω∙Var(N), discard frame Ft , 
where Ω (e.g. 0.5) is a empirical parameter, and variable N 
represents the number of features in a frame. 

This rule helps discard the frames with large unpredicted 
(unintended) camera motion and in turn helps efficiently 
remove the irrelevant motion features.  

Let C(Ft) represent the mean location of all features 
(𝑥𝑥𝑖𝑖𝑡𝑡 ,𝑦𝑦𝑖𝑖𝑡𝑡) (1 ≤ t ≤ T, 1 ≤ i ≤ Nt) present in Ft , δ(Ft) represents 
the neighboring frames of Ft, say Ft-1 and Ft+1, and Dist be 
the distance between two locations, we define the Rule 2 as,  
Rule 2: If Dist(C(Ft),C(δ(Ft))) > η & Diff(N(Ft), N(δ(Ft))) > 
γ,  then select M/T number of features which are located 
close to C(δ(Ft)),  where M is a predefined number of total 
features to be obtained.    

Rule 2 can be used to predict the good features using the 
information about the neighboring frames. Our scheme to 
acquire good motion features is straightforward, but is very 
efficient and effective. Our experiments on the YouTube 
videos have shown that the average recognition accuracy 
can be improved by almost 8% by this measure.  

3. Static Feature Pruning 
In this section, we describe how to use motion cues and 

the PageRank to extract good static features from the fo-
reground (i.e., region of interest).  

3.1. ROI estimation by motion  
Static features can help action recognition since they 

capture the pose or posture information in a sequence of 
frames. However, we are only interested in those static 
features that are located in the regions of interest identified 
by motion information. In realistic videos, the static fea-
tures in the background may not be distinct. Therefore, we 
need to detect the region(s) of interest. The computation of 
ROI is as follows. Let 𝑊𝑊 = {𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑖𝑖)|1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑡𝑡 −
𝜎𝜎 ≤ 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡 + 𝜎𝜎} be a set of motion features extracted from 
frame 𝑡𝑡 − 𝜎𝜎 to frame 𝑡𝑡 + 𝜎𝜎 with time span of 2𝜎𝜎 + 1  (e.g. 
𝜎𝜎 = 10 ).  We can estimate the centroid of the ROI as,    

                  𝑥𝑥� = 1
n
∑ xii  , 𝑦𝑦� = 1

n
∑ yii ,                        (1)                     

and its dimensions are given by, 
       𝐷𝐷𝑥𝑥 = 2�3𝑐𝑐𝑥𝑥𝑥𝑥  , 𝐷𝐷𝑦𝑦 = 2�3𝑐𝑐𝑦𝑦𝑦𝑦 ,                    (2) 

where 𝑐𝑐𝑥𝑥𝑥𝑥  and 𝑐𝑐𝑦𝑦𝑦𝑦  are the second central moments of the 
corresponding centroid. This approach works well for 
videos with relatively stable backgrounds. 

3.2. Significant feature mining by PageRank  
Some videos may have a constantly changing back-

ground, thus the motion information is not reliable. For this 
type of video, we propose to use PageRank (PR) techniques 
to discover the relatively important features. This is in-
spired by the successes of PR in the Google search engine 
and unsupervised object categorization [18]. In the case of a 
given video, we build a large directed graph of features. 
Here, a vertex denotes a feature, and an edge represents a 

match with another feature. If a feature is consistently 
matched with many other features, we consider it more 
significant than others. Since the background changes 
throughout the video, we consider a consistent feature 
foreground feature. The idea is similar to consistent feature 
tracking.  PR is the right technique to analyze the interac-
tion between the features, by assigning a ranking score to 
each feature as its relative significance in the feature net-
work. It contains two major steps: visual similarity graph 
constructed by image matching and visual feature ranking 
by PR. We describe the procedure briefly as follows.     
3.2.1. Construction of feature similarity graph (FSG)    

The FSG is a directed graph G = (V, E, W), where V is the 
vertex set (the visual feature set), E is the edge set, and W is 
the associated adjacency matrix with weight representing 
the degree of match between the linked features. W is not 
necessarily symmetric. For instance, feature i in frame Ft1 is 
selected to match feature j in frame Ft2 when matching 
frame Ft1 to Ft2, however when  we try to match frame Ft2 to 
Ft1, feature j’ in Ft2 may be the better match for feature i. 
Any image matching technique can be used here. We 
choose the spectral image matching technique in [24], 
which can find good matches with geometric consistency 
constraints.  

