REU - Week 3 & 4

Kevin Kyyro

June 10th, 2010

Last Week

- Depth from defocus
- Lots of reading
 - "Depth from Diffusion" by Zhou, Cossairt, & Nayar
 - "Shape from Defocus via Diffusion" by Favaro, Soatto, Burger, & Osher
 - "3D Shape Estimation and Image Restoration" by Favaro & Soatto
 - More powerpoints and papers on DfDefocus and related programming
- Began test programming
- Began reading existing code

This Week

- More reading
 - Papers and code
- Finished test programming
 - Basic, intuitive implementation of depth from defocus
 - More on that next
- Brain storming
 - What are the limitations?
 - How to work around them?

My Test

- Two images
 - One with deep depth of field
 - One with shallow depth of field
- Use a set of convolutions to estimate depth locally
- Essentially, reduces the problem to a grid of approximate coplanar patches (parallel to sensor)
- Decent results, but slow (at least in MATLAB)
- No image segmentation used, so depth only measured at edges

Deep DOF

Shallow DOF

Depthmap

Reconstruction

Shallow DOF Original

The Problem

- The way I got my results was by looking at a neighborhood around each pixel
- Inspecting such a small scale reduces oblique surfaces to a series of coplanar approximations
- Brute force approach
 - Throw everything at it and see what sticks

Our Goal

- We want to find a way to deal with oblique edges without reducing the problem
- Find a way to determine the appropriate filters needed dynamically
 - Ex: oblique surfaces would need asymmetrical filters because the amount of blur varies across them
- Global optimization with fewer assumptions