Defining Gestures from Optical Flow: Week 8

Jon Harter

University of Central Florida

July 10, 2009

Current Progress and Goals

Recent Progress

- Generated optical flow database for a given range of rotation and translation
- Clustered data
- Matched optical flow from cameras to database
- Constructed basic gesture

Current Goal: Create a working gesture recognition system

Create a robust gesture classifier

Generate Optical Flow - Average into Quadrants

Figure: Synthetic Optical Flow

Generate Optical Flow - Average into Quadrants

Figure: Averaged Optical Flow

Cluster Optical Flow - Using k-means

Clustering

- ► **Feature Vectors:** Synthetic *u* and *v* values from each camera, one vector for each choice of rotation and translation (15625 cases)
- ► **Clustering:** use *k*-means with (150 clusters)
- ▶ Why: Decrease search space for mapping camera data to synthetic data

Cluster Optical Flow - Using k-means

Clustering

- ► **Feature Vectors:** Synthetic *u* and *v* values from each camera, one vector for each choice of rotation and translation (15625 cases)
- ► **Clustering:** use *k*-means with (150 clusters)
- ▶ Why: Decrease search space for mapping camera data to synthetic data

Matching Real Data to Simulated

- ▶ Retrieve optical flow from cameras for a duration of a gesture
- ▶ Average optical flow using same technique as with synthetic
- ► Find closest cluster to each set of frames (euchlidian distance)
- ► Find closest case within each respective cluster

Compute Real Optical Flow

Figure: Real Optical Flow

Best Fit from Database - Find Nearest Cluster

Figure: Optical Flow from Cluster Base of Closest Distance

Best Fit from Database - Find Nearest Entry in Cluster

Figure: Optical Flow from Data of Closest Distance

Gesture Representation

Gesture 1: Zorro

Gesture 1: Zorro										
(R_{x}	R_y	R_z	$t_{\scriptscriptstyle X}$	t_y	t_z				
51 51 104 5 104 5 136 136 136 136 136 136 136 136 136	2 1 1 1 -1 -1 -2 -1 -1 -1 -1	0 1 0 0 0 -1 -1 -1 -1 -1 -1 0	0 -1 12 12 00 00 00 -1 -2	-1 0 0 0 0 -1 -1 -1 -1 -2 0 2	0 -2 -1 -1 -1 0 0 0 0 0 -1 -2	-1 -2 -2 -2 -2 -2 2 2 2 2 2 1 -1				

Gesture 2: S-Shape

Gesture 2: 5-Snape										
С	R_{\times}	R_y	R_z	t_x	t_y	tz				
7 136 136 136 136 136 51 80 51 61 51 51 51 51 51 51 51 51	-1 -1 1 1 2 1 2 1 2 2 1 2 2 2	-1 -1 -1 0 1 0 1 1 1 1 1 1	0 0 0 0 1 0 0 -1 0 0 0	-2 -2 -1 0 1 2 1 2 1 1 1	0 0 -1 0 -2 0 0 -2 0 0 0 0	t_z 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2				

Comparing Two Gestures

Simple Method

- Examine only cluster values cooresponding to each set of optical flow values for each gesture
- Calculate minimum difference in cluster values

Comparing Zorro

Zorro-1 to Zorro-2 51549 Zorro-1 to Zorro-3 41328 Zorro-2 to Zorro-3 48484 Zorro-1 to S-1 117970 Zorro-1 to S-2 132910 Zorro-2 to S-3 142810

Comparing S-Motion

S-1 to S-2 48613

S-1 to S-3

36973

S-2 to S-3

69910

S-1 to Zorro-2

77797

S-1 to Zorro-3

106980

Future Goals

- ▶ Design a more complex/intelligent gesture classifier
- ▶ Incorporate antipodal information into gesture description