In order to discover the discriminative foreground fea-
tures, image matching is only performed on a pair of frames 
Ft and Ft’ with the constraint of | t - t’ | > τ (τ, an empirical 
value, is set to 30 to 50 depending on the length of the video 
sequence). For matching frame Ft to Ft’, we initially re-

Figure 3: Two examples from riding (top) and cycling (bottom) 
demonstrate the effects of feature acquisition.  The first row shows 
the original static features, and the second row shows the selected 
features. The top 10% features in PR values are retrieved.  
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trieve n matched candidate feature pairs estimated by 
comparing the Euclidean distance between a pair of fea-
tures represented by SIFT descriptor. Next, a graph with 
weighted adjacency matrix P (nxn) is constructed, where a 
node represents a pair of matched features (i, j),   and edge 
weights are computed to measure the geometric consis-
tency of two matches. For instance, if (i, j) and (i’, j’) are 
two pairs of candidates, then the entry P(ij,i’j’) contains the 
geometric consistency score between them. We think all 
the correct matches should have strong correlations with 
each other, while the incorrect ones are random outliers. 
The problem now is to cluster all the matches into two 
groups of S* and R corresponding to inliers and outliers, 
respectively. This problem can be solved by spectral clus-
tering to find the principle eigenvector of P matrix.            

Once all the good matches (S*) are obtained, we con-
tinue to re-estimate their matching score. For each pair of 
matches (i, j) (it corresponds to one edge in G) in S*, we 
estimate the weight as wij = α𝑤𝑤𝑖𝑖𝑖𝑖

𝑔𝑔  + β𝑤𝑤𝑖𝑖𝑖𝑖
𝑝𝑝 . The 𝑤𝑤𝑖𝑖𝑖𝑖

𝑔𝑔  represents 
the geometric consistency, and 𝑤𝑤𝑖𝑖𝑖𝑖

𝑝𝑝  measures the appear-
ance similarity. The geometric consistency is computed by 
Sij = ∑ 𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑖𝑖′ 𝑗𝑗′)/|𝑆𝑆∗|𝑖𝑖′ 𝑗𝑗 ′ ∈𝑆𝑆∗ . We then rank them by as-
signing them into different levels of matching (see paper 
[24] for details). The weight is estimated from the consis-
tency level value with consideration of the total number of 
features. After matching all pairs of frames, we obtain an 
nxn sparse matrix W.   
3.2.2. Feature ranking via PageRank  

Given the constructed large graph G with its vertices and 
a set of edge weights, we want to measure the relative 
importance of the vertices using PR. Here, we can treat the 
VSG as a graph of linked WebPages. Each vertex is similar 
to a webpage and all the edge weights associated with a 
vertex can be considered as the votes cast by the linked 
vertices. Since the features from the foreground have more 
consistent matches throughout the entire video sequence, 
they get higher votes. The features in the background are, 
however, unstable due to the changing background, so their 
votes are lower. This is why we can discover the significant 
features using PR. 

