Defining Gestures from Optical Flow: Week 9

Jon Harter

University of Central Florida

July 17, 2009

Current Progress and Goals

Recent Progress

- Approximated rotation and translation values for each gesture in test data
- Designed a feature vector representation of rotation and translation data
- Converted Matlab implementation to C# for better performance and compatibility with four camera setup

Current Goal: Create a working gesture recognition system

- ► Ensure that current implementation of gesture classifier is working properly
- ► Collect gesture data on a large scale

Gesture Representation

Gesture 1: Zorro

Gesture 1: Zorro								
R_{\times}	R_y	R_z	t_{x}	t_y	tz			
R _x 2 2 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0 1 0 0 0 -1 -1 -1 -1 -1 -1 -1	0 -1 1 2 1 2 0 0 0 0 0 0 -1 -2	$\begin{array}{c c} rO \\ \hline t_x \\ \hline -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\$	$\begin{array}{c} t_y \\ 0 \\ -2 \\ -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ -2 \\ \end{array}$	$\begin{array}{c cccc} & t_z & & & \\ \hline & -1 & & & \\ & -2 & & \\ & -2 & & \\ & -2 & & \\ & -2 & & \\ & 2 & & \\ & 2 & & \\ & 2 & & \\ & 2 & & \\ & 2 & & \\ & 2 & & \\ & 1 & & \\ & -1 & & \\ \end{array}$			

Gesture 2: S-Shape

desture 2. 3-3mape								
R_{x}	R_y	R_z	t_x	t_y	tz			
R_{\times} -1 -1 -1 1 1 2 1 2 1 2 2 2 2 2	-1 -1 -1 0 1 0 1 1 -1 1 1	R _z 0 0 0 0 0 1 0 0 -1 0 0 0 0 0	$\begin{array}{c c} t_x \\ \hline -2 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}$	$\begin{array}{c} t_y \\ 0 \\ 0 \\ -1 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c c} t_z \\ \hline 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$			

Extracting Features

Representation

- ► Each row of rotation and translation representation is one frame in gesture
- We cannot assume all gestures utilize the same number of frames

Important Properties

- Order of frames is crucial (ie. Zorro and S-Shape share similar rows but in different order)
- Runs of zeros, positives, and negatives are prevelant
- ▶ Magnitudes of rotation and translation should play key role

Feature Selection

- ► Feature 1: Length
 - Assumption: Similar gestures should be similar lengths
 - Particularly important in distinguishing between gestures such as stab and zorro that varry drastically in length.
- ▶ Features 2-7: Longest negative run for each column
 - Assumption: A run represents a prevelant type of motion within the gesture. Similar gestures should have similar prevelant motions.

Feature Selection

- ► Features 8-13: **Number of negative values in first half** of gesture for each column
 - Assumption: Adds order of motion to the gesture, distinguishing gestures with similar length, runs, and magnitudes from each other
- ► Features 14-19: Number of negative values in second half of gesture for each column
 - Assumption: Same as above.

Feature Selection

- ► Features 20-37: Extract features 2-19 with zeros instead of negatives
 - Assumption: Positive values need not be extracted for these types of features as the positive data should be the converse of the negative and zero data
- ► Features 38-43: **Sum of absolute magnitudes** for each column
 - Additional Assumption: Certain gestures may have consistant variation in the direction of a certain parameter, this ignores direction while still noting the motion (eg. a wrist may rotation in either direction unintentionally while performing the same gesture repeatedly)

Feature Analysis

- ▶ Total Features: 43
- Classifier is undergoing debugging so features are subject to change based on interaction with said classifier.
- Given a set of three gestures (Zorro: z_i, S-Shape: s_i, Stab: st_i), compared the difference between each vector as a measure of distinguishment

Comparing Feature Vectors

	z 1	22	z 3	z4	z 5	s1	s2	s3	s 4	st1	st2	st3
z1	0	14	13	13	15	26	26	27	26	35	37	33
z2	14	0	19	14	21	31	31	31	30	41	42	39
z 3	13	19	0	17	14	23	22	23	23	32	35	30
z4	13	14	17	0	14	27	28	27	26	30	32	29
z 5	15	21	14	14	0	24	24	23	23	23	25	21
s 1	26	31	23	27	24	0	12	10	10	35	36	34
s2	26	31	22	28	24	12	0	14	14	36	38	35
s3	27	31	23	27	23	10	14	0	10	32	34	31
s 4	26	30	23	26	23	10	14	10	0	33	34	32
st1	35	41	32	30	23	35	36	32	33	0	9	7
st2	37	42	35	32	25	36	38	34	34	9	0	10
st3	33	39	30	29	21	34	35	31	32	7	10	0

Figure: Euchlidian Distance of Each Feature Vector to the Others

Comparing Feature Vectors

```
z2
              z3
                        z_5
                                 s2
                                      s3
                                          s4 st1 st2 st3
     z1
                   z4
                             s1
                                     27
    100
          62
              66
                   65
                        58
                            30
                                 31
                                          30
                                                        10
 z1 |
 z2
     66 100
              54
                   67
                        49
                            27
                                 27
                                      26
                                 38
 z3
     64
          45
             100
                   50
                        60
                            34
                                      35
                                          33
                                                        14
 z4
          57
              45 100
                        57
                            15
                                 13
                                     16
 z_5
     39
          16
              45
                   46 100
                                  6
                                       8
                                                        17
 s1
     29
          16
              37
                   26
                        34 100
                                 67
                                      72
                                          72
 s2
          19
              43
                   28
                        38
                            69 100
                                     62
                                          63
 s3
     22
          10
              34
                   22
                        32
                            70
                                 58 100
                                          71
                                                        11
          13
              32
                                 58
                                     71 100
 s4
     24
                   25
                        32
                            70
st1
     13
              21
                   25
                        42
                            15
                                 12
                                      22
                                          19 100
                                                        83
     12
st2
                   24
                        40
                            13
                                     18
                                          18
                                               79
                                                  100
                                                        77
     14
               23
                   26
                        46
                            13
                                 11
                                      21
                                               83
                                                    75 100
st3
                                          18
```

Figure: Larger Values Denote Higher Similarities

Feature Analysis (Cont.)

- ▶ In every comparison, the top *n* coorelations (where *n* is the anticipated number of matching gestures) belonged to the target category (i.e. All Zorros matched the closest to each other Zorro ect...)
- ► For at least this small set of gestures, selected features are very descriptive
- Cannot weigh true quality of feature vectors until utilized within the classifier

Future Goals

- ► Have working gesture recognition within today or tommorrow
- ▶ Hone feature vectors to ensure the best gesture description
- Expand gestures to more than four distinct cases