REU – Week 8

Kevin Kyyro

July 9th, 2010

Summary

- Got our C++ code to save data cost to binary file
- Got MATLAB to read it
 - Need to get MATLAB to write modified data costs to binary and get C++ code to read it
- Analyzing data cost under different conditions
 - Different types of blur
 - Different size images
- Experimenting with data cost

Analyzing Data Cost

- Pick 30+ points on an image
 - Mostly edges and corners
- Plot the data cost for each possible label at each point
- May indicate the possibility of a simpler method
- Also an indicator of noise levels

- Green gaussian blurs
- Blue pillbox blurs

- (x,y) = (994,338)
- 1200 x 800 pixels

Analyzing Data Cost

- Should ideally have a single minimum
- Multiple and broad local minima are a source of noise
- If our method can be adjusted to give more ideal data costs, may be able to simplify optimization

- Convolve sharp image with increasing blurs
- Compare pixel values at every pixel
- Not very good
 - Needs a lot of texture
 - Not very accurate

- Convolve sharp image with increasing blurs
- Compare first derivative at every pixel
- Better than before
 - Needs less texture
 - But it's noisy
 - Might look okay with segmentation

- Without noise reduction
- Since the data cost may have several minima, choose the first depth for which the data cost is within a certain range from the absolute minimum.
- Doesn't seem to affect accuracy too much

Plans

- Keep experimenting with data cost
- Try to get our C++ code to use the derivate to compare to our current results
 - Almost had it, but the graph cut didn't seem to work on it for some reason...