Suppose Pr is a 1xn PR vector with each entry corres-
ponding to the PR value of the feature, we can solve the 
problem using the following equation:         

    𝑃𝑃𝑃𝑃 = 𝛼𝛼 ∗ 𝑃𝑃𝑃𝑃 ∗ 𝑊𝑊 + (𝛼𝛼 ∗ 𝑃𝑃𝑃𝑃 ∗ 𝑏𝑏 + 1 − 𝛼𝛼) ∗ 𝑣𝑣, 
where α is the scaling factor (α=0.85 in our experiment), b 
is an indicator vector indentifying the vertices with zero 
out-degree, W is the weights matrix, and v is an nx1 trans-
port vector with uniform probability distribution over the 
vertices. The initial PR value for each vertex is 1/n. For 
each frame Ft, we compute its PR vector Prt. Based on the 
rank of Pr values, we select the top μ features as the in-
formative ones.  Fig. 3 shows two examples of qualitative 
performance of our approach.  

4. Learning Semantic Visual Vocabularies 
In this section, we address the problem of obtaining 

compact yet discriminative visual vocabularies for motion 
and static features. We first create initial visual vocabula-
ries with a relatively larger size. In general, a larger visual 
vocabulary performs better, but over-specific visual words 
may eventually over-fit the data. In addition, the initial 
vocabulary does not necessarily capture the semantic rela-
tions between the features. Therefore, we further use in-
formation-theoretic measure to refine the initial vocabula-
ries by feature grouping. That is why very small vocabula-
ries (e.g., two in [1]) can still achieve good performance 
[1,8]. Another motivation for vocabulary reconstruction is 
the fact that the combination of two features may be more 
useful than when used individually [21].  

Given two distributions p1(x) and p2(x), the “distance” 
can be measured by Jensen-Shannon (JS) divergence as 
 𝐽𝐽𝐽𝐽𝜋𝜋(𝑝𝑝1, 𝑝𝑝2) =  ∑ 𝜋𝜋𝑖𝑖𝐾𝐾𝐾𝐾�𝑝𝑝𝑖𝑖 ,∑ 𝜋𝜋𝑗𝑗𝑝𝑝𝑗𝑗𝑗𝑗={1,2} �𝑖𝑖={1,2} , where π1+ 
π2 =1, and  𝐾𝐾𝐾𝐾(𝑝𝑝1, 𝑝𝑝2) =  ∑ 𝑝𝑝1(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝1(𝑥𝑥) 𝑝𝑝2(𝑥𝑥)⁄ )𝑥𝑥∈𝑋𝑋 . 
JS-divergence is symmetric and finite compared to 
KL-divergence. Suppose variables C = {c1,…,cL } and X = 
{x1,…,xM}represent classes and visual words respectively, 
then the information about C captured by X can be meas-
ured by mutual information (MI) I(C;X). Let 𝑋𝑋�  = 
{𝑥𝑥�1, … , 𝑥𝑥�𝐾𝐾 } be the visual words clusters of X; we can 
measure the quality of the new vocabulary as the loss of MI 
as, Q(𝑋𝑋�) = I(C;X) – I(C; 𝑋𝑋�), which can be computed as, 

𝑄𝑄(𝑋𝑋�) =  ∑ 𝜋𝜋(𝑥𝑥�𝑖𝑖)𝐽𝐽𝐽𝐽({𝑝𝑝(𝐶𝐶|𝑥𝑥𝑡𝑡): 𝑥𝑥𝑡𝑡 ∈ 𝑥𝑥�𝑖𝑖})𝐾𝐾
𝑖𝑖=1 , 

where 𝜋𝜋(𝑥𝑥�𝑖𝑖) = ∑ 𝜋𝜋𝑡𝑡𝑥𝑥𝑡𝑡∈𝑥𝑥�𝑖𝑖 , πt = p(xt) is the prior, π’t = πt 

/𝜋𝜋(𝑥𝑥�𝑖𝑖) for 𝑥𝑥𝑡𝑡 ∈ 𝑥𝑥�𝑖𝑖 , and 1≤ i ≤K,  1≤ t ≤ M. From the equa-
tion, we can see the quality of the new cluster 𝑥𝑥�𝑖𝑖  is meas-
ured by the JS-divergence of every p(C|wt) in it. After some 
derivation, the new quality can also be written as,   

