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Current Progress and Goals

Recent Progress

» Approximated rotation and translation values for each gesture
in test data

» Designed a feature vector representation of rotation and
translation data

» Converted Matlab implementation to C# for better
performance and compatibility with four camera setup

Current Goal: Create a working gesture recognition system

» Ensure that current implementation of gesture classifier is
working properly

» Collect gesture data on a large scale
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Gesture Representation

Gesture 2: S-Shape

Gesture 1: Zorro
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Extracting Features

Representation

» Each row of rotation and translation representation is one
frame in gesture

» We cannot assume all gestures utilize the same number of
frames

Important Properties

» Order of frames is crucial (ie. Zorro and S-Shape share similar
rows but in different order)

» Runs of zeros, positives, and negatives are prevelant

» Magnitudes of rotation and translation should play key role
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Feature Selection

» Feature 1: Length
» Assumption: Similar gestures should be similar lengths
» Particularly important in distinguishing between gestures such
as stab and zorro that varry drastically in length.

» Features 2-7: Longest negative run for each column
» Assumption: A run represents a prevelant type of motion
within the gesture. Similar gestures should have similar
prevelant motions.
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Feature Selection

» Features 8-13: Number of negative values in first half of
gesture for each column
» Assumption: Adds order of motion to the gesture,
distinguishing gestures with similar length, runs, and
magnitudes from each other

» Features 14-19: Number of negative values in second half
of gesture for each column

» Assumption: Same as above.
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Feature Selection

» Features 20-37: Extract features 2-19 with zeros instead of
negatives
» Assumption: Positive values need not be extracted for these
types of features as the positive data should be the converse of
the negative and zero data

» Features 38-43: Sum of absolute magnitudes for each
column
» Additional Assumption: Certain gestures may have consistant
variation in the direction of a certain parameter, this ignores
direction while still noting the motion (eg. a wrist may
rotation in either direction unintentionally while performing the
same gesture repeatedly)
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Feature Analysis

» Total Features: 43

» Classifier is undergoing debugging so features are subject to
change based on interaction with said classifier.

> Given a set of three gestures (Zorro: z;, S-Shape: s;, Stab:
st;), compared the difference between each vector as a
measure of distinguishment
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Comparing Feature Vectors
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Figure: Euchlidian Distance of Each Feature Vector to the Others
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Comparing Feature Vectors

z1 =22 =23 =24 =25 s1 s2 s3 s4 stl st2 st3
z1(18@ 62 66 65 58| 3@ 31 27 3@ & a 1@
z2| 66 188 54 67 49| 27 27 26 29 3 a 7
z3| 64 45 188 50 68| 34 35 33 7?7 8 14
=4 68 57 45 18@ 57| 15 13 16 19 3 a 9
=5 39 16 45 46 1688| 5 6 8 8 7?7 8 17
s1| 29 16 37 26 34|188 67 72 72 5 a 7
s2| 33 19 43 28 38| 62 180 62 63 6 a 9
s3| 22 18 34 22 32| 7@ 58 180 71 8 a 11
s4| 24 13 32 25 32| 7@ 58 711680 4 @ 7
stl| 13 21 25 42 15 12 22 419|188 78 83
st2| 12 17 24 48 13 2 18 18| 79 188 7?7
st3| 14 23 26 46 13 11 21 18| 83 75 188

Figure: Larger Values Denote Higher Similarities
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Feature Analysis (Cont.)

» In every comparison, the top n coorelations (where n is the
anticipated number of matching gestures) belonged to the
target category (i.e. All Zorros matched the closest to each
other Zorro ect...)

» For at least this small set of gestures, selected features are
very descriptive

» Cannot weigh true quality of feature vectors until utilized
within the classifier
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Future Goals

» Have working gesture recognition within today or tommorrow
» Hone feature vectors to ensure the best gesture description

» Expand gestures to more than four distinct cases
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