Daniel Kennedy

Research in a four camera marker-less tracking device

More precisely:

The potential applications for such a device

Daniel Kennedy

Strengths of the device:

- more precise than other 'conventional' tracking devices:
 - GPS is only reliable within several feet
 - most geolocating devices have trouble measuring changes in altitude
 - EM trackers only work within a certain raduis

Daniel Kennedy

Strengths of the device:

- versatility:

The device requires no environmental cues such as markers or LEDs

There remain limits to the device's versatility

Daniel Kennedy

Strengths of the device:

- creates a good environment for localised tasks such as easy gesture recognition or tracking an individual in relation to their environment.

Daniel Kennedy

Weaknesses of the device:

- The device loses precision when rotated
- Rotation is ignored
- The device lacks a frame of reference eg. When turned on, the device assumes it's at coords (0, 0, 0) with no rotation
- Speed and distance traveled are inacurate
- Fails in some environments

Daniel Kennedy

Device 'add-ons' and improvements:

- Better tracking of rotation
- Better tracking of speed
- Wireless capability
- Extras:
 - scene recognition
 - hardware eg. smaller cameras, infra red...

Daniel Kennedy

Summary of strengths and weaknesses:

- Strengths:
 - precision
 - versatility
 - 'localised tracking'
- Weaknesses:
 - frame of reference
 - environment
 - rotation

Daniel Kennedy

Potential application for the device: Aid for the blind or vision impared

- Tracks the wearer's movement locally:
 - can alert the wearer of possible colisions not detected by a cane or in environments not suitable for canes or seeing eye dogs
 - knowledge of direction and speed can aid in navigation eg. tracking the sidewalk and give a warning if the wearer is moving close to the road

Daniel Kennedy

Implementation of the device:

- Device mounted in the frame of a pair of glasses:
 - provides a visual cue for sighted people
 - head is relatively motionless compared to the rest of the body (rotation down a minimum)
- Auditory cues would be given through a speaker near the ear
- Glasses would also provide room for a battery to power the device

Daniel Kennedy

Implementation of the device:

- The device could use pattern recognition to compute distances in a manner understandable to a blind person eg. instead of feet, in steps
- The device would not be cumbersome since it is being incorporated into a common accessory
- Finally, the device could be made to work with a smartphone. The device would then simply transmit data and the smartphone would do the computation.

Daniel Kennedy

Future ideas for research:

- Increase the mobility of the device:
 - by adding a wireless feature
- by writing code for the device to interface with a mobile smartphone