𝑄𝑄(𝑋𝑋�) =  ∑ 𝜋𝜋(𝑥𝑥�𝑖𝑖)∑ 𝜋𝜋𝑡𝑡𝐾𝐾𝐾𝐾(𝑝𝑝(𝐶𝐶|𝑥𝑥𝑡𝑡), 𝑝𝑝(𝐶𝐶|𝑥𝑥�𝑖𝑖))𝑥𝑥𝑡𝑡∈𝑥𝑥�𝑖𝑖
𝐾𝐾
𝑖𝑖=1 . 

This equation suggests that the loss of MI due to vocabu-
lary reconstruction can be considered as the dispersion of 
all the members (p(C|xt)) to the new cluster center 
(𝑝𝑝(𝐶𝐶|𝑥𝑥�𝑖𝑖)). Hence, we can use an iterative procedure like 
k-means algorithm to obtain the optimal new vocabulary 
using two major steps as follows: 

1. For each cluster 𝑥𝑥�𝑖𝑖 , compute the prior and “centers”: 
 𝜋𝜋(𝑥𝑥�𝑖𝑖) = ∑ 𝜋𝜋𝑡𝑡𝑥𝑥𝑡𝑡∈𝑥𝑥�𝑖𝑖   and 𝑝𝑝(𝐶𝐶|𝑥𝑥�𝑖𝑖) = ∑ 𝜋𝜋𝑡𝑡

𝜋𝜋(𝑥𝑥�𝑖𝑖)
𝑝𝑝(𝐶𝐶|𝑥𝑥𝑡𝑡)𝑥𝑥𝑡𝑡∈𝑥𝑥�𝑖𝑖 ; 

2. Update clusters: for each xt, find the new cluster: 
      𝑖𝑖∗(𝑥𝑥𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗  𝐾𝐾𝐾𝐾(𝑝𝑝(𝐶𝐶|𝑥𝑥𝑡𝑡), 𝑝𝑝(𝐶𝐶|𝑥𝑥�𝑗𝑗 )). 

This iteration stops when 𝑄𝑄�𝑋𝑋�� < 𝜀𝜀 (e.g. 10-3). Compared 
to agglomerative IB (Information Bottleneck), this algo-
rithm optimizes the global criteria, and is also more effi-
cient with a complexity of O(MKLS) compared to O(M3L) 
of IB, where S is the number of iterations (normally small). 
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5. Experiments and Discussion 
We choose Adaboost with C.45 [23] as the classifier to 

combine the heterogeneous   motion and static features. In 
the training phase, leave one out cross validation (LOOCV) 
scheme is used. 

5.1. Datasets 
The KTH dataset was recorded in a controlled setting 

with slight camera motion and “clean” background. How-
ever, it can still be used to test the benefit of using both 
motion and static features. The dataset contains six cate-
gories of actions: boxing, clapping, waving, jogging, 
walking and running. There were 25 actors performing 
each action four times in four different environments, re-
sulting in about 600 video sequences in total.  

Since the KTH dataset is relatively simple, both the mo-
tion and static features are mostly detected on the actors. 
We collected a more complex and challenging dataset 
based on YouTube videos and our personal video collec-
tions. Given that  we do not have control  over the video 
capturing process, the dataset has the following properties: 
1) a  mix of steady cameras and shaky cameras, 2) cluttered 
background, 3) variation in object scale, 4) varied view-
point, 5) varied illumination, and 6) low resolution. This 
action dataset contains 11 categories: basketball shooting 
(b_shooting), volleyball spiking (v_spiking), trampoline 
jumping (t_jumping), soccer juggling (s_juggling), horse-
back riding(h_riding), cycling, diving, swinging, golf 
swinging (g_swinging), tennis swinging (t_swinging),  and 
walking (with a dog). The first four actions are easily 
confused with “jumping”, the next two may have similar 
camera motion, and all the “swing” actions share some 
common motions. Some actions are also performed with 
objects such as a horse, bike or dog. Both static features and 
local contextual features can help in recognition.  In order 
to remove the unfair effect of the same background in 
recognition, we organize the video sequences into 25 rela-
tively independent groups, where separate groups are either 
taken in different environments or by different photo-
graphers. The dataset contains 1168 video sequences in 
total. To the best of our knowledge, this is the most exten-
sive realistic action dataset in the vision community. We 
believe that the experimental results on this dataset will be 
very valuable considering that most previous research ex-
periments were conducted within human-controlled set-
tings to certain degrees. Fig. 1 shows some examples of the 

