Project Presentation – Week 2

By: Joshua Michalczak, 28 May 2010

For: Computer Vision R.E.U. at University of Central Florida

Learned Edge Detection - Filters

Learned Edge Detection - RoC

False alarm = 10%,Detection = 63.5%,Threshold = ~62.0%

False alarm = 30.3%,Detection = 90%,Threshold = ~32.6%

Learned Edge Detection

False alarm = 10%, Detection = 63.5%, Threshold = ~62.0%

False alarm = 30.3%, Detection = 90%, Threshold = ~32.6%

Clustering via K-Means

Clustering via K-Means

Clustering via K-Means

15 cluster centers, with location weight

Clustering via *K*-Means (Color weight vs. Location weight)

Optical Flow Results - Initial (levels: 3, win: 3, iter:3)

Optical Flow Results – Larger Win (levels: 3, win: 5, iter:3)

Optical Flow Results – More iter (levels: 3, win: 3, iter:20)

Optical Flow Results - Thoughts

- Larger windows
 - Reduce noise (+)
 - Increase "blob" size (-)
- More iterations
 - "blobs" better modeled (+)
 - Computationally expensive (-)
 - Changes vector magnitudes (More accurate?)

- Levels
 - Each scene/scenario seems to have an ideal pyramid count.
 - Inappropriate level size greatly affects the resulting flow adversely.

Background Subtraction - Median

Background Subtraction – Single Gaussian

Background Subtraction – Standard Deviation

Background Subtraction – Comparing Results

Median (10 dist.)

Frame 152

Gaussian (-2 < z > 2)

Frame 670

Topics I'm Interested in

SLAM - Simultaneous localization and mapping

- Likes: Problem well defined
 - Plethora of research good ideas and algorithms
 - Could be coupled with machine learning for other tasks?
- Idea: Could aide in the accuracy of Dr. Lobo's 4-camera device? Extend uses in market?
 - When coupled together, localization and mapping correct errors in each-other.

Augmented Reality

- Likes: Combining 3D interpretation with applications
- Dislikes: Seems to have moved away from research and more into application fields
 - Most papers were system specific or discussed a use of AR rather than AR itself
- Idea: Coupling "Where am I" with AR
 - Sort of already done though, see Layar app for Android phones

Interpreting Structure

- Likes: Couples 3D field with Machine Learning field
 - Useful base for other work; see Depth-map To Skeleton project
- Dislikes: Too broad of a problem
 - Would prefer focused project to ensure good results from REU program
 - Also, not sure of project ideas other than DTS project....

Creation of 3D Data

- Likes: Low-level
 - I tend to gravitate to "fundamental problems"
 - Again, building a framework for other work
- Dislikes: Dead field?
 - Most techniques are well researched
 - New technology automagically grabs reliant depth; stereo and 3D cameras
 - Again, not sure on project topics other than depth from defocus