A Gesture Recognition Peripheral Using Optical Flow: Week 5

Jon Harter

University of Central Florida

June 19, 2009

Short Term Goals

Compare Different Egomotion Models

- ► Compare egomotion model proposed by Higgins in 1981 to Hartley (2009) and Bruce/Horn (1997)
- Verify implementation of Hartley is correct
- Compare rotation matrices with angular velocity vectors

Current Progress and Challenges

Progress

- ▶ Bridged Hartley/Pless egomotion equations (2009) with Higgins egomotion equations (1981)
- Compared instantaneous egomotion model to discrete
- ► Fixed an implementation bug of Hartley algorithm

Challenges

- ► Bridge 1997 paper on egomotion (other approach) with Higgins
- Accurately convert from rotation matix to velocity vector

Relevant Works

Determine Ego-motion

- ► A Computer Algorithm for Reconstructing a Scene from Two Projections
- ▶ H.C. Longuet-Higgins (1981)
- ► A linear approach to motion estimation using generalized camera models
- ▶ Hongdong Li, Richard Hartley, Jae-hak Kim (2009)

Contributions

 Higgins proposes "intuitive" function for optical flow, unlike Hartley

Hartley

Definitions

R: rotation matrix

 b_k : Camera k center

 r_k : Camera k orientation matrix

x and x': Cooresponding points

Initial Equation

$$x_{i}^{T}[t]_{x}Rx_{i}' + x_{i}^{T}R(v_{i}' \times x_{i}') + (v_{i} \times x_{i})^{T}Rx_{i}' = 0$$

After Substitution

$$v_i = v'_i = b_k$$
$$x_i = r_k p$$
$$x'_i = r_k p + r_k \dot{p}$$

$$(r_k p)^T [t]_x R(r_k p + r_k \dot{p}) + (r_k p)^T R(b_k \times (r_k p + r_k \dot{p})) + (b_k \times r_k p)^T R(r_k p + r_k \dot{p}) = 0$$

Higgins

Definitions

u: optical flow x-component

v: optical flow y-component

t: translation of system

 X_3 : depth

x: image point x-component

y: image point y-component

Equations

$$u = x' - x = \frac{xt_z - t_x}{X_3 - t_z}$$

$$v = y' - y = \frac{yt_z - t_y}{X_2 - t_z}$$

Bridging Hartley and Higgins

Hartley Assumptions

- ▶ One camera $(b_k = \vec{0})$
- ▶ No rotation (R = I)

Equation

$$p^{T}[t]_{x}(p+p')=0$$

Expanded Form

$$(yt_z - t_y)x' + (-xt_z + t_x)y' + xt_y - yt_x = 0$$

$$yt_z x' - t_y x' - xt_z y' + t_x y' + xt_y - yt_x = 0$$

Bridging Hartley and Higgins

Higgins Assumptions

ightharpoonup No rotation (R = I)

Equations

$$x' - x = \frac{xt_z - t_x}{X_3 - t_z}$$
$$y' - y = \frac{yt_z - t_y}{X_3 - t_z}$$

Working Toward Higgins ¹

$$X_{3} - t_{z} = \frac{xt_{z} - t_{x}}{x' - x}$$

$$X_{3} - t_{z} = \frac{yt_{z} - t_{y}}{y' - y}$$

$$\frac{xt_{z} - t_{x}}{x' - x} = \frac{yt_{z} - t_{y}}{y' - y}$$

$$(xt_{z} - t_{x})(y' - y) = (yt_{z} - t_{y})(x' - x)$$

$$xt_{z}y' - xt_{z}y - t_{x}y' + t_{x}y = yt_{z}x' - yt_{z}x - t_{y}x' + t_{y}x$$

$$yt_{z}x' - t_{y}x' - xt_{z}y' + t_{x}y' + xt_{y} - yt_{x} = 0$$

¹Recall Higgins: $yt_zx' - t_yx' - xt_zy' + t_xy' + xt_y - yt_x = 0$

Bridging Hartley and Higgins

Other Comparisons

- The case where rotation exists has also been verified
- No comparison under the assumption of multiple cameras (Higgins uses one camera)

Another Comparison

Bridge Bruce and Horn Egomotion and Higgins (no rotation)

► Bruce/Horn (instantaneous):

$$u = \frac{xt_z - t_x}{X_3}, v = \frac{yt_z - t_y}{X_3}$$

Higgins:

$$u = \frac{xt_z - t_x}{X_3 - t_z}, v = \frac{yt_z - t_y}{X_3 - t_z}$$

 \triangleright Approximately equal for small t_z

Challenge

► Have not verified above comparison with rotation

Future Plans

- ► Hartley Algorithm must be tested against noise in data
- ► Filter must be created to ensure only trusted optical flow is used.
- Construct a model for gesture recognition that is resiliant to variation and noise