Youtube dataset.     

5.2. Experiments on KTH dataset 
We extracted about 400 cuboids (spatiotemporal vo-

lumes) and about 3,000 static features from each video, and 
applied PCA to reduce the dimension of the ST (spati-
otemporal) feature descriptor to 100. Since the KTH dataset 
is relatively “clean”, feature pruning is not necessary. We 
performed two groups of experiments. The objective of the 
first experiment is to demonstrate the benefit of combina-
tion of static and motion features. The objective of the 
second experiment is to show how compact and discri-
minative our learnt semantic visual vocabularies are. Fig. 4 
shows the classification results for static features, motion 
features with initial vocabulary size of 600 respectively and 
the hybrid of them. The average accuracies are 82.3%, 
87.1% and 91.8%, respectively.  The improvement of using 
hybrid features is 4.7% over motion features alone. Note 
that the improvement is observed in all actions. It is sur-
prising to note that we obtained much better results using 
the static features for boxing than using motion features.  
The reason is the fact that boxing has enough unique in-
stantaneous poses. Both clapping and waving have some 
poses which overlap with boxing, so it is easy to misclassify 
them as boxing.  

Table 1 Performance comparison between vocabularies generated 
by k-means and our information-theoretic method (%). 
Size(Nw) 20 40 60 80 100 200 400 
k-means 66.9 70.2 76.9 80.4 82.3 83.8 86.3 
Proposed 84.1 85.1 86.8 87.6 88.8 90.8 89.1 

Table 1 lists the performance comparison between the 
visual vocabularies generated by k-means and our semantic 
visual vocabularies (both are for motion features).  The 
semantic visual vocabularies are learnt from an initial vis-
ual vocabulary of size 2000.  The results support our con-
jecture that using mutual information between features and 
actions can result in a compact yet discriminative vocabu-
lary, especially when the size is small. While we can only 
learn appearance similarity using k-means, we can further 
learn the semantic correlation between the features using 
our proposed method. In other words, the learnt vocabulary 
is semantically meaningful. This is consistent with the 
findings in [8]. We also learnt a semantic visual vocabulary 
of the static features from an initial visual vocabulary of 
size 2000, and achieved 84.3%. The hybrid combination of 
two resulted in 93.8%. This is better than 91.8% reported in 

Figure 4: (a-c) Confusion tables for classification using static, motion and hybrid features, (d) the comparison of average accuracy. 
(a) (c) (d) (b) 
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[19], where multiple motion features with spatiotemporal 
information are combined for recognition. Our results are 
also comparable to those reported in [8] (i.e. 94.3%).  

