

Automatic Camera Tracking

Andrew Fitzgibbon Andrew Zisserman

- · Movies...
- Modelling...
- Architecture

Objective:

Automatic camera tracking, Matchmoving

Input

Images of largely static scenes (for now)

Output

- · Camera position for every frame
 - Rotation, translation + Intrinsics

"Enemy at the Gates", Paramount Pictures, 2001

The problems

Past...

- 1. Track lifetime
- 2. Degeneracy/critical surfaces
- 3. Lens distortion
- 4. Incorporating constraints

Future...

- 1. Non-static scenes
- 2. Multiple sequences

The basic method

- · Tracking of high-contrast features
 - → point tracks over multiple views
 - matching using multiview tensors
 - camera initialization/autocalibration
 - robust bundle adjustment for P, X
- Large 100000 parameters estimation
 - \sim 1M parameters in 5000 frame sequences

Problem I: Track lifetime

100 views

Sequences with tracks from start to end are "easy"

- In practice, obtain short tracks due to
 - Large translation
 - Camera pan
 - Foreground occlusion
 - Tracking failure

Large translation

Tracking difficulty

Camera pan & foreground occlusion

Issue 2: Critical surfaces

- · Degenerate configurations e.g. points and camera on quadric appear rare
 - Space of degenerate sequences is measure zero in space of all sequences
- · Real sequences often "within noise" of degeneracy

11111111

- e.g. near-planar scene, near-linear camera motion

Strategies for short-lived tracks

- Seguential
 - Bootstrap using 3-view reconstruction
 - Merge new structure through sequence
- Hierarchical
 - Compute independent 3-view reconstructions
 - Combine overlapping reconstructions
- · Bundle adjustment
 - Crucial adjunct to all techniques
- · Need:
 - Projective factorization ...
 - ... with missing data/covariances

Example ambiguities

- · Closure
 - Manually or automatically identified
 - Bundle adjustment
 - "Hinges" [Fitzgibbon et al 00]

2 views

20 views

Scene constraints

- Vanishing points are the images of points at infinity.
 - Points a known distance from the camera provide valuable cues
- Intersection of nearly parallel lines requires care

Vertical lines share a point at infinity

Simultaneous fitting amortizes error over time and space

Issue 4: Lens distortion

- Effects of distortion
- Automatic correction
 - Bundle adjustment

Future: Nowhere-static scenes

Objective: Determine camera pan [Fitzgibbon 01]

Input flowers

Flowers videotexture

Future: Non-static scenes

- Multibody
- Calibration constraints
- Multipoint
 - Wolf & Shashua 01

Background

Robot

Conclusions 🗑

Success depends on

- Statistical modelling
- Dealing with degeneracy
- Using available constraints