5.3. Experiments on YouTube Dataset 
We extracted about 400 cuboids and a variable number 

of static features (about 7,000 ~ 14,000) from each video.   
 We first verified the effectiveness of our motion feature 
pruning technique. We used the initial vocabulary of size 
2,000, and then learnt different sizes of semantic visual 
vocabularies, and selected 350 for experiments. Fig. 5 
shows the comparison of the recognition accuracy between 
the experiments with and without using our motion feature 
pruning technique. The average accuracies are about 57.5% 
and 65.4%, respectively.  The improvement is about 8%, 
which is impressive. For each individual action, the im-
provement varied between 4% to 18% with the exceptions 
of swinging and diving. One explanation is that the motion 
features from the background can help distinguish swinging 
from other similar jumping actions like v_spiking and 
t_jumping. Once these features are removed, it is easier to 
confuse swinging with other jumping. To verify our analy-
sis, we checked the classification details. After feature 
pruning, about 16% and 8% swinging actions are misclas-
sified into t_jumping and v_spiking, respectively, while the 
numbers are 13% and 4% before feature pruning.   
 We further conducted experiments to verify how good 
our static feature mining techniques are. The experimental 
results are reported on the initial vocabulary with a size of 
2,000 and the learnt semantic vocabulary of size 400 is 
selected for further experiments.  Fig. 6 shows the perfor-
mance comparison between the experiments with and 
without applying feature mining.  We obtained 5% to 25% 
improvement in recognition accuracy on eight actions.  
Specifically, we achieved 25% improvement for h_riding. 
This shows that PR can effectively discover the informative 
features. However, there are three categories: v_spiking, 
swinging, and diving, for which the performance decreased. 
The reason is that actions in one category took place in very 
similar environments. For instance, v_spiking normally 
happens in a crowd of people, and diving happens in a pool. 

This is common for professional sport actions which take 
place in highly structured environments. Overall, the av-
erage accuracy of all the categories improved from 58.1% 
to 63.0%. 
  Finally, we verified the benefit of hybrid features. The 
initial vocabulary size is 2,000 for both motion and static 
features, and the size of the reconstructed vocabularies 
using our divisive information-theoretic approach is 350 
and 400 for motion and static feature, respectively. Fig. 7 
(a) shows the comparison of the classification accuracies 
using motion, static, and the hybrid features. The im-
provement using hybrid features is about 5.8% over motion 
features alone. Most categories obtained improvement in 
terms of recognition accuracy except for s_juggling and 
cycling. Fig. 7 (b) shows the confusion table for classifica-
tion using the hybrid features. We can see that a lot of 
b_shooting is misclassified into t_swing, and h_riding, 
s_juggling and swinging are easier to be misclassified into 
cycling.     

5.4. Action localization  
By analyzing the location distribution of the good fea-

tures (static or motion) that are discovered by using our 
motion and static feature pruning techniques, we can em-
ploy Equation 1 to estimate the centroid of the features in 
2δ continued frames. This centroid is taken as the estimated 
center of the moving object with dimensions estimated by 
Equation 2. Fig. 8 shows a few recognition results with 
quite accurate action localization. As for the temporal lo-
calization, we employed a temporal sliding window and 
include a few examples in the supplemental material (due 
to limited space here).  

6. Conclusions  
We present a systematic framework for recognizing 

realistic actions from videos “in the wild,” such as You-
Tube videos. In order to acquire good features, we use 
motion cues to prune motion and static features. In addi-
tion, we employ PageRank technique for informative static 
feature mining. We further use information-theoretic based 
divisive clustering to reconstruct compact yet discrimina-
tive semantic visual vocabularies. All the heterogeneous 

Figure 6: Performance comparison between systems with static 
feature mining and without feature mining.  

Figure 5: Performance comparison between systems with 
motion feature pruning and without feature pruning. 
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features are combined effectively by a boosting classifier. 
The experiments verified that our framework is effective 
for recognizing the realistic actions, and using hybrid fea-
tures of motion and static can improve the average recog-
nition accuracy.   
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Figure 7: (a) Comparison of classification performance for using motion, static and hybrid features. The average accuracy for motion, static and 
hybrid features are 65.4%, 63.1% and 71.2%, respectively. (b) The confusion table for classification using hybrid features. 

(b) (a) 

Figure 8: Some recognition results with localization. “M”, “S” and 
“H” in the images means the following judgments are made on the 
“motion”, “static” and “hybrid” features, respectively. 


